
Genetic Algorithms for Structural Editing

Richard Myers and Edwin R Hancock

Department of Computer Science
University of York

York YO1 5DD, UK

Abs t rac t . This paper describes the use of discrete graphical editing op-
erations to dynamically fit hierarchical structural models to input data.
We use the tree adjoining grammar developed by Joshi [1] as a proto-
typical structural model, and realise the editing process using a genetic
algorithm. The novelty of our approach lies firstly in the use of the edit
distance between the ordered frontier nodes of a tree and a set of dictio-
naries of legal labels derived from the input as a cost function. Secondly,
we apply genetic algorithms to tree adjoining grammars with the intro-
duction of a new editing operation. We demonstrate the utility of the
method on a simple natural language processing problem.

1 I n t r o d u c t i o n

Graphical models have recently a t t rac ted considerable interest in the connection-
ist l i terature where they have been used to embed causal relations into network
structures. Broad ly speaking, the available models can be divided into those
that draw on undirected graphs and those tha t draw on directed graphs. Ac-
cording to this taxonomy, Markov models belong to the former category while
causal networks fall into the lat ter category. In fact directed graph structures
are of particular importance since they can be used to represent subsumption
or part-whole hierarchies. Such representational structures are of pivotM impor-
tance in language understanding and vision where they are used to control the
vertical flow of perceptual inference. Despite this interest in the modelling of
probabilistic interactions in network structures, the issue of how to control the
structure itself has attracted less attention. This is an important omission since
in practice the task of extracting hierarchical relations from real-world data is
invariably one of extreme fragility. In the machine vision domain, it was Sanfeliu
and Fu who first illustrated the importance of graph-edit operations in matching
noise corrupted relational structures [2].

It is the editing of directed graph structures to which we turn our atten-
tion in this paper. Specifically we focus on the issue of how to extract the most
consistent tree-structure from imperfectly formed input. This can be viewed as
an optimisation problem. Our goal is to manipulate tree representations of sub-
sumption hierarchies to find the best interpretation of the input. The advantage
of such an approach is that although the interpretation process is data-driven,
top-down constraint propagation still occurs. The control flow is top-down but
the flow of inference is bottom-up. To do this we require a hierarchical repre-
sentation of the domain of interest and a means of measuring the accuracy with

160

which a model fits the data. It is clearly inappropriate to enumerate every possi-
ble interpretation in the model database. Rather, a natural means of extending
some initial small database is required.

The obvious hierarchical representation is a graph - for a subsumption hi-
erarchy, a tree. Models will need to undergo vertical edit operations to adapt
their structure to the data. Unfortunately, most graphical editing operations de-
scribed in the literature are rather na'ive, being single-node (or -edge) insertion,
deletion or relabelling [2-6] (to be fair, these are generally intended as measures
of distance in matching algorithms rather than as true editing operations). The
geometric crossover operator described by Cross et al. in [7] is somewhat closer
to the mark: it involves bisecting two Delaunay graphs with a random line in or-
der to edit a match relation which exists between them. However, this operation
does not necessarily generalise to other types of graph, and is in any case global.
What is required is a local structural edit operation which modifies intermediate
subgraphs, ranging from single nodes to the entire graph.

The tree adjoining grammar formalism developed by Joshi in [i] provides an
interesting starting point. Tree adjoining grammars were originally designed for
natural language processing: rather than use a set of rewrite rules, these gram-
mars provide sets of minimal parse trees which may be extended by adjunction
(section 2). Thus parsing with a tree adjoining grammar can be seen as fitting a
hierarchical model to the input and iteratively modifying that model until it ad~
equately describes the data. The manipulation of hierarchical syntactic models
is of interest in both vision [8, 9] and language processing; however, our inter-
est here is primarily in the structural editing process. Nevertheless, language
processing is the natural application of tree adjoining grammars and provides a
convenient non-trivial hierarchical structure recovery problem.

The framework which we present is novel in two respects. First, we use a
modified version of the string edit distance algorithm of Wagner and Fischer
[10] to measure how well a tree fits the data. This provides the bottom-up, data-
driven component. Second, we use a modified genetic algorithm to produce novel
but consistent trees using the operators furnished by a tree adjoining grammar.
This provides the top-down, constraint propagation component.

2 P a r s i n g w i t h T r e e A d j o i n i n g G r a m m a r s

A tree adjoining grammar, G, is a pair, (I, A), of sets of ordered labelled trees,
where I is the set of initial trees, which correspond to minimal sentences in the
string language of G, and A is the set of auxiliary trees, which extend the trees in
I via adjunction to give new initial trees. By definition, all the external nodes of
an initial tree are preterminal symbols (texical categories) and all of its internal
nodes are nonterminals. Auxiliary trees are similar to initial trees, except that
exactly one of the external nodes has the same label as the root: this is the
foot node. Tree adjoining grammars are moderately context-sensitive, a property
they owe to the manner in which recursion and dependencies are expressed [1].

161

Adjunction (figure 1) is a composition operation between initial and auxiliary
trees: given an auxiliary tree, A, and an initial tree, I , which contains a node
with the same label, X, as the root of A, the adjunction of I and A is achieved
by removing the subtree in I rooted at X, inserting A in its place, then attaching
the children of X to the foot node of A. Thus, adjunction inserts an extra layer
of structure into an initial tree. It is usual to place constraints on adjunction
at some of the internal nodes of trees. These constraints are discussed in detail
in [11], where they are used to implement features via unification. The only
constraint of interest to us at present is the null-adjunction constraint which
forbids adjunction at any node bearing it.

t r ' / x ~ ~
X2

Fig. 1. Tree Adjunction.

2.1 P a r s i n g

Our primary interest is in the manipulation of parse trees; consequently we con-
sider a much simpler problem than the state of the art for language processing.
Specifically, we concentrate on the structure of the parse tree and ignore augmen-
tations such as features. The problem can be simply stated as that of finding
the "most accurate" parse of an input sentence. We would like to be able to
gracefully handle the case where a word in the input is unknown, misspelt or
missing as illustrated in figure 2. We would also like ambiguous cases (see figure
3) to be handled neutrally in the absence of a pr ior i evidence, i.e. the ordering
of rules in the rulebase should not bias the parser in favour of any particular
interpretation.

lil - l i l I ~ I I ~, I ~-~

(a) Incomplete (b) Complete
Sentence Sentence

Fig. 2. Handling of Incomplete Sentences. The parser should recognise that a preposi-
tion is missing from the sentence *"the man went town", possibly enabling it to correct
the error.

Our grammar is based on the lexicalised tree adjoining grammar given in
[11]. We do not consider features, and have simplified the grammar considerably

162

to suit our experimental purposes. Nevertheless, we retain the null-adjunction
constraint, and have also added a few trees to make the grammar more consistent
with X-bar theory.

l i l
(a) "Rice" is the (b) :'Flies" is the
subject subject

Fig. 3. Handling of Ambiguous Sentences. The parser should not discriminate arbi-
trarily between the available interpretations. This example is a modification of the one
in [12].

2.2 Accuracy of Parses

Earlier in this section, we described how parse trees for a particular sentence may
be generated; it remains to define some measure of how accurate a parse is, and
whether or not it contains missing constituents. In [11], a lexicalised grammar
is used: each word in the input selects a set of trees which are then combined to
form a parse; the final parses are assessed manually. In our scheme, each position
in the sentence is assigned a dictionary of lexical entries based on the lexicon for
the word at that position. For example, for the sentence "rice flies like sand",
the dictionary at position 3 would be {tverb, prep}, hence the ambiguity (figure
3). It is now possible to evaluate the accuracy of a parse tree by considering
how well its frontier matches the dictionaries assigned to the word-positions
in the input. This is done using a modified version of the classic edit-distance
algorithm given by Wagner and Fischer in [10]: where they used equality as a
match condition, we use set-membership. This algorithm is known to find the
minimum number of insertions and deletions necessary to make the two strings
identical and thus provides a natural measure of how well a particular parse tree
describes a given sentence (since the hierarchical structure of a sentence depends
only on the grammatical rules used to parse it). We use a wildcard dictionary
entry for unknown words: this allows sentences with missing or misspelt words
to be parsed successfully whilst preserving the structure of the known parts of
the sentence.

Using the string edit-distance in this way imparts a measure of "intelligent"
behavior to the algorithm. Suppose the input is "Edward's cat sat on John's
mat" and that neither "Edward's" nor "John's" is in the lexicon. The best parse
is still that shown in figure 4 (a). Similarly, the best parse of *"cat sat mat" is
that given in figure 4 (b).

163

~ P

l i l
(a) Unknown (b) Missing
Words Words

Fig. 4. Extreme Examples. In (a), words in parentheses are unknown, and may match
anything (they must match something); the edit-distance is 2 without witdcards, 0
with. In (b) the essential structure of the utterance is recovered even though it is badly
formed; the edit distance is 3. In both cases, the edit-distance algorithm allows the
parser to make maximal use of the available information, yielding "correct" parses of
the input.

3 Genetic Algorithms

The genetic algorithm (and variants thereof) is a well-known population-based
optimisation method [13, 14] - reviews may be found in [15] and [16]. Briefly,
a population of candidate solutions to a problem (the individuals), usually en-
coded as binary strings, is iteratively subjected to crossover in which parts of two
individuals are mixed to yield two offspring, mutation in which one individual is
subject to random change, and selection in which individuals are stochastically
chosen to form the next generation. A measure of the quality of the solution rep-
resented by the individual is its fitness, which is translated into a probability of
its survival into the next generation. Elsewhere we have demonstrated that the
algorithm lends itself to problems which may be decomposed or partially decom-
posed and which have many local and global optima, for example line labelling
[17, 18]. The algorithm composes a good solution by mixing sub-solutions with
the crossover operator. Mutation operates at a low level as a source of back-
ground variation which allows new information to enter the population. The
stochastic nature of selection allows the population to escape local optima.

Natural language processing can be viewed as an instance of the consistent
labelling problem first formulated by Haralick and Shapiro in the 1970s [19]. The
goal of the parser is to label the words in the input sentence with their lexical
categories. However, unlike one-dimensional labelling problems, it is also neces-
sary to construct a hierarchical representation of the sentence, its parse tree. We
have demonstrated that genetic algorithms are suitable for labelling problems
[18], especially when it is necessary to obtain several closely related solutions
simultaneously [20]. Our interest here is the algorithm's solution-editing frame-
work (crossover and mutation) rather than its optimisation properties which
are not certain - indeed for medium (40 to 60 lines) line labelling problems,
exhaustive search comfortably outperforms the algorithm. The rest of this sec-

164

tion formulates our version of natural language processing with a tree adjoining
grammar for the genetic algorithm.

3.1 S o l u t i o n E n c o d i n g

The population in our genetic algorithm consists of a set of initial trees drawn
(initially at random) from the set of initial trees in the grammar. A natural
way to encode trees is as strings. These are technically Lisp-like S-expressions,
but we refer to them as S-trees to emphasise their structure. The grammar for
constructing S-trees is given below.

STREE--> ' (' label [' (' SUBTREES ') '] ') '
SUBTREES --> STREE I STREE SUBTREES

S

NP YP

v NP

Fig. 5. S-Tree Example. This is the graphical representation of the S-tree
(S((NP((art) (n))) (gP((v) (NP((art) (n))))))).

Label is the label of a node in the tree which must be a string of char-
acters. As an example, figure 5 gives a graphical representation of the S-tree
(S((NP ((a r t) (n))) (VP((v) (NP ((a r t) (n))))))) . A null-label may be applied
to any symbol in the tree, for example (D:-) is an empty D(eterminer). Other
assignments are made by the edit-distance algorithm: when an assignment is in-
consistent or involves an unknown word, it is denoted by an asterisk, '*'. Thus,
the trees in figure 4 would be denoted as shown in table 1.

In principle, any tree can be represented in this manner, although the repre-
sentation becomes clumsy when the node-labels are complex or the nodes con-
tain a large amount of information. Simple features such as the null-adjunction
constraint can be added by prefixing the node label with special characters ac-
cording to some simple regular grammar. The advantage of this representation
is its transparency, the ease of extracting the frontier while computing the edit-
distance from the input, and the fact tha t the operations described in sections
2 and 3.3 can be implemented by matching and copying substrings. This repre-
sentation is also compact.

3.2 F i t n e s s M e a s u r e

The edit-distance cost function described in section 2.2 is a discrete measure
which takes values from the set {0, 1, ..., N}, where N is the larger of the number
of words in the input and the number of nodes in the frontier of the tree. To
convert this into a fitness measure suitable for use with a genetic algorithm we
exponentiate: Fi = exp (-/9.EDi), where EDi is the edit-distance of the i th S-
tree,/7/ is its fitness and/3 is an arbitrary scaling constant which defaults to I.

165

To convert this into a survival probability for the selection step, we divide by
F n the total fitness of the n members of the population: Pi = ~ / ~ j = l Fj.

Table 1. String Representation of Parse Trees. Inconsistent assignments are marked
with asterisks ('*').

(a) U N K N O W N W O R D S (b) MISSING W O R D S

(s((s(
(DP ((DP (

(D((*act :Edward' s))) (*D:-)
(NP((N((cnoun: cat))))))) (NP((N((cnoun : cat)))))))

(VP ((VP (
(V ((tverb: sat))) (V ((tverb : sat)))
(PP ((PP (

(P ((prep : on))) (P ((*prep : -)))
(DP ((DP (

(D ((* a r t : John' s))) (*D:-)
(NP ((N((cnoun:ma~))))))))))))) (NP ((N((cnoun:mat)))))))))))))

3.3 Genetic Algorithm Operators

Crossover is implemented via subtree crossover, which we define as a special
case of Koza's operator [21], but a more general case of the substitution operator
used in [11]. Given two parent S-trees, the algorithm selects a node from each
subject to the conditions that (1) the nodes have identical labels and are not
subject to null-adjunction, (2) the subtrees rooted at the nodes are different,
(3) the remainders of the parent trees following excision of the subtrees are
different, (4) at least one of the nodes is not the root node, and (5) at least one
of the subtrees is not empty. In practice, several pairs of nodes may satisfy these
criteria: in this case the crossover sites are selected at random. A drawback of
subtree crossover is tha t not atl pairs of trees can be crossed, and only a subset
of the nodes may be part of a crossover site in a particular crossing, both of
which make the term "crossover rate" a little harder to define. However, since
our choice of interpretation is restricted by the input data, in practice only a
relatively small number of S-trees will survive the first few iterations of the
algorithm, and these are likely to be of similar types. This crossover will thus
be less disruptive and explore the search space less well than more traditional
operators.

Mutation does not have such a natural implementation. It does not make
sense to simply relabel nodes in a parse tree: internal nodes must never be rela-
belled since they describe permit ted phrase structures in the grammar, and fron-
tier nodes cannot generally be relabelled because only certain classes of words
can form particular constituents. The adjunction operator seems a reasonable
choice since this makes a point-modification to a single initial tree. This is im-
plemented by forming a set of adjoinable auxiliary trees, selecting one arid then
finding a suitable adjunction site in the initial tree (i.e. a node with the same
label as the root of the auxiliary tree, and not subject to the null-adjunction
constraint).

A major disadvantage of this implementation is that mutat ion can no longer
necessarily be considered a background operator: adjunction is a fundamental

166

means by which novel parse trees are constructed. One way around this limitation
is to adjoin every tree with every adjoinable auxiliary tree at every possible site
in a preprocessing step. This step, which we call "expansion" may be repeated as
many times as desired; however it is computationally expensive and is therefore
only suitable when the sets of trees are small. Adjunction may have far-reaching
effects on the structure of a tree which is in sharp contrast to the local nature
of the standard mutation operator.

4 Experiments

In a preliminary study, our algorithm was tested on artificially constructed sen-
tences; for added realism, we also used 16 sentences drawn from a letter from a
funding body. We increased the complexity of some sentences by adding adverbs,
adjectives and additional words and clauses. Sample sentences are given below.

I) All awards are available.
2) All studentship awards are available.
3) Gur awards are clearly helpful.
4) Please remember to include your award reference number.
5) Please remember to include the award reference number in the top right hand

corner of the address label.

The grammar consisted of 49 initial and 45 auxiliary trees (370 and 1138 with
expansion). We tested the algorithm on several different parameter settings with
and without a single pass of expansion. 25 trials were conducted for each sentence
with a variety of population sizes and iteration limits; crossover and mutation
rates were fixed at 0.9. Lower values of crossover and mutat ion rates were also
tried: these yielded uniformly poor performance and are not reported here. The
results are given in table 2.

4.1 D i s c u s s i o n

Elsewhere we have reported that for line labelling, mutation rate is the most
accurate predictor of success rate, followed by population size and crossover rate
with iteration limit playing little part [18]. Our initial results for language parsing
agree to some extent with this: all the best runs had population sizes of 4000,
and the limit on iterations does not seem to be particularly relevant. However,
low values of the mutation and crossover rates tended to give poor performance.
This is unsurprising since both operators are of fundamental importance in the
parsing process.

The need for high population size is remarkable, since the best population
size we tested was about I00 times the cardinality of the unexpanded initial tree
set. This is probably due to the well-known problem of premature convergence -
we have shown previously that the diversity of the population decreases sharply
in the first few iterations [20]. Thus for complex sentences there may be relatively
few avenues open for search after the initial phase of the algorithm.

It is clear that grammar expansion does not help. This can perhaps be ex-
plained in terms of the structure of the input sentence. A "deep" sentence is

167

Table 2. Experimental Results. 25 runs were performed for each sentence to give a total
of 400 runs. The crossover and mutation rates were fixed at 0.9. Some combinations
were tried more than once.

P O P U L A T I O N SIZE I T E R A T I O N L I M I T A C C U R A T E P A R S E S
e x p a n s i o n no e x p a n s i o n

i00
200
500

I000
2000

2000
4000
4000

4000

i000 0%
500 0%
200 OZ
too' 6X
50 6%

1oo 0%
25 6%
50 6%

i00 6%

137,
i3z
13%
25x
25%
177,
19%
137,
31%
22%
25%
277,

one which requires many adjunctions to generate a correct parse: it has a lot
of structure and will typically contain many modifiers. It appears that the deep
structure of sentences is relatively inaccessible to the algorithm, since many spe-
cific adjunctions are required to generate a correct parse. Thus, a single pass
of the expansion step is unlikely to substantially simplify the task of parsing
complex sentences: only those sentences with one or two levels of complexity
are made significantly easier. However, the expansion process does create a large
number of "spurious" initial trees: it is likely that without expansion all 49 initial
trees would be represented in a population of 1000, with few auxiliary trees to
choose from for adjunction. Blindly increasing the numbers of initial and auxil-
iary trees appears to effectively increase the probability of making an incorrect
choice.

5 C o n c l u s i o n

The main contribution of this paper has been to investigate the use of discrete
graphical editing operations within an optimisation framework. We have adapted
the genetic algorithm for use with a tree adjoining grammar, and demonstrated
its utility with a simple natural language processing example.

It is clear tha t there are several directions in which this work can be devel-
oped. It is worth investing some time fine-tuning the genetic algorithm's control
parameters; these are notoriously difficult to set a priori [22-24] . To use our
framework for serious language processing would require considerable work on
augmenting the grammar and lexicon. We intend to develop the work by ex-
ploring more complex hierarchical problems furnished by vision, for example
multilevel scene analysis.

R e f e r e n c e s

1. A. K. Joshi. Tree adjoining grammars: How much context-sensitivity is required
to provide reasonable structural descriptions? In L. Karttunen D. R. Dowry and
A. M. Zwicky, editors, Natural Language Parsing. Cambridge University Press,
1985.

168

2. A. Sanfeliu and K. S. ~ . A distance measure between attributed relational graphs
for pattern recognition. IEEE SMC, 13:353-362, 1983.

3. M. A. Eshera and K. S. Fu. A graph distance measure for image analysis. IEEE
SMC, 14:398-407, 1984.

4. D. Shasha and K. Zhang. Simple fast algorithms for the editing distance between
trees and related problems. SIAM Journal of Computing, 18:1245-1262, 1989.

5. K. Zhang. A constrained edit distance between unordered labeled trees. Algorith-
mica, 15:205-222, 1996.

6. D. B. Skillicorn. A parallel tree difference algorithm. Information Processing
Letters, 60:231-235, 1996.

7. Richard. C. Wilson Andrew. D. J. Cross and Edwin. R. Hancock. Inexact graph
matching using genetic search. Pattern Recognition, 30:953-970, 1997.

8. R. C. Wilson and E. R. Hancock. Hierarchical discrete relaxation. Lecture Notes
in Computer Science, 1121:120-129, 1996.

9. S. Geman E. Bienenstock and D. Potter. Compositionality, MDL priors, and object
recognition. In NIPS 96, pages 838-844, 1996.

10. R. A. Wagner and M. J. Fischer. The string-to-string correction problem. Journal
of the ACM, 21:168-173, 1974.

11. T. Becket et al. A lexicalised tree adjoining grammar for english. Technical report,
University of Pennsylvania, 1995. IRCS Report 95-03.

12. J. Allen. Natural Language Understanding. Benjamin/Cummings, 1994.
13. J. H. Holland. Adaptation in Natural and Artificial Systems. MIT Press, 1975.
14. G. Rudolph. Convergence analysis of canonical genetic algorithms. IEEE Trans-

actions on Neural Networks, 5:96-101, 1994.
15. D. B. Fogel. An introduction to simulated evolutionary optimisation. IEEE Trans-

actions on Neural Networks~ 5:3-14, 1994.
16. M. Srinivas and L. M. Patnaik. Genetic algorithms: A survey. IEEE Computer,

27:17-26, 1994.
17. D. A. Huffman. Impossible objects as nonsense sentences. In B. Meltzer and

D. Michie, editors, Machine Intelligence, volume 6, pages 295-323. Edinburgh Uni-
versity Press, 1971.

18. R. Myers and E. R. Hancock. Genetic algorithm parameters for line labelling.
Pattern Recognition Letters, 18:1363-1371, 1997.

19. R. M. Haralick and L. G. Shapiro. The consistent labelling problem: Parts 1 and
2. IEEE PAMI, 1 (I) and 2 (II):173-184 (I) and 193-203 (II), 1979 (I) and 1981
(It).

20. R. Myers and E. R. Hancock. Genetic algorithms for ambiguous labelling problems.
Lecture Notes in Computer Science (EMMCVPR 97), 1223:345-360, 1997.

21. J. R. Koza. Genetic Programming. MIT Press, 1992.
22. J .J . Grefenstette. Optimisation of control parameters for genetic algorithms. IEEE

SMC, 16:122-128~ 1986.
23. L. J. Eshelman J. D. Schaffer, R. A. Caruna and R. Das. A study of control param-

eters affecting online performance of genetic algorithms for function optimisation.
In Proceedings of the Third International Conference on Genetic Algorithms, pages
51-60, 1989.

24. K. A. DeJong and W. M. Spears. An analysis of the interacting rSles of population
size and crossover in genetic algorithms. In Proceedings o] the First Workshop on
Parallel Problem Solving from Nature. Springer-Verlag, t990.

