Skip to main content

Well-ordering of algebras and Kruskal's theorem

  • Chapter
  • First Online:
Logic, Language and Computation

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 792))

Abstract

We define well-partial-orderings on abstract algebras and give their order types. For every ordinal in an initial segment of the Bachmann hierarchy there is one and only one (up to isomorphism) algebra giving the ordinal as order type. As a corollary, we show Kruskal-type theorems for various structures are equivalent to well-orderedness of certain ordinals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Ackermann, Konstruktiver Aufbau eines Abschnitts der zweiten Cantorschen Zahlenklasse, Math. Z. 53 (1951) 403–413.

    Article  Google Scholar 

  2. W. Buchholz, Normalfunktionen und konstruktive Systeme von Ordinalzahlen, in: Proof Theory Symposion, Kiel 1974, J. Miller, G. H. Müller eds., Lecture Notes in Mathematics 500, (Springer, 1975) pp.4–25.

    Google Scholar 

  3. W. Buchholz and K. Schütte, Proof Theory of Impredicative Subsystems of Analysis, (Bibliopolis, 1988).

    Google Scholar 

  4. A. Cantini, On the relation between choice and comprehension principles in second order arithmetic, J. Symb. Logic 51 (1986) 360–373.

    Google Scholar 

  5. P. M. Cohn, Universal Algebra, Revised edition, (D. Reidel, 1981).

    Google Scholar 

  6. T. Coquand, A proof of Higman's lemma by structural induction, manuscript, April 1993, Chalmers University, Göteborg, Sweden, 4 pages.

    Google Scholar 

  7. D. H. J. de Jongh and R. Parikh, Well-partial orderings and hierarchies, Indag. Math. 39 (1977) 195–207.

    Google Scholar 

  8. N. Dershowitz, Orderings for term-rewriting systems, Theoretical Computer Science 17 (1982) 279–301.

    Article  Google Scholar 

  9. N. Dershowitz, Trees, ordinals and termination, in: TAPSOFT '93: Theory and Practice of Software Development, Orsay, France, 1993, M.-C. Gaudel, J.-P. Jouannaud eds., Lecture Notes in Computer Science 668 (Springer, 1993) pp. 243–250.

    Google Scholar 

  10. N. Dershowitz and Z. Manna, Proving termination with multiset orderings, Comm. ACM (1979) 465–476.

    Google Scholar 

  11. N. Dershowitz and M. Okada, Proof theoretic techniques for term rewriting theory, in: Third Annual Symposium on Logic in Computer Science, July 1988, Edinburgh, Scotland, (IEEE, 1988) pp.104–111.

    Google Scholar 

  12. S. Feferman, Formal theories for transfinite iterations of generalized inductive definitions and some subsystems of analysis, in: Intuitionism and Proof Theory, Proceedings of the Summer Conference at Buffalo N.Y. 1968, A, Kino, J. Myhill, R. E. Vesley eds., (North-Holland 1970) pp. 303–326.

    Google Scholar 

  13. S. Feferman, Preface: how we get from there to here, in: Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-Theoretical Studies, Lecture Notes in Mathematics 897 (Springer, 1981) pp.1–15.

    Google Scholar 

  14. H. Friedman, N. Robertson and P. Seymour, The metamathematics of the graph minor theorem, in: Contemporary Mathematics, Vol. 65, Logic and Combinatorics, Aug 1985, (AMS, 1987) pp.229–261.

    Google Scholar 

  15. H. Friedman, K. McAloon and S. Simpson, A finite combinatorial principle which is equivalent to the 1-consistency of predicative analysis, in: Patras Logic Symposion, G. Metakides ed., (North-Holland, 1982) pp. 197–230.

    Google Scholar 

  16. L. Fuchs, Partially Ordered Algebraic Systems, (Pengamon Press, 1963).

    Google Scholar 

  17. J. H. Gallier, What's so special about Kruskal's theorem and the ordinal Γ 0? A survey of some results in proof theory, Ann. Pure Appl Logic 53 (1991) 199–260.

    Article  Google Scholar 

  18. H. Gerber, An extension of Schütte's klammersymbols, Math. Ann. 174 (1967) 203–216.

    Article  Google Scholar 

  19. A. Gupta, A constructive proof that tree are well-quasi-ordered under minors (detailed abstract), in: Logical Foundations of Computer Science — Tver '92, A. Nerode, M. Taitslin eds., Tver, Russia, July 1992, Lecture Notes in Computer Science 620, (Springer, 1992) pp. 174–185.

    Google Scholar 

  20. G. Higman, Ordering by divisibility in abstract algebras, Proc. London. Math. Soc. Third Series 2 (1952) 326–336.

    Google Scholar 

  21. J.-P. Jouannaud and M. Okada, Satisfiability of systems of ordinal notations with the subterm property is decidable, preprint.

    Google Scholar 

  22. S. Kamin and J.-J. Lévy, Attempts for generalizing the recursive path orderings, handwritten notes, Feb. 1980, 26pp.

    Google Scholar 

  23. J. B. Kruskal, Well-quasi-ordering, the tree theorem, and Vazsonyi's conjecture, Trans. Am. Math. Soc. 95 (1960) 210–225.

    Google Scholar 

  24. P. Lescanne, Two implementations of the recursive path ordering on monadic terms, Proc. 19th Allerton House Conference on Communication, Control and Computing, (University of Illinois Press, 1981) pp. 634–643.

    Google Scholar 

  25. P. Lescanne, Uniform termination of term rewriting systems, recursive decomposition ordering with status, in: Ninth Colloquium on Trees in Algebra and Programming, March 1984, Bordeaux, France, B. Courcelle ed., (Cambridge University Press, 1984) pp. 181–194.

    Google Scholar 

  26. U. Martin and E. Scott, The order types of termination orderings on monadic terms, strings and multisets, Proc. Eighth Annual IEEE Symposium on Logic in Computer Science, June 1992 Montreal, Canada, (IEEE, 1993) pp. 356–363.

    Google Scholar 

  27. C. R. Murthy and J. R. Russell, A constructive proof of Higman's lemma, in: Proceedings of the Fifth Annual Symposium on Logic in Computer Science, (IEEE, 1990) pp. 257–267.

    Google Scholar 

  28. C. St. J. A. Nash-Williams, On well-quasi-ordering finite trees, Proc. Camb. Philos. Soc. 59 (1963) 833–835.

    Google Scholar 

  29. M. Okada and A. Steele, Ordering structures and the Knuth-Bendix completion algorithm, in: Proceedings of the Allerton Conference on Communication, Control and Computing, Monticello, IL, 1988.

    Google Scholar 

  30. M. Rathjen and A. Weiermann, Proof-theoretic investigations on Kruskal's theorem, Ann. Pure Appl. Logic 60 (1993) 49–88.

    Article  Google Scholar 

  31. F. Richman and G. Stolzenberg, Well-quasi-ordered sets, Adv. Math 97 (1993) 145–153.

    Article  Google Scholar 

  32. N. Robertson and P. D. Seymour, Graph minors IV. Tree-width and well-quasi-ordering, J. Comb. Th. Series B 48 (1990) 227–254.

    Article  Google Scholar 

  33. K. Sakai, Knuth-Bendix algorithm for Thue system based on kachinuki ordering, ICOT Technical Memorandum: TM-0087, ICOT, Institute for New Generation Computer Technology, Dec. 1984

    Google Scholar 

  34. K. Schütte and S. G. Simpson, Ein in der reinen Zahlentheorie unbeweisbarer Satz über endliche Folgen von natürlichen Zahlen, Arch. Math. Logik Grundlagenforsch 25 (1985) 75–89.

    Article  Google Scholar 

  35. S. G. Simpson, Reverse mathematics, in: Recursion Theory, A. Nerode, R. A. Shore, eds., Proceedings of Symposia in Pure Mathematics, Volume 42 (AMS, 1985) pp. 461–471.

    Google Scholar 

  36. S. G. Simpson, Nonprovability of certain combinatorial properties of finite trees, in: Harvey Friedman's research on the foundations of mathematics, L. A. Harrington, M. D. Morley, A. Scedrov, S. G. Simpson, eds., (North-Holland, 1985) pp. 87–117.

    Google Scholar 

  37. S. G. Simpson, Ordinal numbers and the Hilbert basis theorem, J. Symbolic Logic 53 (1988) 961–974.

    Google Scholar 

  38. K. Tanaka, Reverse mathematics and subsystems of second-order arithmetic, Sugaku Expositions 5 (1992) 213–234.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Neil D. Jones Masami Hagiya Masahiko Sato

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hasegawa, R. (1994). Well-ordering of algebras and Kruskal's theorem. In: Jones, N.D., Hagiya, M., Sato, M. (eds) Logic, Language and Computation. Lecture Notes in Computer Science, vol 792. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0032399

Download citation

  • DOI: https://doi.org/10.1007/BFb0032399

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57935-9

  • Online ISBN: 978-3-540-48391-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics