Skip to main content

Astrocytes and slow learning in the formation of distal cortical associations

  • Plasticity Phenomena (Maturing, Learning and Memory)
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1240))

Abstract

An extension is proposed of the range of biologically inspired models for local computation architectures and learning in ANNs. The specific focus is on learning processes underlying the formation of connections providing distal access between local neural areas engaging in subsymbolic processing. A neural network architecture underlying the construction of distal cortical associations representing shared, specific contextual relevance between local regions is described. The model involves the evolutionary co-option of hippocampal neural structures to new functions and the adoption of a slow competitive learning process involving interaction between astrocytic and neural processes to enable identification of appropriate associations between cortical and motivational/emotional activity which proceed on different time scales.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bennett, M.V.L. and Verselis, V.K., (1992). Biophysics of gap junctions. Cell Biology. 3, 29–47.

    Google Scholar 

  • Bliss, T.V.P., Collingridge, G.L., (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 361, 31–39.

    Google Scholar 

  • Brown, T.H., Zador, A.M., Mainen, Z.F., and Claiborne, B.J. (1992). Hebbian computations in hippocampal dendrites and spines. In T. McKenna, J. Davis, S.F. Zornetzer (Eds.), Single Neuron Computation. Academic Press, 81–116.

    Google Scholar 

  • Burgess, N., Reece, M and O'Keefe, J., (1994). A model of hippocampal function. Neural Networks 7, 1065–1082.

    Google Scholar 

  • Chiu, S.Y. and Kriegler, S., (1994). Neurotransmitter-mediated signaling between axons and glial cells. Glia. 11, 191–200.

    Google Scholar 

  • Finkbeiner, S., (1992). Calcium waves in astrocytes-filling in the gaps. Neuron. 8, 1101–1108.

    Google Scholar 

  • Finkbeiner, S.M., (1993). Glial Calcium. Glia. 9 83–104.

    Google Scholar 

  • Galambos, R., (1961). A glial-neural theory of brain function. Proc. natn. Acad. Sci. 47, 129–136.

    Google Scholar 

  • Gustafsson, B., Wigstrom, H., (1990). Long-term potentiation in the CA1 region: its induction and early temporal development. Progress in Brain Research. 83, 223–232.

    Google Scholar 

  • Hertz, L. (1965). Possible role of neuroglia: a potassium-mediated neuronal-neuroglia-neuronal impulse transmission system. Nature. 4889, 1091–1094.

    Google Scholar 

  • Kim, W.T., Rioult, M.G. and Cornell-Bell, A.H., (1994). Glutamate-induced calcium signaling in astrocytes. Glia. 11, 173–184.

    Google Scholar 

  • Laming, P.R., (1989). Do glia contribute to behaviour? A neuromodulatory review. Comp. Biochem. Physiol. 94A, No.4, 555–568.

    Google Scholar 

  • Lee, S.H., Kim, W.T., Cornell-Rell, A.H. and Sontheimer, H. (1994). Astrocytes exhibit regional specificity in gap-junction coupling. Glia. 11, 315–325.

    Google Scholar 

  • Martin, D.L. (1992). Synthesis and release of neuroactive substances by glial cells. Glia. 5, 81–94.

    Google Scholar 

  • McClelland, J.L., McNaughton, B.L., and O'Reilly, R.C. (1995). Why there are complemenary learning systems in the hippocampus and neocortex: insights from the success and failures of connectionist models of learning and memory. Psychological Review. 102(3), 419–457.

    Google Scholar 

  • Nedergaard, M. (1994). Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science. 263, 1768–1771.

    Google Scholar 

  • Pomerat, C.M. (1952) Dynamic neurogliology. Texas Rep. Biol. Med. 10, 883–913.

    Google Scholar 

  • Pappas, C.A., Rioult, M.G., and Ransom, B.R. (1996). Octanol, a gap junction uncoupling agent, changes intracellular [H+] in rat astrocytes. Glia. 16, 7–15.

    Google Scholar 

  • Parpura, V., Basarsky, T.A., Liu, F., Jeftinija, K., Jeftinija, S., and Haydon, P.G. (1994). Glutamate-mediated astrocyte-neuron signalling. Nature. 369, 744–747.

    Google Scholar 

  • Raff, R.A. (1996). The Shape of Life. University of Chicago Press, Chicago.

    Google Scholar 

  • Richter-Levin, G., Errington, M.L., Maegawa, H., and Bliss, T.V.P., (1994), Activation of metabotropic glutamate receptors is necessary for long-term potentiation in the dentate gyrus and for spatial learning. Neuropharmacolog., 33, No. 7, 853–857.

    Google Scholar 

  • Richter-Levin, G., Canevari, L., Bliss, T.V.P. (1995). Long-term potentiation and glutamate release in the dentate gyrus: links to spatial learning. Behavioural Brain Research. 66, 37–40.

    Google Scholar 

  • Robinson, S.R., Hampson, E.C.G.M., Munro, M.N., Vaney, D.I. (1993). Unidirectional coupling of gap junctions between neuroglia. Science. 262, 1072–1074.

    Google Scholar 

  • Rooney, T.A., Sass, E.J. and Thomas, A.P. (1989). Characterization of cytosolic calcium oscillations induced by phenylephrine and vasopressin in single fura-2-loaded hepatocytes. The Journal of Biological Chemistry. 264, No. 29, Issue of October 15, 17131–17141.

    Google Scholar 

  • Silberstein, R.B. (1994). Neuromodulation of Neocortical Dynamics. In P.L. Nunez (Ed.), Neocortical Dynamics and Human EEG Rhythms. Oxford University Press, 591–627.

    Google Scholar 

  • Singer, W. (1994). The Role of Synchrony and Neocortical Processing and Synaptic Plasticity. In E. Domany, J.L. van Hemmen, K. Schulten (Eds.), Models of Neural Networks II. Springer-Verlag, New York.

    Google Scholar 

  • Smith, S.J., (1992). Do astrocytes process neural information? Progress in Brain Research. 94, 119–136.

    Google Scholar 

  • Smith, S.J., (1994). Neuromodulatory astrocytes. Current Biology. 4, 807–810.

    Google Scholar 

  • Wickens, J., (1993). A Theory of the Striatum. Pergamon Press, Oxford.

    Google Scholar 

  • Wallace, J.G., and Bluff, K. (1995a). Neurons, glia and the borderline between subsymbolic and symbolic processing. In C. Pinto-Ferreira and N.J. Mamede (Eds.). Progress in Artificial Intelligence. Berlin, Springer, 201–211.

    Google Scholar 

  • Wallace, J.G., and Bluff, K. (1995b). Should ANN be ANGN? In J. Mira and F. Sandoval (Eds.). From Natural to Artificial Neural Computation. Berlin, Springer, 53–60.

    Google Scholar 

  • Williams, J.H., Errington, M.L., Lynch, M.A., & Bliss, T.V.P. (1989). Arachidonic acid induces a long-term activity-dependent enhancement of synaptic transmission in the hippocampus. Nature, 341, 739–742.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira Roberto Moreno-Díaz Joan Cabestany

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wallace, J.G., Bluff, K. (1997). Astrocytes and slow learning in the formation of distal cortical associations. In: Mira, J., Moreno-Díaz, R., Cabestany, J. (eds) Biological and Artificial Computation: From Neuroscience to Technology. IWANN 1997. Lecture Notes in Computer Science, vol 1240. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0032494

Download citation

  • DOI: https://doi.org/10.1007/BFb0032494

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63047-0

  • Online ISBN: 978-3-540-69074-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics