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Abs t rac t .  This paper describes the use of discrete graphical editing op- 
erations to dynamically fit hierarchical structural models to input data. 
We use the tree adjoining grammar developed by Joshi [1] as a proto- 
typical structural model, and realise the editing process using a genetic 
algorithm. The novelty of our approach lies firstly in the use of the edit 
distance between the ordered frontier nodes of a tree and a set of dictio- 
naries of legal labels derived from the input as a cost function. Secondly, 
we apply genetic algorithms to tree adjoining grammars with the intro- 
duction of a new editing operation. We demonstrate the utility of the 
method on a simple natural language processing problem. 

1 I n t r o d u c t i o n  

Graphical models have recently a t t rac ted  considerable interest in the connection- 
ist l i terature where they have been used to embed causal relations into network 
structures. Broad ly  speaking, the available models can be divided into those 
that  draw on undirected graphs and those tha t  draw on directed graphs. Ac- 
cording to this taxonomy, Markov models belong to the former category while 
causal networks fall into the lat ter  category. In fact directed graph structures 
are of particular importance since they can be used to represent subsumption 
or part-whole hierarchies. Such representational structures are of pivotM impor- 
tance in language understanding and vision where they are used to control the 
vertical flow of perceptual  inference. Despite this interest in the modelling of 
probabilistic interactions in network structures, the issue of how to control the 
structure itself has attracted less attention. This is an important omission since 
in practice the task of extracting hierarchical relations from real-world data is 
invariably one of extreme fragility. In the machine vision domain, it was Sanfeliu 
and Fu who first illustrated the importance of graph-edit operations in matching 
noise corrupted relational structures [2]. 

It is the editing of directed graph structures to which we turn our atten- 
tion in this paper. Specifically we focus on the issue of how to extract the most 
consistent tree-structure from imperfectly formed input. This can be viewed as 
an optimisation problem. Our goal is to manipulate tree representations of sub- 
sumption hierarchies to find the best interpretation of the input. The advantage 
of such an approach is that although the interpretation process is data-driven, 
top-down constraint propagation still occurs. The control flow is top-down but 
the flow of inference is bottom-up. To do this we require a hierarchical repre- 
sentation of the domain of interest and a means of measuring the accuracy with 
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which a model fits the data. It is clearly inappropriate to enumerate every possi- 
ble interpretation in the model database. Rather, a natural means of extending 
some initial small database is required. 

The obvious hierarchical representation is a graph - for a subsumption hi- 
erarchy, a tree. Models will need to undergo vertical edit operations to adapt 
their structure to the data. Unfortunately, most graphical editing operations de- 
scribed in the literature are rather na'ive, being single-node (or -edge) insertion, 
deletion or relabelling [2-6] (to be fair, these are generally intended as measures 
of distance in matching algorithms rather than as true editing operations). The 
geometric crossover operator described by Cross et al. in [7] is somewhat closer 
to the mark: it involves bisecting two Delaunay graphs with a random line in or- 
der to edit a match relation which exists between them. However, this operation 
does not necessarily generalise to other types of graph, and is in any case global. 
What is required is a local structural edit operation which modifies intermediate 
subgraphs, ranging from single nodes to the entire graph. 

The tree adjoining grammar formalism developed by Joshi in [i] provides an 
interesting starting point. Tree adjoining grammars were originally designed for 
natural language processing: rather than use a set of rewrite rules, these gram- 
mars provide sets of minimal parse trees which may be extended by adjunction 
(section 2). Thus parsing with a tree adjoining grammar can be seen as fitting a 
hierarchical model to the input and iteratively modifying that model until it ad~ 
equately describes the data. The manipulation of hierarchical syntactic models 
is of interest in both vision [8, 9] and language processing; however, our inter- 
est here is primarily in the structural editing process. Nevertheless, language 
processing is the natural application of tree adjoining grammars and provides a 
convenient non-trivial hierarchical structure recovery problem. 

The framework which we present is novel in two respects. First, we use a 
modified version of the string edit distance algorithm of Wagner and Fischer 
[10] to measure how well a tree fits the data. This provides the bottom-up, data- 
driven component. Second, we use a modified genetic algorithm to produce novel 
but consistent trees using the operators furnished by a tree adjoining grammar. 
This provides the top-down, constraint propagation component. 

2 P a r s i n g  w i t h  T r e e  A d j o i n i n g  G r a m m a r s  

A tree adjoining grammar, G, is a pair, (I, A), of sets of ordered labelled trees, 
where I is the set of initial trees, which correspond to minimal sentences in the 
string language of G, and A is the set of auxiliary trees, which extend the trees in 
I via adjunction to give new initial trees. By definition, all the external nodes of 
an initial tree are preterminal symbols (texical categories) and all of its internal 
nodes are nonterminals. Auxiliary trees are similar to initial trees, except that 
exactly one of the external nodes has the same label as the root: this is the 
foot node. Tree adjoining grammars are moderately context-sensitive, a property 
they owe to the manner in which recursion and dependencies are expressed [1]. 
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Adjunction (figure 1) is a composition operation between initial and auxiliary 
trees: given an auxiliary tree, A, and an initial tree, I ,  which contains a node 
with the same label, X, as the root of A, the adjunction of I and A is achieved 
by removing the subtree in I rooted at X, inserting A in its place, then attaching 
the children of X to the foot node of A. Thus, adjunction inserts an extra layer 
of structure into an initial tree. It is usual to place constraints on adjunction 
at some of the internal nodes of trees. These constraints are discussed in detail 
in [11], where they are used to implement features via unification. The only 
constraint of interest to us at present is the null-adjunction constraint which 
forbids adjunction at any node bearing it. 

t r ...... ' / x ~ ~  
X2 

Fig. 1. Tree Adjunction. 

2.1 P a r s i n g  

Our primary interest is in the manipulation of parse trees; consequently we con- 
sider a much simpler problem than the state of the art for language processing. 
Specifically, we concentrate on the structure of the parse tree and ignore augmen- 
tations such as features. The problem can be simply stated as that  of finding 
the "most accurate" parse of an input sentence. We would like to be able to 
gracefully handle the case where a word in the input is unknown, misspelt or 
missing as illustrated in figure 2. We would also like ambiguous cases (see figure 
3) to be handled neutrally in the absence of a pr ior i  evidence, i.e. the ordering 
of rules in the rulebase should not bias the parser in favour of any particular 
interpretation. 

lil - l i l  I ~ I I ~, I ~-~ 

(a) Incomplete (b) Complete 
Sentence Sentence 

Fig. 2. Handling of Incomplete Sentences. The parser should recognise that a preposi- 
tion is missing from the sentence *"the man went town", possibly enabling it to correct 
the error. 

Our grammar is based on the lexicalised tree adjoining grammar given in 
[11]. We do not consider features, and have simplified the grammar considerably 
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to suit our experimental purposes. Nevertheless, we retain the null-adjunction 
constraint, and have also added a few trees to make the grammar more consistent 
with X-bar theory. 

l i l  
(a) "Rice" is the (b) :'Flies" is the 
subject subject 

Fig. 3. Handling of Ambiguous Sentences. The parser should not discriminate arbi- 
trarily between the available interpretations. This example is a modification of the one 
in [12]. 

2.2 Accuracy of  Parses  

Earlier in this section, we described how parse trees for a particular sentence may 
be generated; it remains to define some measure of how accurate a parse is, and 
whether or not it contains missing constituents. In [11], a lexicalised grammar 
is used: each word in the input selects a set of trees which are then combined to 
form a parse; the final parses are assessed manually. In our scheme, each position 
in the sentence is assigned a dictionary of lexical entries based on the lexicon for 
the word at that  position. For example, for the sentence "rice flies like sand", 
the dictionary at position 3 would be {tverb, prep}, hence the ambiguity (figure 
3). It is now possible to evaluate the accuracy of a parse tree by considering 
how well its frontier matches the dictionaries assigned to the word-positions 
in the input. This is done using a modified version of the classic edit-distance 
algorithm given by Wagner and Fischer in [10]: where they used equality as a 
match condition, we use set-membership. This algorithm is known to find the 
minimum number of insertions and deletions necessary to make the two strings 
identical and thus provides a natural  measure of how well a particular parse tree 
describes a given sentence (since the hierarchical structure of a sentence depends 
only on the grammatical rules used to parse it). We use a wildcard dictionary 
entry for unknown words: this allows sentences with missing or misspelt words 
to be parsed successfully whilst preserving the structure of the known parts of 
the sentence. 

Using the string edit-distance in this way imparts a measure of "intelligent" 
behavior to the algorithm. Suppose the input is "Edward's cat sat on John's 
mat" and that  neither "Edward's" nor "John's" is in the lexicon. The best parse 
is still that  shown in figure 4 (a). Similarly, the best parse of *"cat sat mat" is 
that  given in figure 4 (b). 
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~ P  

l i l  
(a) Unknown (b) Missing 
Words Words 

Fig. 4. Extreme Examples. In (a), words in parentheses are unknown, and may match 
anything (they must match something); the edit-distance is 2 without witdcards, 0 
with. In (b) the essential structure of the utterance is recovered even though it is badly 
formed; the edit distance is 3. In both cases, the edit-distance algorithm allows the 
parser to make maximal use of the available information, yielding "correct" parses of 
the input. 

3 Genetic Algorithms 

The genetic algorithm (and variants thereof) is a well-known population-based 
optimisation method [13, 14] - reviews may be found in [15] and [16]. Briefly, 
a population of candidate solutions to a problem (the individuals), usually en- 
coded as binary strings, is iteratively subjected to crossover in which parts of two 
individuals are mixed to yield two offspring, mutation in which one individual is 
subject to random change, and selection in which individuals are stochastically 
chosen to form the next generation. A measure of the quality of the solution rep- 
resented by the individual is its fitness, which is translated into a probability of 
its survival into the next generation. Elsewhere we have demonstrated that  the 
algorithm lends itself to problems which may be decomposed or partially decom- 
posed and which have many local and global optima, for example line labelling 
[17, 18]. The algorithm composes a good solution by mixing sub-solutions with 
the crossover operator. Mutation operates at a low level as a source of back- 
ground variation which allows new information to enter the population. The 
stochastic nature of selection allows the population to escape local optima. 

Natural language processing can be viewed as an instance of the consistent 
labelling problem first formulated by Haralick and Shapiro in the 1970s [19]. The 
goal of the parser is to label the words in the input sentence with their lexical 
categories. However, unlike one-dimensional labelling problems, it is also neces- 
sary to construct a hierarchical representation of the sentence, its parse tree. We 
have demonstrated that  genetic algorithms are suitable for labelling problems 
[18], especially when it is necessary to obtain several closely related solutions 
simultaneously [20]. Our interest here is the algorithm's solution-editing frame- 
work (crossover and mutation) rather than its optimisation properties which 
are not certain - indeed for medium (40 to 60 lines) line labelling problems, 
exhaustive search comfortably outperforms the algorithm. The rest of this sec- 
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tion formulates our version of natural  language processing with a tree adjoining 
grammar for the genetic algorithm. 

3.1 S o l u t i o n  E n c o d i n g  

The population in our genetic algorithm consists of a set of initial trees drawn 
(initially at random) from the set of initial trees in the grammar. A natural 
way to encode trees is as strings. These are technically Lisp-like S-expressions, 
but we refer to them as S-trees to emphasise their structure. The grammar for 
constructing S-trees is given below. 

STREE--> ' ( '  label [ ' ( '  SUBTREES ' ) ' ]  ' ) '  
SUBTREES --> STREE I STREE SUBTREES 

S 

NP YP 

v NP 

Fig. 5. S-Tree Example. This is the graphical representation of the S-tree 
(S((NP((art) (n))) (gP((v) (NP((art) (n))))))). 

Label is the label of a node in the tree which must be a string of char- 
acters. As an example, figure 5 gives a graphical representation of the S-tree 
(S((NP ( ( a r t )  ( n ) ) )  (VP((v) (NP ( ( a r t )  ( n ) ) ) ) ) ) ) .  A null-label may be applied 
to any symbol in the tree, for example (D:-)  is an empty D(eterminer). Other 
assignments are made by the edit-distance algorithm: when an assignment is in- 
consistent or involves an unknown word, it is denoted by an asterisk, '*'. Thus, 
the trees in figure 4 would be denoted as shown in table 1. 

In principle, any tree can be represented in this manner, although the repre- 
sentation becomes clumsy when the node-labels are complex or the nodes con- 
tain a large amount of information. Simple features such as the null-adjunction 
constraint can be added by prefixing the node label with special characters ac- 
cording to some simple regular grammar. The advantage of this representation 
is its transparency, the ease of extracting the frontier while computing the edit- 
distance from the input, and the fact tha t  the operations described in sections 
2 and 3.3 can be implemented by matching and copying substrings. This repre- 
sentation is also compact. 

3.2 F i t n e s s  M e a s u r e  

The edit-distance cost function described in section 2.2 is a discrete measure 
which takes values from the set {0, 1, ..., N},  where N is the larger of the number 
of words in the input and the number of nodes in the frontier of the tree. To 
convert this into a fitness measure suitable for use with a genetic algorithm we 
exponentiate: Fi = exp (-/9.EDi), where EDi is the edit-distance of the i th S- 
tree,/7/ is its fitness and/3 is an arbitrary scaling constant which defaults to I. 
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To convert this into a survival probability for the selection step, we divide by 
F n the total fitness of the n members of the population: Pi = ~ / ~ j = l  Fj. 

Table 1. String Representation of Parse Trees. Inconsistent assignments are marked 
with asterisks ('*'). 

(a) U N K N O W N  W O R D S  (b) MISSING W O R D S  

(s( (s( 
(DP ( (DP ( 

(D( (*act  :Edward' s)  ) ) (*D:-) 
(NP((N((cnoun: cat)) )))) ) (NP((N((cnoun : cat) )))) )) 

(VP ( (VP ( 
(V ( (tverb: sat ) ) ) (V ( (tverb : sat ) ) ) 
(PP ( (PP ( 

(P ( (prep : on) ) ) (P ( (*prep : - )  ) ) 
(DP ( (DP ( 

(D ( ( * a r t  : John'  s) ) ) (*D:-) 
(NP ((N((cnoun:ma~)))))))) ) ) ))) (NP ( (N((cnoun:mat)))) )) )) )))) ) 

3.3 Genetic Algorithm Operators 

Crossover is implemented via subtree crossover, which we define as a special 
case of Koza's operator  [21], but  a more general case of the substitution operator 
used in [11]. Given two parent S-trees, the algorithm selects a node from each 
subject to the conditions that  (1) the nodes have identical labels and are not 
subject to null-adjunction, (2) the subtrees rooted at the nodes are different, 
(3) the remainders of the parent trees following excision of the subtrees are 
different, (4) at least one of the nodes is not the root node, and (5) at least one 
of the subtrees is not empty. In practice, several pairs of nodes may satisfy these 
criteria: in this case the crossover sites are selected at random. A drawback of 
subtree crossover is tha t  not atl pairs of trees can be crossed, and only a subset 
of the nodes may be part  of a crossover site in a particular crossing, both of 
which make the term "crossover rate" a little harder to define. However, since 
our choice of interpretation is restricted by the input data, in practice only a 
relatively small number of S-trees will survive the first few iterations of the 
algorithm, and these are likely to be of similar types. This crossover will thus 
be less disruptive and explore the search space less well than more traditional 
operators. 

Mutation does not have such a natural  implementation. It does not make 
sense to simply relabel nodes in a parse tree: internal nodes must never be rela- 
belled since they describe permit ted phrase structures in the grammar, and fron- 
tier nodes cannot generally be relabelled because only certain classes of words 
can form particular constituents. The adjunction operator seems a reasonable 
choice since this makes a point-modification to a single initial tree. This is im- 
plemented by forming a set of adjoinable auxiliary trees, selecting one arid then 
finding a suitable adjunction site in the initial tree (i.e. a node with the same 
label as the root of the auxiliary tree, and not subject to the null-adjunction 
constraint). 

A major disadvantage of this implementation is that  mutat ion can no longer 
necessarily be considered a background operator: adjunction is a fundamental 
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means by which novel parse trees are constructed. One way around this limitation 
is to adjoin every tree with every adjoinable auxiliary tree at every possible site 
in a preprocessing step. This step, which we call "expansion" may be repeated as 
many times as desired; however it is computationally expensive and is therefore 
only suitable when the sets of trees are small. Adjunction may have far-reaching 
effects on the structure of a tree which is in sharp contrast to the local nature 
of the standard mutation operator. 

4 Experiments 

In a preliminary study, our algorithm was tested on artificially constructed sen- 
tences; for added realism, we also used 16 sentences drawn from a letter from a 
funding body. We increased the complexity of some sentences by adding adverbs, 
adjectives and additional words and clauses. Sample sentences are given below. 

I) All awards are available. 
2) All studentship awards are available. 
3) Gur awards are clearly helpful. 
4) Please remember to include your award reference number. 
5) Please remember to include the award reference number in the top right hand 

corner of the address label. 

The grammar consisted of 49 initial and 45 auxiliary trees (370 and 1138 with 
expansion). We tested the algorithm on several different parameter  settings with 
and without a single pass of expansion. 25 trials were conducted for each sentence 
with a variety of population sizes and iteration limits; crossover and mutation 
rates were fixed at 0.9. Lower values of crossover and mutat ion rates were also 
tried: these yielded uniformly poor performance and are not reported here. The 
results are given in table 2. 

4.1 D i s c u s s i o n  

Elsewhere we have reported that for line labelling, mutation rate is the most 
accurate predictor of success rate, followed by population size and crossover rate 
with iteration limit playing little part [18]. Our initial results for language parsing 
agree to some extent with this: all the best runs had population sizes of 4000, 
and the limit on iterations does not seem to be particularly relevant. However, 
low values of the mutation and crossover rates tended to give poor performance. 
This is unsurprising since both operators are of fundamental importance in the 
parsing process. 

The need for high population size is remarkable, since the best population 
size we tested was about I00 times the cardinality of the unexpanded initial tree 
set. This is probably due to the well-known problem of premature convergence - 
we have shown previously that the diversity of the population decreases sharply 
in the first few iterations [20]. Thus for complex sentences there may be relatively 
few avenues open for search after the initial phase of the algorithm. 

It is clear that grammar expansion does not help. This can perhaps be ex- 
plained in terms of the structure of the input sentence. A "deep" sentence is 
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Table 2. Experimental Results. 25 runs were performed for each sentence to give a total 
of 400 runs. The crossover and mutation rates were fixed at 0.9. Some combinations 
were tried more than once. 

P O P U L A T I O N  SIZE I T E R A T I O N  L I M I T  A C C U R A T E  P A R S E S  
e x p a n s i o n  no  e x p a n s i o n  

i00 
200 
500 

I000 
2000 

2000 
4000 
4000 

4000 

i000 0% 
500 0% 
200 OZ 
too'  6X 
50 6% 

1oo 0% 
25 6% 
50 6% 

i00 6% 

137, 
i3z 
13% 
25x 
25% 
177, 
19% 
137, 
31% 
22% 
25% 
277, 

one which requires many adjunctions to generate a correct parse: it has a lot 
of structure and will typically contain many modifiers. It appears that  the deep 
structure of sentences is relatively inaccessible to the algorithm, since many spe- 
cific adjunctions are required to generate a correct parse. Thus, a single pass 
of the expansion step is unlikely to substantially simplify the task of parsing 
complex sentences: only those sentences with one or two levels of complexity 
are made significantly easier. However, the expansion process does create a large 
number of "spurious" initial trees: it is likely that  without expansion all 49 initial 
trees would be represented in a population of 1000, with few auxiliary trees to 
choose from for adjunction. Blindly increasing the numbers of initial and auxil- 
iary trees appears to effectively increase the probability of making an incorrect 
choice. 

5 C o n c l u s i o n  

The main contribution of this paper has been to investigate the use of discrete 
graphical editing operations within an optimisation framework. We have adapted 
the genetic algorithm for use with a tree adjoining grammar,  and demonstrated 
its utility with a simple natural language processing example. 

It is clear tha t  there are several directions in which this work can be devel- 
oped. It is worth investing some time fine-tuning the genetic algorithm's control 
parameters; these are notoriously difficult to set a priori [22-24] . To use our 
framework for serious language processing would require considerable work on 
augmenting the grammar and lexicon. We intend to develop the work by ex- 
ploring more complex hierarchical problems furnished by vision, for example 
multilevel scene analysis. 
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