
The Power of QDDs
(Extended Abstract)

Bernard Boigelot1⋆, Patrice Godefroid2, Bernard Willems1 and Pierre Wolper1

1 Université de Liège
Institut Montefiore, B28

B-4000 Liège Sart-Tilman, Belgium
{boigelot,willems,pw}@montefiore.ulg.ac.be

2 Bell Laboratories
Lucent Technologies

1000 E. Warrenville Road
Naperville, IL 60566, U.S.A.

god@bell-labs.com

Appears in: Proc. of 4th Static Analysis Symposium, Paris, Lecture Notes

in Computer Science, Springer-Verlag, September, 1997.

Abstract. Queue-content Decision Diagrams (QDDs) are finite-auto-
maton based data structures for representing (possibly infinite) sets of
contents of a finite collection of unbounded FIFO queues. Their intended
use is to serve as a symbolic representation of the possible queue contents
that can occur in the state space of a protocol modeled by finite-state
machines communicating through unbounded queues. This is done with
the help of a loop-first search, a state-space exploration technique that
attempts whenever possible to compute symbolically the effect of re-
peatedly executing a loop any number of times, making it possible to
analyze protocols with infinite state spaces though without the guaran-
tee of termination. This paper first solves a key problem concerning the
use of QDDs in this context: it precisely characterizes when, and shows
how, the operations required by a loop-first search can be applied to
QDDs. Then, it addresses the problem of exploiting QDDs and loop-first
searches to broaden the range of properties that can be checked from
simple state reachability to temporal logic. Finally, a sufficient criterion
for the termination of a loop-first search using QDDs is given.

1 Introduction

Finite-state machines that communicate by exchanging messages via unbounded
FIFO queues are a popular model for representing and reasoning about commu-
nication protocols. This model is also used to define the semantics of standard-
ized protocol specification languages such as SDL and Estelle (e.g., see [Tur93]).
Indeed, unbounded queues provide a useful abstraction that simplifies the se-
mantics of specification languages, and frees the protocol designer from imple-
mentation details related to buffering policies and limitations. In contrast, while

⋆ “Aspirant” (Research Assistant) for the National Fund for Scientific Research (Bel-
gium). The work of this author was done partly while visiting Bell Laboratories.



unboundedness can simplify the modeling of protocols, it seems to complicate
their verification. Indeed, it is well known that most interesting verification prob-
lems, such as deadlock detection, are undecidable for this class of systems [BZ83]
since one unbounded queue is sufficient to simulate the tape of a Turing machine.

Recently [BG96], it has been argued that this contradiction might not be
inherent: in practice, most verification problems may very well turn out to be
decidable for a subclass containing most “real” protocols. After all, protocols
are not designed randomly, precise design principles are used to enforce some
“regularity” in their temporal behavior. Moreover, by using appropriate verifica-
tion techniques for dealing with infinite state spaces, one might actually be able
to verify properties of such systems more efficiently than verifying properties of
systems with finite but very large state spaces.

This observation motivated the development in [BG96] of a new verification
framework for communication protocols modeled by finite-state machines com-
municating via unbounded queues. Specifically, an algorithm is presented for
constructing a finite and exact representation of the state space of such a set
of communicating finite-state machines, even if this state space is infinite. The
algorithm performs a loop-first search in the state space of the protocol being
analyzed. A loop-first search is a search technique that attempts to explore first
the results of successive executions of loops in the protocol description (code).
This is done by using meta-transitions: given a loop that appears in the proto-
col description, a meta-transition is a transition that generates all global states
that can be reached after repeated executions of the body of the loop. A new
data structure named Queue-content Decision Diagram (QDD) is introduced for
representing (possibly infinite) sets of contents for a finite collection of queues.
From this symbolic representation, it is then straightforward to verify properties
of the protocol, such as the absence of deadlocks, whether or not the number of
messages stored in a queue is bounded, and the reachability of local and global
states. Of course, given an arbitrary protocol, this algorithm may not terminate
its search, due to the general undecidability result recalled above. However, in
practice, properties of several simple communication protocols with infinite state
spaces have been verified successfully with this method [BG96].

In this paper, we build upon this work, and extend these previous results in
several ways. First, we very significantly extend the class of meta-transitions that
can be handled in the context of QDDs. Indeed, in [BG96], algorithms are only
given for three simple, but frequent, types of meta-transitions. Here we precisely
characterize the class of meta-transitions that preserve representability by QDDs
and give a generic algorithm for computing the effect of any representability-
preserving meta-transition. For systems with one queue, we show that the iter-
ation of any sequence of queue operations preserves the representability of sets
of queue contents. For systems with more than one queue, we show that repre-
sentability is preserved by the iteration of a sequence of operations if and only
if this sequence of operations does not have more than one projection that is
“counting” messages in a sense we make precise later.

Thereafter, we turn to the problem of extending the class of properties that



can be checked from simple state reachability to temporal properties. We show
how by using the technique of [VW86], the model checking [CES86] of linear-
time temporal logic formulas [MP92] can be done with the help of QDDs. Ba-
sically, we reduce the model-checking problem to the nonemptiness of Büchi
automata [Büc62] with queues, for which QDDs can be used to obtain a partial
decision procedure. Finally, we give an algorithmic criterion that is sufficient for
ensuring the termination of a loop-first search in an infinite state space.

2 Protocols, QDDs and Loop-First Searches

Our goal is to explore the state space of protocols modeled by a finite set M of
finite-state machines that communicate with each other by sending and receiving
messages via a finite set Q of unbounded FIFO queues, modeling communication
channels. The direct technique for generating the state space of such a system
would be to start in the initial state and explore all possible transitions. Of
course, since the message queues are unbounded, this search will a priori not
terminate. So, we proceed differently. We first eliminate concurrency from the
system without computing the effect of the operations on queues, i.e., we com-
pute the global control state space of the system. We thus obtain a finite-state
machine with queues. This is the structure to which we then apply the techniques
that are the subject of this paper.

Formally, we thus start with protocols described by tuples of the form P =
(C, c0, A, Q, M, T ) where

– C is a finite set of control states,
– c0 ∈ C is an initial control state,
– A is a finite set of local actions (those not involving the queues),
– Q is a finite set of queues,
– M is a finite set of messages partitioned in as many sets Mi as there are

queues qi ∈ Q (assuming that each queue uses a set of different messages is
convenient and not restrictive),

– T ⊆ C × Op × C where Op = A ∪ {qi!m | qi ∈ Q and m ∈ Mi} ∪ {qi?m |
qi ∈ Q and m ∈ Mi} is a finite set of transitions. A transition of the form

c1
α
→ c2 (α ∈ A) represents a change of the control state from c1 to c2 without

any change to the content of the queues; a transition of the form c1
qi!m
→ c2

represents a change of the control state from c1 to c2 while appending the

message m to the end of the queue qi; and a transition of the form c1
qi?m
→ c2

represents a change of the control state from c1 to c2 while removing the
message m from the head of the queue qi.

A global state of such a protocol is composed of a control state and a queue
content. A queue content associates with each queue qi a sequence of mes-
sages from Mi. Formally, a global state γ, or simply a state, of a protocol P =
(C, c0, A, Q, M, T ) with |Q| = n is an element of the set S = C ×M∗

1 ×· · ·×M∗
n,

i.e. is of the form γ = (c, w(1), w(2), . . . , w(n)) where, for 1 ≤ j ≤ n, w(j) ∈ M∗
j .



The initial global state of the system is γ0 = (c0, ε, . . ., ε), i.e., we assume that
all queues are initially empty (ε represents the empty word).

We can then define the global transition relation of a protocol P = (C, c0,

A, Q, M, T ). It is the set G of triples (γ, a, γ′), where γ and γ′ are global states

and a ∈ A ∪ {τ}, defined as follows (we write γ
a
→G γ′ to denote the fact that

(γ, a, γ′) ∈ G):

– if c1
qi!m
−→ c2 ∈ T , then (c1, w(1), w(2), . . . , w(i), . . . , w(n))

τ
→G (c2, w(1),

w(2), . . . , w(i)m, . . . , w(n)) (the control state changes from c1 to c2 and m
is appended to the content of queue qi);

– if c1
qi?m
−→ c2 ∈ T , then (c1, w(1), w(2), . . . , mw′(i), . . . , w(n))

τ
→G (c2, w(1),

w(2), . . . , w′(i), . . . , w(n)) (the control state changes from c1 to c2 and m is
removed from the head of queue qi);

– if c1
a
→ c2 ∈ T , then (c1, w(1), w(2), . . . , w(n))

a
→G (c2, w(1), w(2), . . . , w(n))

(the control state changes from c1 to c2, the queue content is unchanged).

A global state γ′ is said to be reachable from another global state γ if there
exists a sequence of global transitions γi−1

ai→G γi, 1 ≤ i ≤ k, such that γ =

γ0
a1→G γ1 · · · γk−1

ak→G γk = γ′. The global state space of a system is the (possibly
infinite) set of all states that are reachable from the initial global state γ0.

The approach we use to explore, in a finite amount of time, the infinite state
space of a protocol with unbounded queues is based on the two following tools:

– A finite representation for potentially infinite sets of possible queue contents,
and

– A technique for generating a potentially infinite set of reachable states in
one step.

A solution to the first of these problems, the Queue-content Decision Diagram
(QDD), was introduced in [BG96], and a solution to the second one, the loop-first
search, was introduced in [BW94, BG96]. Let us describe them.

For a protocol P = (C, c0, A, Q, M, T ), a set of queue contents is a set of
vectors (w(1), . . . , w(n)) where, for 1 ≤ i ≤ n, w(i) ∈ M∗

i . The idea of QDDs is
to represent a queue content by the concatenation of the corresponding queue
contents taken in an arbitrary but fixed order, and to represent a set of queue
contents by a finite automaton accepting the concatenated form representations
of its elements. Note that since we have assumed that different queues use dis-
tinct alphabet messages, concatenating queue contents leads to a nonambiguous
representation of queue contents.

A finite-state automaton on finite words is a tuple A = (S, Σ, ∆, S0, F ),
where S is a finite set of states, Σ is an alphabet (finite set of symbols), ∆ ⊆
S ×Σ × S is a transition relation, S0 ⊆ S is a set of initial states, and F ⊆ S is
a set of accepting states. A transition (s, a, s′) is said to be labeled by a. A finite
sequence (word) w = a1a2 . . . ak of symbols in Σ is accepted by the automaton
A if there exists a sequence of states σ = s0 . . . sk such that ∀1 ≤ i ≤ k :
(si−1, ai, si) ∈ ∆, s0 ∈ S0, and sk ∈ F . The set of words accepted by A is called



the language accepted by A, and is denoted by L(A). Let us define the projection
w|Mi

of a word w on a subset Mi of the alphabet on which w is defined as the
subsequence of w obtained by removing all symbols in w that are not in Mi. We
can now define QDDs3.

Definition 1. Given a protocol P = (C, c0, A, Q, M, T ) with |Q| = n and an
ordering q1, . . . , qn of the elements of Q, a QDD for P is a finite-state automaton
A = (S, M, ∆, S0, F ) on finite words such that

∀w ∈ L(A) : w = w|M1
w|M2

. . . w|Mn
.

It is clear that, the alphabets of queues being disjoint, a word w accepted by
a QDD represents a unique queue content, namely the content of qi is w|Mi

. A
QDD A thus indeed represents a set of queue contents, those corresponding to
the words in L(A). It is natural to ask the following two questions. Does the set
of queue contents representable by a QDD depend on the order chosen for the
queues, and what is a characterization of the sets of queue contents representable
by QDDs? We answer these questions in terms of recognizable languages of word
vectors.

Definition 2. A subset of
∏

1≤i≤n M∗
i , is recognizable if it is a finite union of

Cartesian products of regular languages, i.e., if it is of the form

⋃

1≤j≤k

∏

1≤i≤n

Lij ,

where each Lij is a regular subset of M∗
i .

The expressive power of QDDs is independent of the order chosen for concate-
nating the queue contents and coincides exactly with the recognizable languages.

Theorem 3. Independently of the order chosen for concatenating queue con-
tents, the languages of queue contents representable by QDDs coincide exactly
with the recognizable languages.

Proof sketch Let A = (S, M, ∆, S0, F ) be a QDD. By definition, for every
w ∈ L(A), we have w = w|M1

w|M2
. . . w|Mn

. We define the automata Ai =
(S, Mi, ∆i, Si, Fi), 1 ≤ i ≤ n, as follows:

– ∆i = ∆ ∩ (S × Mi × S), 1 ≤ i ≤ n,

– Fi is the set of states in S that are reachable from an initial state in S0 by
reading only symbols in M1 ∪ M2 ∪ · · · ∪ Mi,

– Si = S0 if i = 1, and Si = Fi−1 if i > 1.

3 The definition of QDDs that appears in [BG96] has been extended here to non-
deterministic automata with sets of initial states, for the sake of generality.



Given n + 1 states s1 ∈ S1, s2 ∈ S2, . . . sn ∈ Sn, sn+1 ∈ Fn ∩ F , define the
automaton As1,...,sn+1

as the product A′
1 × . . . × A′

n where A′
i is a copy of the

automaton Ai with only si as initial state and si+1 as final state. The language
accepted by As1,...,sn+1

is a product of regular subsets of all the sets M∗
i . Since

L(A) is the (finite) union of all the possible L(As1,...,sn+1
), L(A) is recognizable.

The other direction of the theorem is immediate since regular languages are
closed under concatenation and finite union. ⊓⊔

To exploit QDDs for exploring the state space of a protocol, one groups
together global states with the same control component and one represents the
corresponding set of queue contents by a QDD. Of course, if the queue contents
represented by the QDDs are extended by one element at a time, the QDDs
will always only represent finite sets and thus will be of very limited usefulness.
What is needed is a technique for generating a whole set of reachable states in
one step. This is the purpose of the meta-transitions introduced in [BW94].

Given a control state c of a protocol and a loop (cycle) ℓ = c
op1→ · · ·

opk→ c in the
control graph from c to c, a meta-transition for ℓ is a transition (c

op1→ · · ·
opk→ c)∗,

which we denote by c
(op1;...;opk)∗

−→ c, that generates all the global states that can
be reached after repeated executions of the sequence of transitions composing ℓ.

For example, in a system with one queue, executing the meta-transition c
(q!m)∗

→ c

from the state (c, ε) generates the set of states {(c, mk) | k ≥ 0}.
Using QDDs and meta-transitions added to the set T of transitions of the

protocol, the classical enumerative state-space exploration algorithm can be
rewritten in such a way that it works with sets of global states, i.e., pairs of
the form (control state, QDD), rather than with individual states. Initially, the
search starts from an initial global state. At each step during the search, when-
ever meta-transitions are executable, they are explored first, which is a heuristic
aimed at generating many reachable states as quickly as possible. This is why
such a search is called a loop-first search. The search terminates if the repre-
sentation of the set of reachable states stabilizes. This happens when, for every
control state, every new deducible queue content is included in the current set
of queue contents associated with that control state. At this moment, the final
set of pairs (control state, QDD) represents exactly the set of reachable states of
the protocol being analyzed.

So, the problem we are left with is the following. Given a set of global states
represented by a pair (c,A), where c is a control state and A a QDD, and given
a meta-transition, compute the QDD A′ representing the set of queue contents
that can be reached by executing this meta-transition from (c,A). In [BG96],
this problem was solved for three particular types of meta-transitions : repeat-
edly sending messages on a queue ((qi!m1; . . . ; qi!mk)∗), repeatedly receiving
messages from a queue ((qi?m1; . . . ; qi?mk)∗), and repeatedly receiving a se-
quence of messages from a queue qi followed by sending another sequence of
messages on another queue qj , i 6= j, ((qi?m1; . . . ; qi?mki

; qj !m
′
1; . . . ; qj !m

′
kj

)∗).
In the next section, we extend this result by characterizing precisely the set
of meta-transitions that preserve recognizability (and hence representability by
QDDs) and by providing a generic algorithm for computing the effect of the



execution of any meta-transition in this class.

3 Operations on QDDs

In this section, we establish results about computing the image of a QDD un-
der the repeated execution of a sequence of queue operations. The following
notations are used. If op1, op2, . . . , opp are queue operations (qi!m or qi?m),
then σ = op1; op2; . . . ; opp is a sequence of operations. The effect of a se-
quence of operations σ = op1; op2; . . . ; opp on a queue content w is σ(w) =
opp(· · · op2(op1(w)) · · ·). The effect of a sequence of operations σ on a language
L of queue contents is σ(L) = {σ(w) | w ∈ L}. The effect of the Kleene closure
σ∗ of such a sequence is defined as

σ∗(L) =
⋃

k≥0

σk(L).

If σ is a sequence of operations, then the number of queue operations compos-
ing σ is denoted |σ|. We denote by σ! (resp. σ?) the subsequence of σ consisting
of all the send (resp. receive) operations. Finally, we write µ(σ) to represent
the word obtained from σ by extracting the message symbols from the queue
operations, i.e. replacing each qi!m and qi?m by m.

3.1 Systems with one FIFO Queue

If the system being analyzed has only one FIFO queue q, then the QDDs used for
its state-space exploration by a loop-first search are nothing but ordinary finite
automata on finite words over the message alphabet of q. It then follows that the
notions of recognizable and regular languages of queue contents are equivalent.
Our first result states that in this particular case, the Kleene closure of every
sequence of elementary queue operations preserves the regularity of languages
of queue contents. Precisely, we have the following theorem.

Theorem 4. Let q be a FIFO queue, M be the message alphabet of q, and σ be a
sequence of queue operations on q. For every regular language of queue contents
L ⊆ M∗, the languages σ(L) and σ∗(L) are regular.

Proof sketch The proof is constructive and works with a QDD representation
of L. The algorithm embodying the construction can be found in the full version
of this paper [BGWW97]. ⊓⊔

In a system with one queue, we can thus exploit the meta-transitions corre-
sponding to the repetition of any arbitrary sequence of queue operations.

3.2 Systems with more than one FIFO Queue

In this case, one cannot hope to obtain a result similar to Theorem 4, since iter-
ating simple sequences like q1!m1; q2!m2 can trivially generate non-recognizable



languages. (For instance, if σ denotes this sequence, then we have σ∗({ε}) =
{mk

1m
k
2 | k ∈ N}.) For this class of systems, the first step is thus to charac-

terize precisely the sequences of operations whose Kleene closure preserves the
recognizability of languages of queue contents (and therefore the possibility of
representing them by QDDs). Our characterization is based on the following
notion.

Definition 5 Let σi be a sequence of operations concerning only one queue qi,
and Σi be the message alphabet of qi. The sequence σi is counting if and only if
it satisfies one of the following conditions:

1. |Σi| > 1 and |σi!| > 0,
2. |Σi| = 1 and |σi!| > |σi?|.

Intuitively, a sequence σ of operations that satisfies the previous definition is
called “counting” since in that case, there are languages L for which the number
k of applications of such a sequence σ on L can be determined by examining the
language σk(L), for any k ≥ 0 (which implies that σk(L) 6= σℓ(L), ∀k 6= ℓ).

Let σ be a sequence of operations, and qi be a FIFO queue. The projection
σ|i of σ on qi is defined as the subsequence obtained by deleting from σ the
operations on queues other than qi. The following result states that a sequence
always preserves the recognizability of languages of queue contents if and only
if at most one of its projections is counting.

Theorem6. Consider a protocol with n > 0 FIFO queues. A sequence of oper-
ations σ is such that σ∗(L) is recognizable for every recognizable language L of
queue contents if and only if there do not exist 1 ≤ i < j ≤ n, such that σ|i and
σ|j are counting sequences.

Proof sketch The proof of the sufficient condition is constructive and the cor-
responding algorithm is described in terms of QDDs. See [BGWW97].

In a loop-first search, the effect of any meta-transition satisfying Theorem 6
can thus be computed and represented by a QDD.

4 Properties

In [BG96], only state reachability properties are considered. These properties can
be decided on the sole basis of the exact representation of the set of reachable
states produced by a loop-first search (when it terminates). Here, we investi-
gate whether more elaborate properties can be checked with a loop-first search
and QDDs. Specifically, we discuss the verification of temporal properties. One
might argue that checking such properties, expressed for instance as linear-time
temporal logic formulas, is problematic using our approach. Indeed, a loop-first
search using QDDs computes a representation of the set of reachable states, not
of the transitions between these. This contrasts with the approach of Quemener
and Jéron [QJ95, QJ96], which produces a graph grammar representing jointly



the set of reachable states and the transition relation between these states. In
this section, we show that representing symbolically the transition relation is
not required. More precisely, we show that temporal properties can be verified
using QDDs.

The idea is the following. Let P = (C, c0, A, Q, Σ, T ) be a protocol as defined
in Section 2. Furthermore, assume we are given a labeling function Λ : C →
2P associating to each control state in C a finite set of atomic propositions in
P , and a property Π ⊆ (2P)ω defined by a linear-time temporal logic (LTL)
formula [MP92], or by a Büchi automaton [Büc62]. The problem is to check if
every run of P from the initial configuration (c0, ε, . . . , ε) satisfies Π with respect
to Λ. To do this, using the required constructions from [VW94, SVW87, Saf88],
we build a Büchi automaton B

Π
that accepts the complement of Π , and we

compute the product B
P,Π

= P × B
Π

. The result is a protocol enhanced by a
set of accepting states, which is defined as the Cartesian product of the control
states of P by the accepting states of B

Π
. We call such a machine a Büchi

automaton with queues (as it is indeed a Büchi automaton whose transitions
may be labeled by queue operations). The property Π is satisfied by every run
of P if and only if the set of accepting runs of B

P,Π
is empty. In other words,

we have reduced the model-checking problem for ω-regular properties to testing
the emptiness of the language accepted by a Büchi automaton with queues.

This last problem is undecidable, since LTL model-checking is undecidable
for protocols as defined in Section 2 [AJ94]. Nonetheless, a partial decision pro-
cedure can be obtained as follows. Let B be a Büchi automaton with queues.
An accepting run of B is a run containing an infinite number of occurrences of
some accepting control state ci (remember that there is a finite number of such
states), the queue contents at each visit to this state being allowed to vary. Since
it is impossible to check all the runs of B, our partial decision procedure will
only search for runs containing an infinite number of occurrences of ci produced
by the infinite execution of a sequence of transitions forming a cycle from ci to
ci. This amounts to performing a reachability analysis (determining the reach-
able accepting states) followed by a cycle analysis (determining the infinitely
iterable sequences of transitions). The former can be done by a loop-first search,
and the latter by testing the cycles corresponding to meta-transitions for infinite
iterability. This check is possible thanks to the following result.

Theorem 7. Let σ be any sequence of queue operations, and let ITERABLE(σ)
denote the set of all the queue contents w from which σ can be infinitely executed,
i.e., such that σk({w}) is non-empty for every k ≥ 0. Then ITERABLE(σ) is
recognizable. Moreover, there exists an algorithm for computing a QDD repre-
senting ITERABLE(σ), given σ.

Proof sketch The algorithm is presented in detail in the full version of this
paper [BGWW97]. Intuitively, this algorithm is based on the observation that a
sequence σ of queue operations can be infinitely iterated if and only if all the
sequences σ|i of operations can be infinitely iterated. Therefore, the set of queue
contents from which σ can be infinitely iterated is the Cartesian product of the
sets of queue contents for which each σ|i can be infinitely iterated. ⊓⊔



During a loop-first search in a Büchi automaton with queues, whenever an
accepting control state is reached, the algorithm defined in the previous theorem
can be used to test whether this control state can be visited infinitely often by
repeatedly executing a sequence of operations forming a cycle in that state. Of
course, the technique we have just described can fail to detect nonemptiness
of the Büchi automaton with queues. In verification terms, this means that we
could fail to detect that the protocol does not satisfy the property. So, what
we propose here is not a verification algorithm, but a powerful technique for
detecting errors in a protocol, which is often considered to be the most valuable
role of model checking. Furthermore, in the next section we show that, under
some additional conditions, we can obtain a stronger result.

5 Termination

There is no necessary and sufficient criterion for characterizing the class of com-
munication protocols for which a loop-first search with QDDs terminates. Indeed,
it is easy to reduce the halting problem for finite-state machines communicating
via unbounded queues (and hence the halting problem for Turing machines) to
the decidability of termination for loop-first searches with QDDs.

However sufficient conditions can be obtained. Indeed, we now present an
algorithmic criterion on a protocol that is sufficient for guaranteeing the termi-
nation of a loop-first search in the state space of that protocol, provided that
the search is performed in a breadth-first order. The criterion is based on the
following definition.

Definition 8. Let σ1 and σ2 be two sequences of elementary queue operations.
The sequence σ1 precedes favorably σ2, which we note σ1 ⊳ σ2, if and only if
for every recognizable language L of queue contents, we have (σ2; σ1)(L) ⊆
(σ1; σ2)(L).

In other words, if σ1 ⊳ σ2, then the sequence σ1; σ2 always generates at least
all the states generated by the sequence σ2; σ1.

In what follows, a simple cycle is a cycle that does not contain any occurrence
of another cycle. Precisely, it is a sequence of transitions

c = c1
op1→ c2

op2→ c3
op3→ · · · ck = c

such that for all 1 ≤ i 6= j < k, ci 6= cj . Following the usual definition, a subset
of the nodes of a graph is a strongly connected component if for every nodes n

and n′ in the subset, there exists a directed path from n to n′. We are now ready
to state the sufficient termination criterion.

Theorem9. Let P = (C, c0, A, Q, Σ, T ) be a protocol such that :

– For each simple cycle ci
σ
→ ci in the control graph of P , the meta-transition

ci
σ∗

→ ci is in T . (This requires that σ∗ preserves the recognizability of lan-
guages of queue contents.)



– For each meta-transition ci
σ∗

→ ci and transition cj
σ′

→ ck in T such that ci, cj

and ck belong to the same strongly connected component of the control graph

(C, T ) of P , and cj
σ′

→ ck is part of

• a simple cycle ci
σ′′

→ ci such that σ′′ 6= σ, or
• a simple cycle that does not visit ci,

we have σ ⊳ σ′.

A loop-first search of P performed in a breadth-first order terminates.

Proof sketch The idea is to show that every reachable global state is reachable
by an exploration path whose length is bounded by a function of the number of
transitions and meta-transitions in P . The details of the proof are given in the
full version of this paper [BGWW97]. ⊓⊔

The criterion can be algorithmically decided thanks to the following result.

Theorem 10. There exists an algorithm for deciding if two sequences σ1 and
σ2 of queue operations are such that σ1 ⊳ σ2.

Proof See [BGWW97]. ⊓⊔
The sufficient termination criterion can also be applied to the model-checking

method presented in the previous section.

Theorem 11. Testing the emptiness of a Büchi automaton with queues that
satisfies the criterion of Theorem 9 is decidable.

Proof sketch The central part of the proof is to show that when it satisfies
the conditions of Theorem 9, a Büchi automaton with queues has an accepting
computation that visits an accepting state infinitely often by only repeatedly
executing a simple cycle. ⊓⊔

Though the conditions of Theorem 9 might seem difficult to fulfill, there are
common practical situations under which they are immediately satisfied. For
instance, if all strongly connected components of the control graph consist of a
single cycle whose iteration preserves the recognizability of queue contents.

6 Example

Consider the communication protocol composed of the two state machines shown
in Figure 1, and of the unbounded FIFO queues qin, qout, and qtemp.

The consumer state machine takes as input from qin a sequence of messages
m0 and m1 and, when it escapes falling into a deadlock, produces as output on
qout a sequence of messages m2 whose length is equal to the smallest of n0 and
n1, where n0 (resp. n1) is the number of messages m0 (resp. m1) received from
qin. This state machine uses internally the queue qtemp for storing intermediate
results. The producer state machine sends on qin a sequence of messages m0

followed by a sequence of messages m1.



qin?m1 ∨

qtemp?m
′

1
qin!m1

1 2 3
ττ

producer

qin!m0

qin?m1; qtemp!m′

1

1

2

3

qout!m2

consumer

qin?m0; qtemp!m′

0

qtemp?m
′

0

qin?m0 ∨

Fig. 1. Example of communication protocol.

(1, 1, m
∗

0, ε, (m
′

0)
∗)

(1, 2, m
∗

0m
∗

1, ε, (m
′

0)
∗)

(1, 2, m
∗

1, m2m
∗

2, (m
′

0)
∗(m′

1)
∗)

(1, 3, m
∗

0m
∗

1, ε, (m
′

0)
∗)

(1, 3, m
∗

1, m2m
∗

2, (m
′

0)
∗(m′

1)
∗)

(2, 2, m
∗

1, m
∗

2, (m
′

0)
∗(m′

1)
∗)

(2, 3, m
∗

1, m
∗

2, (m
′

0)
∗(m′

1)
∗)

(3, 2, m
∗

1, m
∗

2, (m
′

0)
∗(m′

1)
∗)

(3, 3, m
∗

1, m
∗

2, (m
′

0)
∗(m′

1)
∗)

Fig. 2. Reachable states of the example protocol.

Precisely, the protocol is the tuple (C, c0, A, Q, M, T ), where C = Cconsumer ×
Cproducer, Cconsumer = Cproducer = {1, 2, 3}, c0 = (1, 1), A = ∅, Q = {qin, qout, qtemp},
M = Mqin

∪ Mqout
∪ Mqtemp

, Mqin
= {m0, m1}, Mqout

= {m2}, Mqtemp
=

{m′
0, m

′
1}, and T contains the transitions of the form ((c1, c

′
1), op, (c2, c

′
2)), where

either c1 = c2 and (c′1, op, c′2) is a transition in the consumer state machine, or
c′1 = c′2 and (c1, op, c2) is a transition in the producer state machine.

For this example, every simple cycle in the control graph satisfies the condi-
tion stated in Theorem 6, and thus can be associated with a meta-transition. A
loop-first search performed with those meta-transitions terminates. The set of
reachable states obtained at the end of the loop-first search is given in Figure 2,
as a finite union of tuples of the form (cconsumer, cproducer, Ein, Eout, Etemp), where
(cconsumer, cproducer) are control states, and Ein, Eout and Etemp regular expressions
denoting the corresponding sets of reachable queue contents.

It is worth emphasizing that the search would not stop if meta-transitions

like (1, 2)
(qin?m1;qtemp?m′

0;qout!m2)
∗

−→ (1, 2) were not added to the system. This was
not possible with the algorithms presented in [BG96], which could not compute
the effect of such meta-transitions.



7 Conclusions and Comparison with Other Work

The analysis of finite-state machines communicating through unbounded FIFO
queues is a problem that has been studied for many years. However, our QDD
and loop-first search approach is quite different from most earlier attempts to
solve this problem. Indeed, rather than trying to find a cute but maybe useless
subproblem that is decidable, we rely (except in cases satisfying the conditions
of Theorem 9) on a “best effort” approach. From a theoretical point of view, this
might seem unsatisfactory, but from a practical point of view, this is not at all
troublesome. Indeed, what matters is that the QDD based loop-first search does
often terminate. Having no guarantee of success is no more problematic than
knowing that a theoretically terminating finite-state search might fail due to the
excessive resources that it can require. Another advantage of our method is that
it operates very much like a traditional state-space search. This makes it feasible
to incorporate it into a state-space search verification tools such as SPIN [Hol91]
and, furthermore, to combine it with other search efficiency enhancing techniques
such as partial-order methods [Val92, Pel94, God96] or techniques for handling
other unbounded data types such as integers [BW94].

From a more abstract point of view, the use we make of QDDs has forced us
to develop a new set of algorithms operating on finite automata. These result
illustrates the power of finite automata as a representation and hence the power
of QDDs. In fact, as a formalism for representing sets of state during a state-
space search, finite automata (and hence QDDs) have all the required properties.
They have a simple semantics, are easy to manipulate and are closed under all
the usual operations. Note that more expressive representations such as rational
relations [Pac87] or context-free grammars [LP81] could not be used as a more
powerful substitute for QDDs since language inclusion is not decidable for these
formalisms. Actually, we view finite-automata representations of state sets as a
cornerstone within the set of techniques usable for exploring infinite state spaces.

A possible extension of our work would be to broaden the set of basic op-
erations, i.e., the set formed by the two operations “send” and “receive”, that
can be performed on queues. For instance, extending this basic set with another
operation “non-deterministic send” q!(m1 orm2), which (non-deterministically)
appends either a message m1 or a message m2 at the tail of a queue q, makes
it possible to construct languages such as (m1 ∪m2)

∗, that are representable by
QDDs but could not be generated otherwise.

In [QJ96], another semi-algorithm for the verification of communicating fi-
nite-state machines is introduced. This semi-algorithm may generate a graph
grammar that represents jointly the set of reachable states and the transition
relation of an infinite state space. Since transitions are preserved with this rep-
resentation, it is then possible (when the semi-algorithm terminates) to check
temporal properties such as CTL formulas [QJ95]. In contrast, our QDDs are
simpler than the graph grammars of Quemener and Jéron, while still sufficient
to check LTL formulas as discussed in Section 4. Since our semi-algorithm at-
tempts to preserve less information in the symbolic representation it produces
than the one of [QJ95] and [QJ96], one might expect it to terminate more often.



Interesting future work is to formally validate this claim. Due to the lack of
experimental data, it is not known how the two methods compare in practice.

In [FM96], a framework closely related to the one introduced in [BG96] is
proposed. Instead of QDDs, a specific class of regular expressions, called “well-
parenthesized regular expressions”, are used for representing languages of queue
contents. Such expressions are generated during a search in an (infinite) state
space whenever a sequence of operations that can be infinitely repeated is de-
tected using a criterion presented in [Jer91]. The semi-algorithm of [FM96] may
or may not return an exact symbolic representation when it terminates. In con-
trast, the method that we have discussed here always returns an exact symbolic
representation of the set of reachable states when it terminates. Moreover, “well-
parenthesized” regular expressions are strictly less expressive than QDDs. Also,
the set of operations considered in [FM96] is strictly contained in the set of
operations we can deal with using the results of Section 3.

In [GL96], it is shown how QDDs can be combined with BDDs to improve the
efficiency of classical BDD-based symbolic model-checking methods for verifying
properties of communication protocols with large finite state spaces.

Finally note that our approach differ from abstract interpretation [CC77]
since we have discussed techniques for representing and computing exactly the
infinite set of reachable states of a communication protocol. Of course, approxi-
mations could also be introduced in our framework in order to force the termi-
nation of the search.

References

[AJ94] P. A. Abdulla and B. Jonsson. Undecidable verification problems for programs
with unreliable channels. In Proc. ICALP-94, volume 820 of Lecture Notes in

Computer Science, pages 316–327. Springer-Verlag, 1994.

[BG96] B. Boigelot and P. Godefroid. Symbolic verification of communication proto-
cols with infinite state spaces using QDDs. In Proc. 8th Conference on Com-

puter Aided Verification, volume 1102 of Lecture Notes in Computer Science,
pages 1–12, New Brunswick, August 1996. Springer-Verlag.

[BGWW97] B. Boigelot, P. Godefroid, B. Willems and P. Wolper. The Power of
QDDs. Full paper, available at
http://www.montefiore.ulg.ac.be/̃ boigelot/research/BGWW97.ps.

[Büc62] J.R. Büchi. On a decision method in restricted second order arithmetic. In
Proc. Internat. Congr. Logic, Method and Philos. Sci. 1960, pages 1–12, Stan-
ford, 1962. Stanford University Press.

[BW94] B. Boigelot and P. Wolper. Symbolic verification with periodic sets. In Proc.

6th Conference on Computer Aided Verification, volume 818 of Lecture Notes

in Computer Science, pages 55–67, Stanford, June 1994. Springer-Verlag.

[BZ83] D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal

of the ACM, 2(5):323–342, 1983.

[CC77] P. Cousot and R. Cousot. Abstract Interpretation : A Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of Fixpoints.
In Proc. 4th ACM Symposium on Principles of Programming Languages, 1977.



[CES86] E.M. Clarke, E.A. Emerson and A.P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transac-

tions on Programming Languages and Systems, 8(2):244–263, January 1986.
[FM96] A. Finkel and O. Marcé. Verification of infinite regular communicating au-

tomata. Technical report, LIFAC, Ecole Normale Supérieure de Cachan, April
1996.

[GL96] P. Godefroid and D. E. Long. Symbolic protocol verification with Queue
BDDs. In Proceedings of the 11th IEEE Symposium on Logic in Computer

Science, pages 198–206, New Brunswick, July 1996.
[God96] P. Godefroid Partial-order methods for the verification of concurrent systems

– An approach to the state-explosion problem. In Volume 1032 of Lecture Notes

in Computer Science, Springer-Verlag, 1996.
[Hol91] G. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall

International Editions, 1991.
[Jer91] T. Jéron. Testing for unboundedness of FIFO channels. In Proc. STACS-91:

Symposium on Theoretical Aspects of Computer Science, volume 480 of Lecture

Notes in Computer Science, pages 322–333, Hamburg, 1991. Springer-Verlag.
[LP81] H. R. Lewis and C. H. Papadimitriou. Elements of the theory of computation.

Prentice Hall, 1981.
[MP92] Z. Manna and A. Pnueli. The Temporal logic of reactive and concurrent sys-

tems: Specification. Springer-Verlag, 1992.
[Pac87] J. K. Pachl. Protocol description and analysis based on a state transition

model with channel expressions. In Proc. 7th IFIP WG 6.1 International

Symposium on Protocol Specification, Testing, and Verification. North-Holland,
1987.

[Pel94] D. Peled. Combining partial order reductions with on-the-fly model-checking.
In Computer Aided Verification, Proc. 6th Int. Workshop, Stanford, California,
June 1994. Lecture Notes in Computer Science, Springer-Verlag.

[QJ95] Y.-M. Quemener and Th. Jéron. Model-checking of CTL on infinite Kripke
structures defined by simple graph grammars. Research Report 2563, INRIA,
June 1995.

[QJ96] Y.-M. Quemener and Th. Jéron. Finitely representing infinite reachability
graphs of CFSMs with graph grammars. Internal Publication 994, IRISA,
March 1996.

[Saf88] S. Safra. On the complexity of omega-automata. In Proceedings of the 29th

IEEE Symposium on Foundations of Computer Science, White Plains, October
1988.

[SVW87] A.P. Sistla, M.Y. Vardi, and P. Wolper. The complementation problem for
Büchi automata with applications to temporal logic. Theoretical Computer

Science, 49:217–237, 1987.
[Tur93] K. J. Turner et al. Using Formal Description Techniques – An Introduction to

Estelle, Lotos and SDL. Wiley, 1993.
[Val92] A. Valmari. A stubborn attack on state explosion. Formal Methods in System

Design, 1:297–322, 1992.
[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic

program verification. In Proceedings of the First Symposium on Logic in Com-

puter Science, pages 322–331, Cambridge, June 1986.
[VW94] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Informa-

tion and Computation, 115(1):1–37, November 1994.



This article was processed using the LATEX macro package with LLNCS style


