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1 . 1 f . . t· b t . t· *) Po ynomia actoriza ion y roo approxima ion 

by 

A.K. Lenstra 

Abstract 

We show that a constructive version of the fundamental theorem of algebra [3], combined 

with the basis reduction algorithm from [1], yields a polynomial-time algorithm for 

factoring polynomials in one variable with rational coefficients. 

Key words & phrases: polynomial algorithm, polynomial factorization, 

basis reduction algorithm, fundamental theorem of algebra 
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Introduction 

In 1982 the first polynomial-time algorithm for factoring polynanials in one variable 

with rational coefficients was published [1]. The most important part of this factoring 

algorithm is the so-called basis reduction algorithm. This basis reduction algorithm, 

when applied to an arbitrary basis for an integral lattice, computes in polynomial time 

a reduced basis for the lattice, which is, roughly speaking, a basis that is nearly 

orthogonal. Also, such a reduced basis yields approximations of the successive minima 

of the lattice, and the first vector in the reduced basis is a reasonable approximation 

of a shortest non-zero vector in the lattice. 

For certain specially constructed lattices it can be shown that the basis reduc

tion algorithm actually computes a shortest non-zero vector in the lattice. This hap

pens for instance in the factoring algorithm from [1]. By means of a sufficiently pre

cise, irreducible, p-adic factor of the polynomial fE?.l[X] to be factored, an inte

gral lattice is defined that contains a factor of f as shortest non-zero vector. The 

basis reduction algorithm is then applied to this specially constructed lattice to com

pute this factor in polynomial time. 

Here we show that the lattice for the factoring algorithm can also be constructed 

in another way. Instead of a p-adic factorization of f, we use approximations of the 

(real or complex) roots of f to define a lattice with similar properties as the lat

tice above: its shortest vector leads to a factorization of f, and this shortest vec

tor can be found by means of the basis reduction algorithm. As a result we get a poly

nomial-time algorithm for factoring univariate rational polynomials, which does not 
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apply the usual Berlekamp-Hensel techniques (to compute the p-adic factors), but which 

relies on (a c·onstructive version of) the fundamental theorem of algebra. 

An outline of our algorithm to factor f is as follows. First, we compute a suf

ficiently precise approximation ii of a root a of f, by means of the algorithm 

from [3]. The minimal polynomial h of a, which clearly is an irreducible factor of 

f, can then be found by looking for a Zl-linear relation of minimal degree among the 

powers of a. In Section 1 we show that the coefficients of this Zl-linear relation 

are given by the shortest vector in a certain lattice, and in Section 2 we present the 

factoring algorithm and we analyze its running time. 

For a polynomial 
i 

f = L f. X EZl[X] 
1 1 

we denote by of its degree, and by I fl= 

(L. f~ )~ its length. We say that f is primitive if the gcd of its coefficients 
1 1 

equals one. 

1. Approximated roots and lattices 

Let f EZl[X] be a primitive polynomial of degree n, and let a E !C be a zero of f. 

Obviously, the minimal polynomial hEZl[X] of a is an irreducible factor of f. We 

will show that a sufficiently precise complex rational approximation of a enables us 

to determine the factor h of f. First, we need the following proposition. 

(1.1) Proposition. For any sEZl~O and for any ciE!C satisfying la-iil<2-s, we 

have lh(ii) I< 2-sohlfl (2 + lfl) oh-l _ 

Proof. Because h (a) = 0, and because the (oh+l )-th derivative h ( oh+l) of h is 

zero, we derive from Taylor's formula and I a - ii I < 2-s that 

( 1. 2) 

Let 

(1. 3) 

oh 2-si ( · l 
lh(ii) I < Li=l~ lh 1 (a) I. 

then 

h (i)() =..-oh (TTi-1("-k))h j-i f 1<. <"h a L.j=i k=0 J ja , or _ 1 _ u • 

Because h is a factor of f in Zl[X], we have from [2] that 

because a is a zero of f we have from for instance [4] that 

with (1.3) this yields 

I h . I s ( 0~) I f I , and 
J J 

I a I s I f I . Combined 



so that we get from (1.2) that 

Because I:i=i (i)2-sijfjj-i= (2-s+ Jfi)j- lflj, and because 

I:~h 1 c0~)Jflj=(2-s+lfl+ll 0h-(lfl+1) 0h, we find 
J= J 

The proposition now follows from 

Suppose that we are given an s E2Z::::o and an aEQl(i) such that 

( 1.4) 

In the sequel we will see how large s should be chosen, i.e. how well a should be 

approximated. 

(1.5) Let m be a positive integer, and let c E !ll be a positive constant. Suppose 

that we have computed, for O :5 i :5 m, approximations Cl.EQl(i) 
l 

of 
_i 
a : 

( 1.6) l _i - I 2-s a - a. < , 
l 

for O :5 i :5 m. 

We will identify a polynomial 
cSg i 

g = I:i=O gi X E2Z[X] of degree at most m with the 
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(m+l)-dimensional integral vector 

are zero. By g(ci) we will denote 

gcSg+l' gcSg+2' .•• , gm 

(m+l)-dimensional inte-

gral vector 
m+l 

v = (v O, v l, .•• , v m) E 2Z we will denote by 
- m+3 
VE Ql the (m+3)-dimen-

sional rational vector (v0 , v 1 , •.. , vm' c(Re(I::=O vi iii)), c(Im(I::=O vi iii))). Notice 

that lvl 2 = I vi 2 + c 2 J v(ci) 12 . By L we will denote the lattice 2Zm+l embedded in 

m+3 
!ll by 

for 

V H V 

m+l 
VE2Z . The next proposition shows that s and c can be chosen in such a way 

that a short vector in L leads to an irreducible factor of f. 



(1. 7) Proposition. Let g E:iZ[X] of degree at most m be such that gcd(h,g) = 1. 

Suppose that oh s m, and that 

(1.8) 

where B = ?m) I f I 2 + 1 • Then 
m 

Proof. First we will show that 

- 2 - 2 m 
I h I < B, and I g I ~ 2 B. 

-2 
lh I < B. Because 

ln(ci) Is lh{ci) I+ lh(i'i) - fi(i'i) I, we find 

From Proposition ( 1.1) and ohs m we know that lh (i'i) I < 2-sml f I (2 + If I) m-l, which 

yields, combined with (1~8) 

( 1.10) lh(ci) I 1 
<-

2c · 

_ oh j 
The polynomial h - L. 0 h. X is a factor of 

J= J 

that !h.l s (0~)1fl. With (1.6) and oh:Sm 
J J 

s 2-s+ml fl, and with (1.8) 

( 1. 11) 

From 

( 1. 12) 

1 
lh(ci) - fi(i'i) I <2c. 

< oh !h. I - ( . ) I fl 
J J 

we also derive 

f in :iZ[X], so that we get from [2] 

this gives 

so that we obtain by combining ( 1. 9) , ( 1. 10) , ( 1. 11) , ( 1. 12) , and ohs m 

Now we will prove that 
- 2 m 
lgl ~ 2 B. If 

2 m 
lgl ~2 B, then 

I g 1 2 + c2 I g ( ci) 1 2 • Therefore, we may assume that 

( 1. 13) 
2 m 

lgl < 2 B; 

og s m we derive 

so that 

lg(ci) - g(ci) I :S 2-s+m/ 2 (m+l)B\ 

- 2 m_ 
lg! ~ 2 B. 

- 2 m_ I gl ~ 2 B, because 

From ( 1.13), ( 1.6), and 
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so that, with 
-s 1 

2 (m+l) s -
C 

(1.14) 
m ½ 

clg(a)l~2(2B). 

(cf. (1.8)), it suffices to prove that 

Because gcd(h,g) = 1, there exist polynomials a, b E2Z[X] satisfying oa < og and 

ob<oh, such that ah+bg=R, where RdZ70 denotes the resultant of h and g. 

Because oh and og are both at most m, it follows from the definition of the re-
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sultant and Hadamard's inequality, that the coefficients of a and b are bounded by 
2 

in absolute value, and therefore by 2m /2Bm (cf. (1.12), (1.13)). From 

lalslfl (cf. [4]), oa<m, ob<m, and (1.4), we now obtain 

(1.15) 

where we use that I f I - 1 ~ I! I 

that 

From (1.15), Proposition (1.1) and ohsm, it follows 

which gives with (1.8) 

(1.16) la(ci)h(ci.) I<½. 

Because RE2Z 70 and a(ci.)h(ci.) +b(ci.)g(ci.) =R, it follows from (1.16) that b(ci.) 70, 

and that 

Combining this with (1.8) and (1.15), we see that (1.14) holds. 0 

( 1.17) Corollary. Let c and s be such that ( 1. 8) holds, and suppose that ohs m. 

Then for any non-zero polynomial g E2Z[X] satisfying og < oh we have 

where B is as in (1.7). 

- 2 m 
lgl ~2 B, 

Proof. The proof follows from the fact that h is irreducible, so that gcd (h, g) = 1, 

combined with (1.7). D 
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( 1.18) Corollary. Let C and s be such that (1.8) holds, and let b1,b2, ... , b l E 
m+ 

111m+3 be a reduced basis for the lattice L as defined in (1.5) (cf. [1: ( 1.4) I (1.5)]). 

If oh= m, then lb~ 1
2 < 2~ and h = ±b 1 , where bl E:?Z 

m+l 
is the (m+1)-dimensional 

vector consisting of the first m+l coordinates of b 1 (cf. (1.5)), and B is as 

in (1. 7). 

Proof. From (1.7) it follows that 
- 2 

lhl <B. Because oh=m we have that hEL, so 

that L contains a non-zero vector of length smaller than B½. From [1: (1.11)] we 

derive that so that, again with (1. 7), we conclude that gcd(h,b 1) ~ 1. 

Because and·because h is irreducible we find that h=tb 
1 

:?Z~0 , so that h = ±b 1 , because b 1 belongs to a basis for L. [] 

2. Description of the algorithm 

for some tE 

(2.1) Let fE:?Z[X] be a primitive polynomial of degree n. We describe an algorithm 

to compute the irreducible factorization of f in :?Z[X]. 

First, we choose s, c E:?Z minimal such that (1.8) holds with m replaced by n-1: 

(2. 2) 

and 

(2. 3) 

Next, we apply the algorithm from [3] to compute an approximation iiEl!l(i) of an 

arbitrary root a E CC of f, such that ( 1. 4) holds. 

Finally, we apply the results from the previous section to determine the minimal 

polynomial hE:?Z[X] of a. For the values of m= 1, 2, ... , n-1 in succession we com

pute a reduced basis b 1 , b 2 , ... , bm+l of the lattice L as defined in ( 1. 5) (this can 

be done by means of the basis reduction algorithm from [1]). But we stop as soon as we 

find a vector b 1 of length less than 

It follows from the choice of s and c that, if we find such a vector b 1 , 

then m ~ oh according to ( 1. 1 7); furthermore, because we try the values for m in 

succession, we find from (1.18) that h= ±b 
1 

(where is defined as in (1.18)). 

If, on the other hand, we do not find such a vector bl, then oh> n-1 according to 



(1.18), so that h=f. 

The polynomial h that we find in this way is an irreducible factor of f; the 

complete factorization of f can be found by applying Algorithm (2.1) to f/h. 

(2.4)Theorem. Algorithm (2.1) computes the irreducible factorization of any primitive 

polynomial f E:ZZ[X] of degree n in 
6 5 

0 (n + n log [ f [) additions, subtractions, 

multiplications, or divisions of numbers which can be represented by 
3 2 

O (n + n log [ f I ) 

binary bits. 

Proof. The correctness of Algorithm (2.1) follows from its description. We now analyze 

its running time. From the fact that c and s are chosen minimal such that (2.2) 

and (2.3) hold, we find 

(2. 5) 
2 

log c = 0 (n + n log I f [ ) , and 
2 

s = o ( n + n log I f I ) . 

According to [3] and (2.5), the computation of approximations of the n roots of f 

such that (1.4) holds, satisfies the estimates in (2.4). Obviously, the same is true 

for the. computation of the approximated powers ai of an approximated root a as in 

(1.6); these powers have to be computed for the initial basis for L. 
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The entries of the initial basis for L can be represented by r log C + s + log I a. il 
l 

2 
O(n +nlog [f[) bits (cf. (2.5), (1.6); remember from Section 1 that [iii::;[£[). 

The applications of the basis reduction algorithm for the computation of one irreducible 

factor h of f can therefore be done in 
4 2 o ( oh (n + n log If I)) operations on 

3 2 
O(n +n log [£[)-bit numbers (cf. [l: (1.26), (1.37), (1.38)], (1.5)). 

It follows that the computation of the complete factorization of f satisfies the 

estimates in (2.4), where we apply that [f/h[ =O(n+log[f[) 

replaced by f/h). Q 
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