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PREFACE

Instantiation theory is the study of instantiation in an abstract context that is
applicable to most commonly studied logical formalisms. This book begins with
a survey of general approaches to the study of instantiation, as found in tree
systems, order-sorted algebras, algebraic theories, composita, and instantiation
systems.

A classification of instantiation systems is given, based on properties of
substitutions, degree of type strictness, and well-foundedness of terms.
Equational theories and the use of typed variables are studied in terms of
quotient homomorphisms and embeddings, respectively. Every instantiation
system is a quotient system of a subsystem of first-order term instantiation.

A general unification algorithm is developed as an application of the basic
theory. Its soundness is rigorously proved, and its completeness and efficiency
are verified for certain classes of instantiation systems. Appropriate applications
of the algorithm include unification of first-order terms, order-sorted terms, and
first-order formulas modulo o-conversion, as well as equational unification
using simple congruences.

I am indebted to William Farmer for acquainting me with the literature on
unification algorithms, for help in formulating the basic theory, and for valuable
advice regarding its development. I also wish to thank Hans-Jlrgen Biirckert,
Dale Johnson, John Stell, and an anonymous referee for valuable feedback on
its presentation. This work was sponsored by the Rome Laboratories, Griffiss
Air Force Base, Rome, NY 13441, under the direction of John C. Faust, COAC.

Bedford, MA James G. Williams
June 1991
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