Skip to main content

Microcircuits in the brain

  • Biological Foundations of Neural Computation
  • Conference paper
  • First Online:
Book cover Biological and Artificial Computation: From Neuroscience to Technology (IWANN 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1240))

Included in the following conference series:

Abstract

There is an increasing interest in computational models of neural networks, based on real synaptic circuits, for investigating the functional organization of the brain. It seems obvious that the utility of these models would be greater as more detailed circuit diagrams become available. The present paper provides some general quantitative data on the synaptic organization of the cerebral cortex and summarizes certain basic features of cortical microcircuits which might be useful for computational models of the cerebral cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Schüz, G. Palm. Density of neurons and synapses in the cerebral cortex of the mouse. J. Comp. Neurol. 286: 442–455, 1989.

    Google Scholar 

  2. O. V. Favorov, D.G. Kelly. Minicolumnar organization within somatosensory cortical segregates: I. Development of afferent connections. Cereb. Cortex 4: 408–427, 1994.

    Google Scholar 

  3. O. V. Favorov, D.G. Kelly. Minicolumnar organization within somatosensory cortical segregates: II. Emergent functional properties. Cereb. Cortex 4: 428–442, 1994.

    Google Scholar 

  4. E. G. Jones. History of cortical cytology. In: Cerebral cortex. Vol.1. Cellular components of the cerebral cortex, pp. 1–32. A. Peters, Jones, E.G (Eds.). New York: Plenum Press, 1984.

    Google Scholar 

  5. E. G. Jones. Laminar distribution of cortical efferent cells. In: Cerebral cortex. Vol. 1. Cellular components of the cerebral cortex, pp. 521–553. A. Peters, E. G. Jones (Eds) New York: Plenum Press, 1984.

    Google Scholar 

  6. E. L. White. Cortical Circuits: Synoptic Organization of the Cerebral Cortex. Structure, Function and Theory. Boston: Birkhäuser, 1989

    Google Scholar 

  7. J. DeFelipe, I. Fariñas. The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synoptic inputs. Prog. Neurobiol. 39: 563–607, 1992.

    Google Scholar 

  8. J. S. Lund. Spiny stellate neurons. In: Cerebral cortex. Vol.1. Cellular components of the cerebral cortex, pp. 255–308. A. Peters, E. G. Jones (Eds.). New York: Plenum Press, 1984.

    Google Scholar 

  9. T. F. Freund, K.A.C. Martin, I. Soltész, P. Somogyi, D. Whitteridge. Arborisation pattern and postsynaptic targets of physiologically identified thalamocortical afferents in striate cortex of the macaque monkey. J. Comp. Neurol 289: 315–336, 1989.

    Google Scholar 

  10. E.G. Jones. Varieties and distribution of non-pyramidal cells in the somatic sensory cortex of the squirrel monkey. J. Comp. Neurol. 160: 205–268, 1975.

    Google Scholar 

  11. A. Fairén, J. DeFelipe, J. Regidor. Nonpyramidal neurons. General account. In: Cerebral cortex. Vol.1. Cellular components of the cerebral cortex, pp. 201–253. A. Peters, E. G. Jones (Eds.). New York: Plenum Press, 1984.

    Google Scholar 

  12. C. R. Houser, J. E. Vaughn, S. H. C. Hendry, E. G. Jones, A. Peters. GABA neurons in the cerebral cortex. In: Cerebral cortex. Vol.2. Functional properties of cortical cells, pp. 63–89. E. G. Jones, A. Peters (Eds.). New York: Plenum Press, 1984.

    Google Scholar 

  13. A. Peters. Synoptic specificity in the cerebral cortex. In: Synaptic Fuction, pp. 373–397. G. M. Edelman, W. E.Gall, W. M. Cowan (Eds.). New York: John Wiley, 1987.

    Google Scholar 

  14. J. DeFelipe. Neocortical neuronal diversity: chemical heterogeneity revealed by colocalization studies of classic neurotransmitters, neuropeptides, calcium binding proteins and cell surface molecules. Cerebral Cortex 3: 273–289, 1993.

    Google Scholar 

  15. E. G. Jones. GABAergic neurons and their role in cortical plasticity in primates. Cerebral Cortex. 3: 361–372., 1993.

    Google Scholar 

  16. R. Lorente de Nó. Architectonics and structure of the cerebral cortex. In: Physiology of the nervous system, pp. 291–330. J. F. Fulton (Ed.). New York: Oxford University Press, 1938.

    Google Scholar 

  17. E.G. Gray. Axo-somatic and axo-dendritic synapses of the cerebral cortex: An electron microscopic study. J. Anat. 93: 420–433, 1959.

    Google Scholar 

  18. M. Colonnier. Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Res. 9: 268–287, 1968.

    Google Scholar 

  19. M. Colonnier. Experimental degeneration in the cerebral cortex. J. Anat. (Lond.) 98: 47–53., 1964.

    Google Scholar 

  20. E. G. Jones. An electron microscopic study of the termination of afferent fiber systems within the somatic sensory cortex of the cat. J. Anat. (Lond.) 103: 595–597, 1968.

    Google Scholar 

  21. E. L. White. Thalamocortical synaptic relations: a review with emphasis on the projections of specific thalamic nuclei to the primary sensory areas of the neocortex. Brain Res. Rev. 1: 275–311, 1979.

    Google Scholar 

  22. J. Szentágothai. The “module-concept” in cerebral cortex architecture. Brain Res. 95: 475–496, 1975.

    Google Scholar 

  23. J. Szentágothai. The neuron network of the cerebral cortex: A functional interpretation. Proc. R. Soc. London. Ser. B. 201: 219–248, 1978.

    Google Scholar 

  24. W. K. Stell. Correlation of retinal cytoarchitecture and ultrastructure in Golgi preparations. Anat. Rec. 153: 389–397, 1965.

    Google Scholar 

  25. T. W. Blackstad. Mapping of experimental axon degeneration by electron microscopy of Golgi preparations. Z. Zellforsch. 67: 819–834, 1965.

    Google Scholar 

  26. A. Fairén, A.Peters, J. Saldanha. A new procedure for examining Golgi impregnated neurons by light and electron microscopy. J. Neurocytol. 6: 311–337, 1977.

    Google Scholar 

  27. P. Somogyi. Synaptic connections of neurones identified by Golgi impregnation: Characterization by immunocytochemical, enzyme histochemical, and degeneration methods. J. Electron Microsc. Tech. 15: 332–351, 1990.

    Google Scholar 

  28. M. L. Feldman. Morphology of the neocortical pyramidal neuron. In: Cerebral cortex. Vol.1. Cellular components of the cerebral cortex, pp. 123–200. A. Peters, E. G. Jones (Eds.). New York: Plenum Press, 1984.

    Google Scholar 

  29. S. R. Cajal. Estudios sobre la corteza cerebral humana III: Corteza acústica. Rev. Trim. Micrográf. 5: 129–183, 1900.

    Google Scholar 

  30. V. B. Mountcastle. Modality and topographic properties of single neurons of cat's somatic sensory cortex. J. Neurophysiol. 20: 408–434, 1957.

    Google Scholar 

  31. T. P. S. Powell, V. B. Mountcastle. Some aspects of the functional organization of the cortex of the postcentral gyrus of the monkey: A correlation of findings obtained in a single unit analysis with cytoarchitecture. Bull. Johns Hopkins Hosp. 105: 133–162, 1959.

    Google Scholar 

  32. V. B. Mountcastle. An organizing principle for cerebral function: The unit module and the distributed system. In: The mindful brain, pp. 7–50. V. B. Mountcastle, G. M. Edelman (Eds.). Cambridge, MA: MIT press, 1978.

    Google Scholar 

  33. E.G. Jones. The columnar basis of cortical circuitry. In: The clinical neurosciences, W. D. Willis (Ed.), pp. 357–383. New York: Churchill Livingstone, 1983.

    Google Scholar 

  34. Hubel, D. H., and Wiesel, T. N. Functional architecture of macaque monkey cortex. Proc. R. Soc. Lond. B 198: 1–59, 1977.

    Google Scholar 

  35. S. H. C. Hendry, H.D. Schwark, E.G. Jones, J. Yan. Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex. J. Neurosci. 7: 1503–1519, 1987.

    Google Scholar 

  36. A. Peters, T.M. Walsh. A study of the organization of apical dendrites in the somatic sensory cortex of the rat. J. Comp. Neurol. 144: 253–268, 1972.

    Google Scholar 

  37. A. Peters, C. Sethares. Organization of pyramidal neurons in area 17 of the monkey visual cortex. J. Comp. Neurol. 306: 1–23, 1991.

    Google Scholar 

  38. A. Peters, C. Sethares. Myelinated axons and the pyramidal cell modules in the monkey primary visual cortex. J. Comp. Neurol. 365: 232–255, 1996.

    Google Scholar 

  39. S. R. Cajal. Estudios sobre la corteza cerebral humana 1: Corteza visual. Rev. Trim. Micrográf. Madrid 4: 1–63, 1899.

    Google Scholar 

  40. P. Somogyi, A. Cowey. Double bouquet cells. In: Cerebral cortex. Vol.1. Cellular components of the cerebral cortex, pp. 337–360. A. Peters, E. G. Jones (Eds.). New York: Plenum Press, 1984.

    Google Scholar 

  41. J. DeFelipe, S. H. C. Hendry, T. Hashikawa, M. Molinari, E. G. Jones. A microcolumnar structure of monkey cerebral cortex revealed by immunocytochemical studies of double bouquet cell axons. Neuroscience 37: 655–673, 1990.

    Google Scholar 

  42. A. Fairén, F. Valverde. A specialized type of neuron in the visual cortex of cat: a Golgi and electron microscope study of chandelier cells. J. Comp. Neurol. 194: 761–779, 1980.

    Google Scholar 

  43. T. F. Freund, K. A. C. Martin, A. D. Smith, P. Somogyi. Glutamate decarboxylase-immunoreactive terminals of Golgi-impregnated axoaxonic cells and of presumed basket cells in synoptic contact with pyramidal neurons of cat's visual cortex. J.Comp. Neurol. 221: 263–278, 1983.

    Google Scholar 

  44. J. DeFelipe, S. H. C. Hendry, E. G. Jones, D. Schmechel, D. Variability in the terminations of GABAergic chandelier cell axons on initial segments of pyramidal cell axons in the monkey sensory-motor cortex. J. Comp. Neurol. 231: 364–384, 1985.

    Google Scholar 

  45. J. DeFelipe, S. H. C. Hendry, E. G. Jones. Visualization of chandelier cell axons by parvalbumin immunoreactivity in monkey cerebral cortex. Proc. Natl. Acad.Sci. USA 86: 2093–2097, 1989.

    Google Scholar 

  46. M. R. del Río, J. DeFelipe. A study of SMI 32-stained pyramidal cells, parvalbumin-immunoreactive chandelier cells and presumptive thalamocortical axons in the human temporal neocortex. J. Comp. Neurol. 342: 389–408, 1994.

    Google Scholar 

  47. I. Fariñas, J. DeFelipe. Patterns of synoptic input on corticocortical and corticothalamic cells in the cat visual cortex. II. The axon initial segment. J. Comp Neurol. 304: 70–77, 1991.

    Google Scholar 

  48. E. G. Jones, S. P. Wise. Size, laminar and columnar distribution of efferent cells in the sensory-motor cortex of monkeys. J. Comp. Neurol. 175: 391–438, 1977.

    Google Scholar 

  49. C. D. Gilbert, T. N. Wiesel. Clustered intrinsic connections in cat visual cortex. J Neurosci. 3: 1116–1133, 1983.

    Google Scholar 

  50. K. A. C. Martin, D. Whitteridge. Form, function, and intracortical projections of spiny neurons in the striate visual cortex of the cat. J. Physiol. (Lond.) 353: 463–504, 1984.

    Google Scholar 

  51. J. DeFelipe, M. Conley, E. G. Jones. Long-range focal collateralization of axons arising from corticocortical cells in monkey sensory-motor cortex. J. Neurosci. 6: 3749–3766, 1986.

    Google Scholar 

  52. H. D. Schwark, E. G. Jones. The distribution of intrinsic cortical axons in area 3b of cat primary somatosensory cortex. Exp. Brain Res. 78: 501–513, 1989.

    Google Scholar 

  53. H. Ojima, C. N. Honda, E. G. Jones. Patterns of axon collateralization of identified supragranular pyramidal neurons in the cat auditory cortex. Cerebral Cortex 1: 80–94, 1991.

    Google Scholar 

  54. E. G. Jones. Identification and classification of intrinsisc circuit elements in the neocortex. In: Dynamic aspects of neocortical function, pp. 7–40. G. Edelman, W. M. Cowan, W. E. Gall (Eds), New York: John Wiley, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira Roberto Moreno-Díaz Joan Cabestany

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

DeFelipe, J. (1997). Microcircuits in the brain. In: Mira, J., Moreno-Díaz, R., Cabestany, J. (eds) Biological and Artificial Computation: From Neuroscience to Technology. IWANN 1997. Lecture Notes in Computer Science, vol 1240. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0032458

Download citation

  • DOI: https://doi.org/10.1007/BFb0032458

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63047-0

  • Online ISBN: 978-3-540-69074-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics