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1 . 1 f . . t· b t . t· *) Po ynomia actoriza ion y roo approxima ion 

by 

A.K. Lenstra 

Abstract 

We show that a constructive version of the fundamental theorem of algebra [3], combined 

with the basis reduction algorithm from [1], yields a polynomial-time algorithm for 

factoring polynomials in one variable with rational coefficients. 

Key words & phrases: polynomial algorithm, polynomial factorization, 

basis reduction algorithm, fundamental theorem of algebra 
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Introduction 

In 1982 the first polynomial-time algorithm for factoring polynanials in one variable 

with rational coefficients was published [1]. The most important part of this factoring 

algorithm is the so-called basis reduction algorithm. This basis reduction algorithm, 

when applied to an arbitrary basis for an integral lattice, computes in polynomial time 

a reduced basis for the lattice, which is, roughly speaking, a basis that is nearly 

orthogonal. Also, such a reduced basis yields approximations of the successive minima 

of the lattice, and the first vector in the reduced basis is a reasonable approximation 

of a shortest non-zero vector in the lattice. 

For certain specially constructed lattices it can be shown that the basis reduc­

tion algorithm actually computes a shortest non-zero vector in the lattice. This hap­

pens for instance in the factoring algorithm from [1]. By means of a sufficiently pre­

cise, irreducible, p-adic factor of the polynomial fE?.l[X] to be factored, an inte­

gral lattice is defined that contains a factor of f as shortest non-zero vector. The 

basis reduction algorithm is then applied to this specially constructed lattice to com­

pute this factor in polynomial time. 

Here we show that the lattice for the factoring algorithm can also be constructed 

in another way. Instead of a p-adic factorization of f, we use approximations of the 

(real or complex) roots of f to define a lattice with similar properties as the lat­

tice above: its shortest vector leads to a factorization of f, and this shortest vec­

tor can be found by means of the basis reduction algorithm. As a result we get a poly­

nomial-time algorithm for factoring univariate rational polynomials, which does not 



2 

apply the usual Berlekamp-Hensel techniques (to compute the p-adic factors), but which 

relies on (a c·onstructive version of) the fundamental theorem of algebra. 

An outline of our algorithm to factor f is as follows. First, we compute a suf­

ficiently precise approximation ii of a root a of f, by means of the algorithm 

from [3]. The minimal polynomial h of a, which clearly is an irreducible factor of 

f, can then be found by looking for a Zl-linear relation of minimal degree among the 

powers of a. In Section 1 we show that the coefficients of this Zl-linear relation 

are given by the shortest vector in a certain lattice, and in Section 2 we present the 

factoring algorithm and we analyze its running time. 

For a polynomial 
i 

f = L f. X EZl[X] 
1 1 

we denote by of its degree, and by I fl= 

(L. f~ )~ its length. We say that f is primitive if the gcd of its coefficients 
1 1 

equals one. 

1. Approximated roots and lattices 

Let f EZl[X] be a primitive polynomial of degree n, and let a E !C be a zero of f. 

Obviously, the minimal polynomial hEZl[X] of a is an irreducible factor of f. We 

will show that a sufficiently precise complex rational approximation of a enables us 

to determine the factor h of f. First, we need the following proposition. 

(1.1) Proposition. For any sEZl~O and for any ciE!C satisfying la-iil<2-s, we 

have lh(ii) I< 2-sohlfl (2 + lfl) oh-l _ 

Proof. Because h (a) = 0, and because the (oh+l )-th derivative h ( oh+l) of h is 

zero, we derive from Taylor's formula and I a - ii I < 2-s that 

( 1. 2) 

Let 

(1. 3) 

oh 2-si ( · l 
lh(ii) I < Li=l~ lh 1 (a) I. 

then 

h (i)() =..-oh (TTi-1("-k))h j-i f 1<. <"h a L.j=i k=0 J ja , or _ 1 _ u • 

Because h is a factor of f in Zl[X], we have from [2] that 

because a is a zero of f we have from for instance [4] that 

with (1.3) this yields 

I h . I s ( 0~) I f I , and 
J J 

I a I s I f I . Combined 



so that we get from (1.2) that 

Because I:i=i (i)2-sijfjj-i= (2-s+ Jfi)j- lflj, and because 

I:~h 1 c0~)Jflj=(2-s+lfl+ll 0h-(lfl+1) 0h, we find 
J= J 

The proposition now follows from 

Suppose that we are given an s E2Z::::o and an aEQl(i) such that 

( 1.4) 

In the sequel we will see how large s should be chosen, i.e. how well a should be 

approximated. 

(1.5) Let m be a positive integer, and let c E !ll be a positive constant. Suppose 

that we have computed, for O :5 i :5 m, approximations Cl.EQl(i) 
l 

of 
_i 
a : 

( 1.6) l _i - I 2-s a - a. < , 
l 

for O :5 i :5 m. 

We will identify a polynomial 
cSg i 

g = I:i=O gi X E2Z[X] of degree at most m with the 

3 

(m+l)-dimensional integral vector 

are zero. By g(ci) we will denote 

gcSg+l' gcSg+2' .•• , gm 

(m+l)-dimensional inte-

gral vector 
m+l 

v = (v O, v l, .•• , v m) E 2Z we will denote by 
- m+3 
VE Ql the (m+3)-dimen-

sional rational vector (v0 , v 1 , •.. , vm' c(Re(I::=O vi iii)), c(Im(I::=O vi iii))). Notice 

that lvl 2 = I vi 2 + c 2 J v(ci) 12 . By L we will denote the lattice 2Zm+l embedded in 

m+3 
!ll by 

for 

V H V 

m+l 
VE2Z . The next proposition shows that s and c can be chosen in such a way 

that a short vector in L leads to an irreducible factor of f. 



(1. 7) Proposition. Let g E:iZ[X] of degree at most m be such that gcd(h,g) = 1. 

Suppose that oh s m, and that 

(1.8) 

where B = ?m) I f I 2 + 1 • Then 
m 

Proof. First we will show that 

- 2 - 2 m 
I h I < B, and I g I ~ 2 B. 

-2 
lh I < B. Because 

ln(ci) Is lh{ci) I+ lh(i'i) - fi(i'i) I, we find 

From Proposition ( 1.1) and ohs m we know that lh (i'i) I < 2-sml f I (2 + If I) m-l, which 

yields, combined with (1~8) 

( 1.10) lh(ci) I 1 
<-

2c · 

_ oh j 
The polynomial h - L. 0 h. X is a factor of 

J= J 

that !h.l s (0~)1fl. With (1.6) and oh:Sm 
J J 

s 2-s+ml fl, and with (1.8) 

( 1. 11) 

From 

( 1. 12) 

1 
lh(ci) - fi(i'i) I <2c. 

< oh !h. I - ( . ) I fl 
J J 

we also derive 

f in :iZ[X], so that we get from [2] 

this gives 

so that we obtain by combining ( 1. 9) , ( 1. 10) , ( 1. 11) , ( 1. 12) , and ohs m 

Now we will prove that 
- 2 m 
lgl ~ 2 B. If 

2 m 
lgl ~2 B, then 

I g 1 2 + c2 I g ( ci) 1 2 • Therefore, we may assume that 

( 1. 13) 
2 m 

lgl < 2 B; 

og s m we derive 

so that 

lg(ci) - g(ci) I :S 2-s+m/ 2 (m+l)B\ 

- 2 m_ 
lg! ~ 2 B. 

- 2 m_ I gl ~ 2 B, because 

From ( 1.13), ( 1.6), and 
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so that, with 
-s 1 

2 (m+l) s -
C 

(1.14) 
m ½ 

clg(a)l~2(2B). 

(cf. (1.8)), it suffices to prove that 

Because gcd(h,g) = 1, there exist polynomials a, b E2Z[X] satisfying oa < og and 

ob<oh, such that ah+bg=R, where RdZ70 denotes the resultant of h and g. 

Because oh and og are both at most m, it follows from the definition of the re-
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sultant and Hadamard's inequality, that the coefficients of a and b are bounded by 
2 

in absolute value, and therefore by 2m /2Bm (cf. (1.12), (1.13)). From 

lalslfl (cf. [4]), oa<m, ob<m, and (1.4), we now obtain 

(1.15) 

where we use that I f I - 1 ~ I! I 

that 

From (1.15), Proposition (1.1) and ohsm, it follows 

which gives with (1.8) 

(1.16) la(ci)h(ci.) I<½. 

Because RE2Z 70 and a(ci.)h(ci.) +b(ci.)g(ci.) =R, it follows from (1.16) that b(ci.) 70, 

and that 

Combining this with (1.8) and (1.15), we see that (1.14) holds. 0 

( 1.17) Corollary. Let c and s be such that ( 1. 8) holds, and suppose that ohs m. 

Then for any non-zero polynomial g E2Z[X] satisfying og < oh we have 

where B is as in (1.7). 

- 2 m 
lgl ~2 B, 

Proof. The proof follows from the fact that h is irreducible, so that gcd (h, g) = 1, 

combined with (1.7). D 
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( 1.18) Corollary. Let C and s be such that (1.8) holds, and let b1,b2, ... , b l E 
m+ 

111m+3 be a reduced basis for the lattice L as defined in (1.5) (cf. [1: ( 1.4) I (1.5)]). 

If oh= m, then lb~ 1
2 < 2~ and h = ±b 1 , where bl E:?Z 

m+l 
is the (m+1)-dimensional 

vector consisting of the first m+l coordinates of b 1 (cf. (1.5)), and B is as 

in (1. 7). 

Proof. From (1.7) it follows that 
- 2 

lhl <B. Because oh=m we have that hEL, so 

that L contains a non-zero vector of length smaller than B½. From [1: (1.11)] we 

derive that so that, again with (1. 7), we conclude that gcd(h,b 1) ~ 1. 

Because and·because h is irreducible we find that h=tb 
1 

:?Z~0 , so that h = ±b 1 , because b 1 belongs to a basis for L. [] 

2. Description of the algorithm 

for some tE 

(2.1) Let fE:?Z[X] be a primitive polynomial of degree n. We describe an algorithm 

to compute the irreducible factorization of f in :?Z[X]. 

First, we choose s, c E:?Z minimal such that (1.8) holds with m replaced by n-1: 

(2. 2) 

and 

(2. 3) 

Next, we apply the algorithm from [3] to compute an approximation iiEl!l(i) of an 

arbitrary root a E CC of f, such that ( 1. 4) holds. 

Finally, we apply the results from the previous section to determine the minimal 

polynomial hE:?Z[X] of a. For the values of m= 1, 2, ... , n-1 in succession we com­

pute a reduced basis b 1 , b 2 , ... , bm+l of the lattice L as defined in ( 1. 5) (this can 

be done by means of the basis reduction algorithm from [1]). But we stop as soon as we 

find a vector b 1 of length less than 

It follows from the choice of s and c that, if we find such a vector b 1 , 

then m ~ oh according to ( 1. 1 7); furthermore, because we try the values for m in 

succession, we find from (1.18) that h= ±b 
1 

(where is defined as in (1.18)). 

If, on the other hand, we do not find such a vector bl, then oh> n-1 according to 



(1.18), so that h=f. 

The polynomial h that we find in this way is an irreducible factor of f; the 

complete factorization of f can be found by applying Algorithm (2.1) to f/h. 

(2.4)Theorem. Algorithm (2.1) computes the irreducible factorization of any primitive 

polynomial f E:ZZ[X] of degree n in 
6 5 

0 (n + n log [ f [) additions, subtractions, 

multiplications, or divisions of numbers which can be represented by 
3 2 

O (n + n log [ f I ) 

binary bits. 

Proof. The correctness of Algorithm (2.1) follows from its description. We now analyze 

its running time. From the fact that c and s are chosen minimal such that (2.2) 

and (2.3) hold, we find 

(2. 5) 
2 

log c = 0 (n + n log I f [ ) , and 
2 

s = o ( n + n log I f I ) . 

According to [3] and (2.5), the computation of approximations of the n roots of f 

such that (1.4) holds, satisfies the estimates in (2.4). Obviously, the same is true 

for the. computation of the approximated powers ai of an approximated root a as in 

(1.6); these powers have to be computed for the initial basis for L. 
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The entries of the initial basis for L can be represented by r log C + s + log I a. il 
l 

2 
O(n +nlog [f[) bits (cf. (2.5), (1.6); remember from Section 1 that [iii::;[£[). 

The applications of the basis reduction algorithm for the computation of one irreducible 

factor h of f can therefore be done in 
4 2 o ( oh (n + n log If I)) operations on 

3 2 
O(n +n log [£[)-bit numbers (cf. [l: (1.26), (1.37), (1.38)], (1.5)). 

It follows that the computation of the complete factorization of f satisfies the 

estimates in (2.4), where we apply that [f/h[ =O(n+log[f[) 

replaced by f/h). Q 
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