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Abst rac t .  In this paper we consider how the recognition, interpre- 
tation of image structures, patterns, objects can be posed in terms 
of "Inductive Bayesian Networks" (IBN) which combine syntactic do- 
main models with the numerical/statistical characteristics of what is 
sensed. The net result of this formulation is the production of con- 
textual and relational rules which can be used to summarize, general- 
ize structural descriptions from examples in ways which are consistent 
with domain knowledge. In this approach the associated algorithms are 
als~ constrained by principles of Minimum Description Length (MDL) 
which endeavor to produce structural descriptions which generalize over 
numerical data attribute while specializing over symbolic description 
length. Examples in pattern and object recognition are discussed. 

Keywords: Pat tern  Recognition, Macine Learning, Image Annotation 

1 I n t r o d u c t i o n  

It is still the case that  most pa t te rn /objec t  recognition methods in Computer  
Vision use techniques based upon the notion of determining the types of at- 
tributes, their characteristic ranges and associated rule structures which result 
in optimal classification of training and new test data. Bayesian classifyers, 
Decision Trees, Neural Networks, Kohonen Maps, in their basic forms, are all 
examples of such an approach where a "representative" at tr ibute space is patti-  
tioned or clustered to at tain this goal. For statistical, Neural Network and self- 
organising classifiers the rules are typically what we term "attr ibute-indexed" 
in so far as they are techniques for partitioning (categorically or using fuzzy 
membership) at tr ibute spaces, resulting in rules of the form: 

IF feature exists with these attributes 
THEN it is (an unspecified) part of that pattern. 

Figure lc illustrates different types of at t r ibute indexed techniques in terms 
of the resultent rule geometries generated from training data. in the form shown 
in Figure la.  Such rules are not relational in so far as they do not utilize feature 
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F i g .  1 .  Learning models: Different types of induction geometries. Top left shows train- 
ing data for attribute-indexed induction models. Top right: training data for relational 
learning modes.Bottom left: typical automated rule generation techniques using Neu- 
ral Networks and Least Generalisation methods. Bottom right: Relational Learning 
models (see text).a~ refers to attribute i; ua~ to unary (part i) attribute i baij to 
relational (binary) attribute between parts i and j. 

labels or indexing, beyond class membership, nor use them in the generation 
process. In contrast, "relational rules" or "relational learning" involves training 
data which preserves data  indexing and the rule types show relational learning 
models where the feature indexing controls generalizing over attributes (Figure 
ld). 

There are a number of fundamental problems with "attribute-indexed" or 
traditional Pattern Recognition (PR)/learning techniques: 

- They are not designed to index features as relational structure. 

- They typically fail with only parts of patterns to be recognize. 

- They are not designed to flmction in complex (multi-object) scenes. 
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- They rarely view PR as a process of transmitting syntactical and semantic 
structures through an information flow network which incorporates domain 
knowledge and models as well as sensed data. 

In general, we see PR in these latter terms - akin to "explanation-based 
learning" [7] as envisaged in Figure 2 where the constraints are typically de- 
fined in terms of contingency relations. In this sense, then, data-driven sensing, 
feature extraction and measurement are tuned to reduce patterns to sets of 
(labelled) parts, relations and their attributes. Domain knowledge provides 
constraints on the network model and the symbolic data structures necessary 
for interpretation. Machine learning is seen as the class of techniques used to 
bind features with domain knowledge and update both according to external 
criteria - such as human task-demands, objective performance of the system, 
etc. 

The operators listed in Figure 2 depict the classes of learning and inference 
techniques we have explored in pat tern recognition over the past five years. 
These will be illustrated in a number of systems in the following sections and 
pertain to solving, in a robust and efficient way, the binding of sensed data  
with domain knowledge. 
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Fig. 2. General information flow perspective to Pattern Recognition. Here, a specific 
interpretation model involves the selection of sensing, feature extraction, labelling 
units, domain knowledge, learning operators and specific dependency relations. 

Such network formulations can be posed in Bayesian terms - as extensions 
of past Bayesian network methods for PR (see, for example, [12, 9]). Using 

1 This project was funded by a grant from the Australian Research Grants Committee 
1 This project was funded by a grant from the Australian Research Grants Committee 

and NASA 
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this formulation for PR, an interpretation is defined by the joint probability 
distribution (left-hand side) of: 

p(S, f, L, DK) = p(Lk/fI, fj)p(Lr/DKs)p(fg/fh, f.w)... (1) 

where S, f, L, D K  correspond to sensor (S) modalities, image features (f), la- 
bels (L) and domain knowledge (DK) types, respectively. The terms on the 
right hand side define the set of dependencies which determine the model and 
procedures. The aim is to produce the simplest and most robust model in terms 
of the smallest number of symbols, nodes and connections in the network which 
can produce an interpretation: the association of symbols with image features 
(Figure 2). This type of goal can be related to the Minimum Description Length 
(MDL) criterion[7] a perspective which will be developed in the following dis- 
cussion. 

The role of machine learning is to aide in the discovery of the dependen- 
cies with respect to process and domain constraints. For example, for strictly 
hierarchical pattern recognition systems, we have a lattice model defined by: 

p(S, f, L, DK) = p(fi/Sk.., Ss)p(fj/fi...fm)p(Lu/fp..)p(Lm/Le..)p(DKJL~..).. 
(e) 

where features are strictly dependent on sensors and other features, symbols 
on features and other symbols; domain knowledge on labels, etc. More general 
networks can have the following formulation and include feedback connections 
between levels of processing (not identical units) which allow for a probabilistic 
measure of sensor, feature and label updating: 

p(S, f, L, DK) = p(Sjfk.. ,  Ls)p(DKg/Sk..)p(Sr/DKs..)... (3) 

2 L e a r n i n g  a n d  k n o w l e d g e  a c q u i s i t i o n  

As already discussed attribute-indexed learning models (such as Decision 'lYees[11] 
and Neural Networks like HyperBF [10]) do not generate descriptions in terms 
of labelled parts and relations (" this" feature and the relations between "those" 
features) and they typically fail when dealing with partial data and are not de- 
signed to function for interpreting multi-pattern(object) data. For this reason 
over the past five years we have developed a class of new learning procedures 
explicitly designed to satisfy these types of requirements and apply to relational 
data. Thel relational system described in Figure ld is an example of one such 
system - Conditional Rule Generation (CRG) - which generates rules of the 
form: 

IF this feature has these attributes 
AND is related to that feature with those attributes ..etc..AND... 
THEN this feature is likely to correspond to feature x of model y 
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This method splits feature attribute spaces (of varying arities) and expands 
the number of connected (labelled) features in ways which can resolve the class 
membership of specific objects. We will see other relational learning methods 
where the relations are defined by hierarchical lattice structures to constrain the 
generalisation process (see the CITE system below). Again, in Bayesian terms, 
these methods actually generate the conditional dependencies (right hand side 
of Equations 1,2) using the minimum number of features to uniquely resolve 
the class to which a given feature belong. 

To repeat, this view of pattern recognition involves the recurrent evolution 
of symbolic descriptions which generalize overthe numerical attributes indexed 
by each symbol. For example, initial feature labels for object parts (roofs and 
walls...etc.) are propagated further to objects and groups of objects all which 
have their own symbolic descriptions (house, suburb ..etc..). From an Minimum 
Description Length (MDL) perspective, the benefit of hierarchies of symbolic 
representations lies in the trade-off between data and models. Recalling that 
the fundamental insight in MDL is that, maximising the log of the posterior 
probability of data (D) given Model (M) is determined by minimising the length 
of the encoded da" a given the model, since: 

- l o g 2 ( P ( M ) P ( D / M ) )  : - l o g 2 ( P ( M ) )  - log2(P(D/M)) .  (4) 

In other words, it is argued that one of the more important benefits of such 
hierarchical symbolic representations is that we trade the large amount of in- 
formation required to encode the original image data by reduced data sets and 
the network model(Figure 2), resulting in: 

M D L  = CodeLength(Models)  + CodcLength(Data/Model ) .  (5) 

The various systems developed focus on how this may be accomplished in 
different problems, domain knowledge and sensed data. In the following sections 
we illustrate this perspective to PR in a number of systems developed over the 
past five years by our group[3]. 

3 C o m p l e x  s c e n e s  a s  m u l t i - g r a p h s  

As briefly described in Figure ld, the aim of the Conditional Rule Generation 
(CRG) system was to use Machine Learning methods to generate descriptions 
of structures in terms of labelled part and relational attributes. That is, each 
model is defined by a labelled, attributed and directed graph where each vertex 
defines a part or relational feature having specified (derived) attribute bounds. 
Directed edges within each model define the feature (and attribute) dependen- 
cies necessary and sufficient to uniquely identify the model and feature to which 
a given vertex belongs out, of multiple models. 

Figure ld illustrates how the rule generation process functions - and both 
categorical and fuzzy versions (FCRG) exist[l, 5]. Although, like Decision Trees, 
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this method involves depth-first expansion of attributes, best-first versions have 
also been developed[8]. Rules define local (directed) cliques: lists of parts and 
relations associated with a given feature of minimum length and covering at- 
tribute bounds which enable part matching to multiple models. In multi-object 
scene recognition problems, training data typically consists of sets of views of 
different objects (see, for example, Figure 3). For each view of each object, 
segmentation or feature extraction procedures are enacted to result in lists of 
labelled parts over all objects and views - each part and relation having pre- 
selected attributes. The CRG algorithm then generates descriptions of each 
object part in terms of permissible attribute bounds for itself, its relation to 
others - and, in turn, their relations to others which are sufficient to resolve un- 
certainty about the object, view and part to which the initial part actually cor- 
responds. Again, defined as an "Inductive Bayesian Network" (IBN) this model 
expresses dependencies in terms of a tree of conditional feature attribute states 
(Figure ld) where we determine the degrees to which specific features (labelled 
parts and relations) condition each other to maximally evidence a given model, 
and having the general form: 

pmod,,(  (fl, = U2-_,+IPmo d(k  (f Ifj). (6) 
i = 1  

That is, each feature in the IBN is a random variable corresponding to an 
identified (labelled) part (unary feature) or part-relation (binary feature) of the 
(training) objects and the task of the IBN algorithm is to discover the lists of 
feature dependencies required to maximally evidence a given model or object. 
Our solution to the problem is analogous to Decision Trees [18] where, using the 
Minimum Description Length (MDL) version of maximum likelihood solutions 
to Bayesian classification[7], we expand the associated feature dependency tree 
to resolve class uncertainty. That is, we have formulated the IBN model in 
such a way to enable the optimisation procedure to be implemented via a 
feature tree search algorithm which expands the conditional feature list while, 
at the same time, determining feature attribute bounds which, together, can 
maximally evidence a given model - -  as illustrated in Figure ld. 

The resultant part-indexed rules can then be used to label each part of 
complex scenes in accord to the most likely view and model they belong to - 
without pre-supposing that part cliques or candidate objects, per se, have been 
isolated before classification. Results using this system are illustrated in Figure 
4 - showing correctly and incorrectly labelled parts (see McCane and Caelli[5] 
for more details). 

Once CRG has generated rules from training samples, the problem of scene 
labelling reduces to that of instantiating rules in data, grouping labels and 
checking for their compatibilities. Indeed, the very purpose of the CRG method 
has been to "pre-compile" the types and number of parts, their attribute and 
relational attribute states that are necessary and sufficient for recognition. We 
have also examined a number of methods for evaluating evidence from acti- 
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Fig. 3. Training data showing single views of 18 objects used for learning relational 
descriptions of objects from intensity and sparse depth maps from intensity and sparse 
depth maps. See text and [5] for more details. 

vated rules. These include the SURE system (Scene Understanding using Rule 
Evaluation[2]), and a simpler version used in the follwing example. 

3.1 R u l e  e v a l u a t i o n  p r o c e d u r e s  

Recognition of objects in a scene typically involves locating an object in a scene 
which contains multiple objects.. Hence, there are two problems which need to 
be solved - scene partitioning, grouping, and object recognition. The CRG 



101 

classifier can be used for performing all tasks using, in parallel, the following 
steps: 

1. Unary features are extracted for all scene parts and binary features are 
extracted for proximate parts. 

2. An adjacency graph is extracted from the scene and all non-cyclic paths up 
to a maximum length, maxlength, are extracted. The value of maxlength 
is equal to the maximum depth of the tree which was generated during the 
training stage. 

3. Each path, P = <  pi,pj, ...,Pn >, is classified using the classification tree 
generated during the learning phase - resulting in a set of classification 
vectors for each part.  

4. The evidence vectors of all paths (evidence paths) starting at p~ determine 
the classification of part  p~ and so determine rules for recognition purposes. 

It is important  to note that  such rules are "part-indexed" insofar as it is the 
conjunction oi specific parts, relations and their associated attributes, which 
evidence objects! This is precisely how FCRG and CRG differ from other learn- 
ing procedures - including traditional decision trees and neural networks. 

Due to the nature of the CRG tree, each path can be classified in more 
than one way by choosing the best N clusters to descend, rather than just 
one cluster as in the crisp case. In the current implementation, the value of N 
given above is 2. This means that at each level of the cluster tree, two clusters 
are chosen from all the clusters and the path is expanded along both those 
clusters. The best clusters at a particular level are chosen by evaluating the 
fuzzy membership function. 

Finally, not only can we discover the most likely clusters a given path be- 
longs to, we can also extract  a measure of how good a given path fits into the 
cluster tree. At each level in the tree, a path has fuzzy memberships associated 
with each of the clusters at that  level in the tree. One well-known way for 
defining the decision value of a particular node in a fuzzy decision tree is via 
the product of the decision values of the branches composing the path from the 
root to the node. Consider a path P = <  pt,p2, ...,p~ >, being classified in the 
decision tree along the cluster branch < Ui, UBij, ..., (UBU...)ij... >, the fuzzy 
evidence vector for P is given by: 

(UBU...)~3... 
E / ( P )  = E ( P )  A ire(Pc), (7) 

c = U i  

where E is the original evidence vector of path P characterised by the relative 
frequencies of each model part  in the cluster (UBU...)ij .... A is the product  
operator,  and 5 r is the fuzzy membership function of part  Pc in cluster c given 
by Equation 7. Here, Ui, Bij, correspond to unary (part) and relational (binary) 
attributes of parts i, relations i j ,  etc. There are two different interpretations of 
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the product in Equation 7 - a real number product in the probability model, 
or as a minimum function in the max-min model (the minimum of all the 
operands is chosen as the result). Th~ max-rain model has been used here as it 
is more useful for comparing evidence vectors of instantiated rules, especially if 
the paths were of different length (using the probability model, shorter paths 
would typically have higher evidences since there would be less multiplications 
by numbers tess than 1.0 involved in arriving at the final evidence vectors). 

Step 4 (see above) deserves further consideration as evidence vectors for a 
given part may be incompatible, or non-unique. Incompatibility occurs when 
two evidence vectors indicate two separate class labels for the given part, while 
non-uniqueness indicates that a rule has been partially instantiated (for ex- 
ample, a path is only UB, while rules are UBU). Further, the problem of how 
best to utilise such evidence vectors of the paths to provide an optimal and 
consistent labeling of scene parts is non-trivial. Approaches to this problem 
fall into two categories. In the first approach, candidate "objects" are selected 
using perceptual grouping principles and the like. The second approach is the 
one adopted here which was initially described by Bischof and Caelli [1] and is 
extended here. In +his approach evidence is propagated from parts and relations 
via compatibility measures, as described below. 

3.2 Compa t ib i l i t y  Analysis  

The compatibility measure adopted here involves a measure of the compatibility 
of the evidence vector's of the constituent parts with the evidence vector of 
the path. More formally, this measure can be characterised by the following 
equation, for a path Pi =<  P i l , P i 2 ,  . . . ,Pro  >: 

1 ~ E(pik) (8) w,:ntra(Pi) = n 

k----1 

where E(pik) refers to the evidence vector of part P i k .  Initially, this can be 
found by averaging the evidence vectors of the paths which begin with part 
Pik. This compatibility measure can be used with a relaxation labeling scheme 
defined by: 

1 
E('+')( ; )  = ® E(S) ,  (0) 

S6Sp 

where Z is a normalising factor: 

Z ~ (t) 
: Wintra(S), (10) 

$6S~ 

and the binary operator ® is defined as a component-wise vector multiplication 
in the following way: 
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The compatibility measure utilised above is a vector quantity by which the 
paths' evidence vectors are updated. The compatibility measure used by Bischof 
and Caelli ([?]) takes into account compatibility between the parts involved in 
a particular path (by using the dot product of average evidence vectors of each 
part), but not the compatibility between the average evidence vectors and the 
path's evidence vector. This problem is rectified in the above solution. 

FCRG and other Machine Learning approaches to rule generation and recog- 
nition can be viewed as ways of "pre-compiling" search strategies for the ver- 
ification of models in data. For this reason we have also considered a final 
hypothesis verification stage to resolve the types of ambiguities remaining. In 
all, then, the result of the FCRG classifier is a set of most likely labels for each 
part of the scene where the labels refer to a given object, its sample and sample 
part from the training data which can be used to infer the pose of the object! 

Figures 3 and 4 show training objects and test scenes used to evaluation 
these types of rule evaluation methods. Here, initial views of objects are seg- 
mented using an adaptive multi-scaled edge/boundary extraction procedure 
and attributes such as colours, shape statistics and relational attributes such 
as distances and angles between parts are computed from the resultant parts 
(see McCane and Caelli[5] for more details). Rules are instantiated and evalu- 
ated in the test scenes (Figure 4) using the types of processes discussed above. 

In an abstract sense, then, this view of PR is one of a multi-subgraph match- 
ing problem in so far as, at a given level of representation (features, symbols), 
the interpretation process involves matching model subgraphs (paths) with im- 
ages which are defined by graphs. The CRG algorithm pre-compiles the types 
of parts and relations necessary and sufficient to identify a image part and the 
relaxation-based methods (described above) are then used to determine the 
complete labelling in terms of the consistency between Am part labels (Bischof 
and Caelli[2]). Related to this perspective are a number of recent results which 
also show how, by pre-compiling common subgraphs within models, the com- 
plexity of this search problem can be significantly decreased - see Messmer 
and Bunke[6], for example. However, the CRG method is quite different from 
these approaches as they are focused on generating trees of common subgraphs 
for fixed attributed model graphs. CRG considers a trade-off between descrip- 
tion length (path lengths) and vertex attribute resolution (vertex colouring) 
- so allowing for graph proximity, shortest description length of common and 
discriminating subgraphs. 

4 C o m p l e x  s c e n e s  as  l a t t i c e s  

In contrast to the previous object recognition problem, in the CITE system do- 
main knowledge and image data is hierarchical and defined by a lattice structure 
(Figure 5) where parent nodes define higher-order structures depicting group- 
ings of objects, function and the more general co-occurrences of components. 

Initial feature (parts, regions) extraction is enacted and unary attributes 
computed for each feature (1,2 in Figure 5) of the current image. Such feature 
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intensity regions recognition 

intensity regions recognition 

Fig. 4. Left: Shows input complex scene examples. Center: Shows images segmented 
by an adaptive multi-scaled segmenter as used on the initial single object images. 
Right: interpretation results. Here grey regions correspond to correctly labelled re- 
gions and hashed ones to errors[5]. 

attributes are matched with the current knowledge base which, in turn, gen- 
erates initial hypotheses about the feature labels (3; Figure 5). This is called 
the scene interpretation. Feature grouping (clique resolving) is then computed 
from what is known in the knowledge ba~se about the co-occurrence of features, 
their binary features (4: relational attributes) and their consistencies over the 
hierarchical image model (5: Figure 5). Since this process has arbitrary levels of 
abstraction (hierarchies), higher level scene hypotheses are added to the scene 
interpretation structure and a form of hierarchical relaxation labelling (see be- 
low) begins to resolve the multiple ambiguous labels for each object (6: Figure 
5). As the labels begin to "resolve": relabelled to be consistent with the cur- 
rent domain knowledge, resegmentation occurs with respect to the process and 
parameters allocated to each particular object. The knowledge base is updated 
to include these new parameter states. The resultant new features replace the 
previous ones in the visual interpretation structure, resulting in repeating the 
extraction of unary and binary attributes for matching (2-6: Figure 5). The 
cycle continues tilt the interpretation becomes stable. If the interpretation is 
deemed as incorrect, the user can then choose to incrementally learn the correct 
object labelling (8: Figure 5) by selecting the incorrectly labelled nodes and the 
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desired knowledge base node. The updated knowledge base is then available for 
viewing the next scene. 

f 

Input Image ~colourl 

Fig. 5. Cite system showing the cooperative interaction between feature extraction, 
learning and domain knowledge units synergistically employed to obtain the most 
parsimonious interpretation of images[4] 

4.1 Evidence  evaluat ion  via hierarchical  re laxa t ion  labell ing 

There are typically multiple labelling and grouping hypotheses generated by 
Cite for any image region or set of image regions. Again, these multiple hypothe- 
ses are resolved by a process of relaxation labelling and constraint propagation. 
The iterative nature of the relaxation labelling process and its ability to prop- 
agate local constraints through the interaction of compatible or incompatible 
labels are ideal for the purposes of this hierarchical system. In this case we use 
the following formulation for relaxation labelling: 
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Let B be a set of objects {b~, ..., b~}, and A be a set of labels {1, ..., m}. For each 
0 o object bi we can obtain an initial label probability vector P~ = (Pil, ...,Pim) 

where 0 _< pi °. _< 1, for i = 1...n and j = 1...m, and ~ j  pi ° = 1, for i = 1...n. 

Each initial probability vector is interpreted as the prior probability distribu- 
tion of labels for that object, and can be computed from the initial unary and 
binary matching. The comparability constraints can be described as a n x n 
block matrix R, where each Rij is a m x m matrix of non-negative real-valued 
compatibility coefficients, denoted rij(1..m, 1..m). The coefficient rij(A, p) is 
a measure of the compatibility between object bi being labelled A and object 
bj being labelled #. The relaxation labelling algorithm iterativety updates the 
probability vectors P using a normalised weighted sum equation: 

t 
p t + l  _ Pi~qi~ (12) 

i3, m 
t t , ~  Pip qip 

~ = 1  

where the denominator is the normatisation factor and: 

q~x = rij (~, #)p},. (13) 
j = l  # = 1  

In this form of relaxation labelling, the number of objects is constant and 
the number of iterations, t, is the same for each object. However, Cite contains 
hierarchical knowledge and can generate and remove image regions dynam- 
ically. For example, the Scene Interpretation(SI)-Knowledge Base(KB) Link 
is updated according to the level of support given by the SI children and SI 
parents, as follows: 

A s K =  ( 1 -  ape) Z pSpS pSK pSi~s ~,j x x,i Z ~,' +Ctpc ~ x i,x ~ P~ f  (14) 
aesg ~K 7 xesg ~ f  

The initial hypothesis value is set by the unary and/or binary matching from 
the operator which created the given SI-KB hypothesis. The update ratio of 
parent and child support (C~pc) reveals some asymmetry in the update procedure 
in terms of the relative importance of children and parents. This is necessary 
because, in general, there are fewer parents of a SI node than children. 

In Equation 13, the double summations represent the summing over what 
are termed compatibility cycles between the scene interpretation and knowledge 
base graphs. The compatibility cycle is a cycle comprising four hypotheses and 
is computed through the parent and child chain (right half of Equation 14). 
There are only three terms, rather than four, in each half of the update equation 
because the parent-child knowledge base link has a set hypothesis weight of 1.0. 
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An extension to the knowledge base facilitating partial belief in the knowledge 
structure could be achieved by including a non-unity term into this equation. 

Returning to the Bayesian formulation and Figure 2, the CITE system 
provides a lattice model as described in Equation 2 - in contrast to the more 
general graph model (Equation 3) and performance of the system is shown in 
Figures 6 to 8. First, Figure 6 illustrates the symbolic domain knowledge for the 
"Office" scene involving the definition of specific labels and their relations. The 
numbers next to each label correspond to nodes and regions in Figure 7. Figure 
7, then, shows initial images and resultant labels derived from instantiating 
the observed feature attributes(bottom lattice: Scene Interpretation), and their 
relations, in the Knowledge Base (top lattice). 

The learning component involves determining the part and relational at- 
tribute bounds which are consistent with domain knowledge models or expert 
interpretations. As with CRG rules are formed by bounding rectangles over 
unary and binary attribute values - so covering valid examples of the different 
structures. 

Figure 8 shows the results of interpretation an outdoor scene image involving 
a domain knowledge base consisting of houses, fueltrucks, trees, roads and 
related basic objects; higher-order objects such as diary, ground, sky - all being 
composed of more basic parts and resulting in the interpretation shown in the 
bottom of the figure. Here the numbers associated with each label define the 
certainty (0-1) of the labelling. 

5 Conclus ions  

Pattern Recognition and Image Understanding typically involves a variety of 
levels of data and knowledge representations and processing algorithms. For 
this reason it has typically been difficult to conceptualise, evaluate and com- 
pare in any systematic way. However, in this paper PR has been posed in a 
way, hopefully, which overcomes these problems. It is viewed in terms of a net- 
work involving specialised operators which, in this case, learn to bind domain 
knowledge representations with what is sensed, and vice-versa. 
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base[50] 

~ lever[51] 
head[52] from: 

holepunch[56] Of Types: 
holepunch-old[26] 

] L_ holepunch-new[23] Con- 
structed from: 

base[24] 
handle[25] 

- -  liquidpaper[30] 
- -  storage[62] Of Types: 

- -  disk[10] Constructed from: from: 
~ case[11] 

slide[12] 
label[13] 

-- cdrom[1] Constructed from: 

Constructed structed from: 

~-- mug-molly[34] Con- 

~ case[2] 
label[3] 

duster[17] Constructed from: 
felt[18] 
handle[19] 

receptacle[61] Of Types: 
c u p [ 6 0 ]  Of Types: 

teal9] 
espresso[8] 

mug[59] Of Types: 
mug[59] Of Types: 
~-~ mug-soup[38] 

~ body[35] 
face[36] 
rim[37] 

L_ mug-craig[31] Con- 

~ body[a2] 
L_ rim[33] 

I L_ drink[14] Constructed 

~-- bottle[15] 
lid[16] 

- -  calculator[4] Constructed from'. 
~-- case[5] 

~ - -  keypad[6] 
L_ display[7] 

too1163] Of Types: 
I ~-- pliers[45] Constructed 

~ handle[46] 
jaws[47] 
handle[48] 

[ L__ keyset[27] Constructed 
from: 

~-- holder[28] 
] L_ keys[29] 
~ -  gluestick[20] Constructed from: 
t ~ -  base[211 
| t___ lid[22] 
L__ pen[58] Of Types: 

pen-green[42] Constructed 
from: 

from: 

L__ ~ -  body[43] 
lid[44] 

pen-blue[39] Constructed 

~ -- body[40] 
lid[41] 

Fig. 6. Example of CITE's hierarchical knowledge-base: text description of office 
knowledge base 

4. C. Dillon and T. Caelli. Cite: A scene understanding and object recognition 
system. In Asian Conference on Computer Vision: ACCV95, volume I, pages 
214-218, Singapore, Dec 1995. 

5. B. McCane and T. Caelli. A fuzzy machine learning approach to recognising 
3D objects in 2D s eenes. In Asian Conference on Computer Vision:ACCV95, 
volume III, pages 106-111, Singapore, Dec 1995. 
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Fig. 7. Resultant interpretation represented as a match between different levels of 
representation. Here, observed features and their labels are shown in the bottom 
lattice while the current domain knowledge base corresponds to the top lattice. Labels 
on the bottom lattice correspond to the resultant interpretation according to the 
knowledge base labels defined in Figure 6. 

6. B.T. Messmer and H. Bunke. Fast error-correcting graph isomorphism based 
on model precompilation. Technical Report tAM-96-012, University of Bern, 
Sep 1996. 

7. T. Mitchell. Machine Learning. McGraw-Hill, 1997. 
8. A. Pearce and T. Caelli. On the effiency of learning in spatial domains and 

relational evidence theory, volume 3, pages 290-294, Singapore, Dec 1995. 
9. Prantl M. Ganster H. Pinz, A. and H. Kopp-Borot Schnig. Active fusion 

- a new method applied to remote sensing image interpretation. Pattern 
Recognition Letters~ 17:1349-1359, 1996. 

10. T. Poggio and F. Girosi. Regularization algorithms for learning that are 
equivalent to multilay er networks. Science, 247:978-982, 1990. 
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World(0] (1.000) Consisting of: 
- -  sky(25] (0.876) 
- -  ~round[26] (1J)00) Of Type: 

L _  ~r,~s[1] (0,825) 
t - -  pe,,cilpi,,e[27] (1.000) Con- 

structed from: 
foliage(9] ((1.932) 
trunk(5] (0.878) 

pencilpine[29] (1.000) Con- 
structed from: 

[ L__ foliage[22] (0.922) 
~-- peucilpine[31] (t.000) Con- 

structed from: 
ii__ L_ foli~ge[2a] (0.9a9) 

house(36] (0,666) Constructed 
fl'()lIl: 

buikting[19] (I.000) 
r(,o~[Isl (1.ooo) 

~-- fueltruck[44] (1.000) Con- 
stl'ucted from: 

t 
f rom:  

,:h~ssis[ll] (1.000) 
tank(10] (0.920) 

dairy(45] (1.000) Constructed 

~-- roof(21] (0,934) 
building(20] (1.000) 

- -  ~round[461 (1.000) Of Type: 
L__ gr~s[2] (0.868) 

- -  ffround[47] (1.000) Of Type: 
L _  gr,~[3] (0.848) 

- -  I~rou,,d[48] (l.0(}0) Of Type: 
t.__ grz~s[4] (0.563) 

- -  ~rouml[49] (1.0()0) Of Type: 
L _  r,,,~d[6] (1.ooo) 

- -  l~roun(l[50] (1.000) Of Type: 
L__ gr,~s[7] (0.687) 

- -  {~romul[51] (1,000) Of Type: 
t___ road(S] (0.830) 

--firetruck[52] (1.000) Constructed 
froill: 

L__ t)ody[12] ((I.842) 
- -  {~round[53] (1.000) Of Type: 

L__ gra.~s[13] (1,000) 
--ground(54] (1.000) Of Type: 

L _  gr~ss[l 4] (0.716) 
~_.,,,l[~] (1.ooo) of Type: 

path(15] (1.000) 
gl~_und[561 (1.000) Of Type: 

~oa(i[16] (1,ooo) 

F ig .  8. Top: Label led scene. Bot tom:  Text  Descript ion of Street  Scene. Here labels in 
the  ins tan t ia ted  knowledge base (bo t tom)  refer to par t  labels in the  knowledge base 
and numerical  values correspond to cer ta inty of the labelling (1:most certain).  



111 

11. J. R. Quinlan. Improved use of continuous at t r ibutes  in c4.5. Yournal of 
Artificial Intelligence Research, 1996. 

12. S. Sarkar and K. Boyer. Using perceptuM inference networks to manage visio 
n processes. Computer Vision and Image Understanding, 62(1):27-46, 1995. 


