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Abstract .  In this paper we describe a system that is able to acquire 
models of 2-D shapes from cluttered scenes. The input of the system 
is a sequence of images each of which shows an unknown numbe, r of 
overlapping unknown 2-D objects. The system identifies matching partial 
shapes across different images and combines them into complete 2-D 
shape models thus giving a complete interpretation of the input scenes. 
The identification of partial shapes is based on string matching, whereas 
a graph search procedure is used for shape model generation. The system 
has been fully implemented and tested on images containing parts of a 
jigsaw puzzle. 

1 I n t r o d u c t i o n  

Model based recognition of objects, particularly in the two-dimensional case, 
has reached a high level of maturi ty ([1], [2], [3], [4], [5], [6], [7], [8], [9]). But 
the problems of automatic model acquisition and learning are only partially 
solved. Typically, object, models are still constructed by hand. This process is 
time consuming and error prone. Moreover, the recognition of instances of a 
model under noisy conditions in the input image may be difficult. 

A general introduction to the area of machine learning is provided in [10], 
[11]. Machine learning in the field of computer vision is addressed in [12], [13]. In 
this paper we describe a method that  is able to infer shape models of 2-D objects 
from cluttered scenes. Input for the system is a sequence of scenes, where each 
scene shows a collection of overlapping objects. The system attempts to identify 
similar partial shapes and integrates them to complete shape models. Shapes 
are formally represented by sequences, or strings, of local curvature values and 
the identification of similar partial shapes is based on string matching [14]. The 
representation is intrinsically invariant under translation and rotation. Moreover 
the learning and recognition procedure has the potential of invariance under 
scaling. 

In the following, we consider an introductory example. Assume we are observ- 
ing the image shown in Fig. l (a) .  Can we draw any conclusions from this image 
about the number and shape of objects involved? Certainly not - at least not as 
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Fig. 1. An example: (a) first observed image; (b) second observed image; (c) potential 
shape models that may have generated the images in (a) and (b) 

long as we don't make any assumptions about the underlying generic class of ob- 
jects. However, if we additionally consider the image in Fig. l(b), we can identify 
matching parts of the contours of the shapes in Figure l(a) and Figure l(b), 
and can conclude that Figures Fig. l(a) and Fig. l(b) may have been generated 
from the two shapes shown in Fig. l(c) . There are, of course, infinitely many 
other objects that may have generated both Fig. l(a) and Fig l(b). 

The general task considered in this paper can be described as follows. Given a 
sequence of images I1, I2 , . . . ,  I~, where each image Ij contains a shape Sj, infer 
a set of 2D-object models M1,. . . ,Mk such that each shape Sj is potentially 
generated by overlapping all or some of the Mi's. Throughout this paper we 
assume that our shape models may undergo any translation and rotation in the 
observed images. 

2 D e t e c t i n g  l o c a l  s h a p e  m a t c h e s  

The method for shape model generation consists of two phases: (1) detection of 
local shape matches, (2) synthesis of shape models from local matches. In this 
section, we describe the first phase. It is similar to the method presented in [14]. 

The curvature of the boundary of a shape is used as shape representation. It is 
measured at discrete points. Thus the curvature of a shape is given by a sequence 
of numbers x_ = (Xl. . .xn) where each xi is an angle -180 ° < xi _< +180 °. The 
xi's are quantized values. Hence every shape is represented by a string of symbols 
from a finite alphabet. 

Given two shapes described by their boundary strings x_ = (x l . . .  x,~) and 
_V = (yI ...  ym), we can measure their similarity using a string matching algo- 
rithm. Assume for the moment that the two strings are in registration with each 
other, i.e., the first symbol Yl of _y represents the point on the contour that cor- 
responds to the first symbol xl of ~. We can then use the standard dynamic 
programming algorithm for string matching [15]. This algorithm computes the 
string edit distance between ~ and V_, d(a_, y_), which is equal to the minimum cost 
sequence of edit operations that transform x into y. Clearly, if ~ and y represent 
the same shape then d(_z, y) = 0 in the ideal case. If there is noise in the data, 
d(~, y_) will be greater than zero. But we can still expect d(x_, y) to be smaller 
than d(x_, z) if z_ is a different shape. In order to make the algorithm applicable 
in practice, appropriate costs have to be defined for each of the edit operations 



202 

substitution insertion, and deletion. As the symbols in a string represent angles, 
it is natural to define the cost of a substitution c(a --+ b) = ta - b I, where a 
and b are integers from the interval [0,360]. This definition of substitution cost 
has actually been used in [14]. Moreover c(a --+ e) and c(c --+ a), i.e. the cost of 
deleting and inserting a symbol, respectively, have been set to the constant 120. 
(This constant was experimentally determined.) 

Clearly, the assumption that z and _y are in registration with each other is not 
realistic. In [t4] a procedure to overcome this assumption was described that  only 
has a time complexity of O(n • m). That  is, it has the same time complexity as 
the basic string matching algorithm [15]. In the procedure described in [14] two 
identical copies of string y, i.e., yO =YY are considered, instead of y. Furthermore 
the dynamic programming procedure is modified such that  leadTng symbols in 
_y~" can be skipped at no cost. Consequently, if one of the strings is a cyclically 
rotated version of the other, i.e., y = x i . . . x ~ x l . . . x i - i  then the edit distance 
between X- and y is equal to zero. As the underlying boundary representation 
is invariant under rotation the resulting algorithm is able to recognize shape 
similarity in presence of translation and rotation. 

The string matching algorithm described until now can be further extended 
to detecting partially matching shapes. Formally, we want to find out if there are 
substrings x i . . .  zi+l and yj . . .  Yj+k of X- and y, respectively, that  have a small 
edit distance to each other. If such substrings exist we can conclude that  the 
corresponding partial shapes are similar. 

For finding partial shape matches we compute the rotation invariant edit 
distance between x and _y for each cyclically shifted version x-(i) of X-, with 

x (i) = x i . . . x ~ z l . . - z i - 1  and i = 1~.. . ,  n. The edit distance computation al- 
gorithm proceeds, analogously to the methods described in [15], by filling in the 
elements of a matrix. Each row of this matrix corresponds to one symbol of x. 
After the matrix has been filled, we scan it from the last row towards the first row 
and search for an element representing a match that exceeds a certain length and 
has a small cost. Once an appropriate match has been found, we record it and 
stop scanning the matrix. Repeating this procedure for each cyclically shifted 
version of x_ we get a set that contains all potential partial matches of the two 
shapes. However, some of these partial matches may be in conflict with each 
other. In a postproeessing phase, the conflicting partial matches are filtered out. 
Let a and cd be substrings of x-, and/3 and ~ substrings of y. Furthermore, let 
(a,/3) and (a' ,  ~') be partial matches that  have been recorded. If a is a substring 
of a~ or ¢~ a substring of fl~, then the pair (a~, ,8) is removed. Moreover, if there 
is an overlap between ~ and c~ t or fl and fit, only the longer of the two partial 
matches is kept. 

Finally, for a given pair of shapes x__ and _y, we get a set of matching partial 
shapes (al,~31),. . . ,  (am,/3n) where each ai is a substring of x_, each j3i is a 
substring of y, and all ai's and fli's are disjoint. The complexity of this method 
is O(n 2.  m).  For further details see [14]. 

An example of the detection of partial shape matches is given in Fig. 2. In 
Fig. 2(a) two input shapes are shown. In Fig. 2(b) the partial matches that  were 
detected are highlighted. 
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(a) (b) 

Fig. 2. Example of partial shape matching; (a) two given shapes; (b) partial matches 
detected by the algorithm 

3 Synthesis  of shape models  

Given a sequence of shapes Z1, • •. ,Z2v each contained in an image, we match 
each pair of shapes, )2i and Zj, i 7£ j, and get, according to the procedure 
described in Section 2, for each pair of shapes a list of partial matches 

M~j = ((,~, A), ...(~, A)) ~ (1) 

If Zi is represented by string x_ = xl . . . xn  and Zj by string y = Yi ...Ym, 
then each a is a substring of E and each/~ a substring of _y. In other words, 

X__ ~ g I . . . g n  ~ ~ / 1 0 ~ 1 " / 2 O z 2  • • • O ~ t ~ / t + l  

y_ = y i - - - y , ~  = ~ i ¢ h a 2 ¢ ~ 2 . . . ~ t a t + i , t  >_ 0 (2) 

where the 7's and ~'s are the non-matching parts of Zi and Zj ,  respectively, 
and (a l ,  j31), . . . ,  (at, f3t) are the matching partial shapes. Note that  Mij may be 
empty, i.e., t=0. 

Our procedure for shape model synthesis is based on the observation that 
partial shapes occuring more than once in different shapes Zi are very likely to 
be part of a model. Thus the synthesis procedure at tempts to collect matching 
partial shapes between different pairs of shapes Zi and Zj and integrate them 
by proper concatenation into complete models. 

Starting point for the model synthesis procedure is the so-called segmenta- 
tion graph, which is built from the partial matches Mij; i , j  = t , . . . ,  N. Intu- 
itively, this graph represents the maximal segmentation of each shape taking 
all available information from all partial matches Mij into account. Formally, 
the segmentation graph consists of nodes and edges. Each node represents a 
substring x k . . . x t  of any of the shapes ~F/. The edges represent the concate- 
nation operation. That  is, if node v represents substring xk . . .  xk+l of shape 
Zi and node # represents substring xk+t+l . . .  xs of the same shape, then there 
is an edge from u to # with label ~i .  Strings are considered cyclically, i.e., if 
X = X 1 . . .  X r X r + l  . . . X s X s +  1 . . . X n  and substrings x l . . .  x, and X s +  1 . . .  X n both 

i To keep the notation simple, the dependency of the parameter t as well as of the cr's 
and/~'s on i and j is not explicitly shown 
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are represented by a node, then we insert an edge from the node representing 
x s + t . . . x n  to the node representing x l . . . x r .  

The segmentation graph is constructed as follows. Given a tist Mij of partial 
matches for a pair of shapes Si and 2 j  according to (1), we partition strings 
x_ and y according to (2). For each matching pair (a, ~), each 7, and each 6 we 
generate a node and subsequently connoct the nodes with edges as described 
above. This procedure is repeated for all pairs of shapes. Identical nodes, i.e., 
nodes that represent the same substring, are generated only once. If for pairs 
(~i, ~ j )  and (~i, ~k), j 7 ~ k, two nodes are obtained that overlap each other, 
we split them. 

Splitting is accomplished as follows. Let ~wi be represented by string x_. If for 
pair (2"i, £7j) node v represents substring x , . . . ,  x ~ - l x s . . ,  xt-1 of shape 5~ and 
for pair (Gi, G~) node p represents substring x~ . . .  Xt- lXt . . .x~_~ of the same 
shape, then node v is split into v~ representing x , . . .  x~_~ and u~ representing 
x~.. .~:t-~. In a similar way, # is split into #~ representing x~ . . . x t -~  and #~ 
representing x t . . .  x~_~. The nodes v2 and #~ are identified with each other as 
they represent the same partial shape. A similar splitting operation is applied if 
the string represented by one node is a proper substring of the string represented 
by another node. 

(a) 21 

/ 

(b) 22 (c) r3 

Fig. 3. Example shapes built up by a triangle and a rectangle (dotted lines) 

I: I 
a? c~4 Y~ Ys I Y4 I Y 

(a) ~ ,  (b) ~ (c) ~ 

Fig. 4. Partitioned shapes after matching 

2~ ~ ,Cl' 1 . . . Ct~9 

u = Z I . . .  Z9 
z---- 3'1 . . .79  

Mr2 = ((aa, 34), (a4as, ~2fla), (aT, ~9), (aaagal,/3~7~s)) 
M13 = ( (ala~a3, 717273), (asa6a~, 76"yT78), (as, 75)) 

Fig. 5. List of partial matches and string representations of the shapes 
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Fig. 6. Segmentation graph for Z1, ~U2 and Z3. The nodes represent substrings of each 
Z~ to which the indicated shape segments belong (e.g. the node labelled agflr 
represents a shape segment of both Z1 and Z2) 

For example, let's assume that the shapes Z1, i72 and Z3 shown in Fig. 3 are 
generated by a triangle and a rectangle. (For the purpose of simplicity, we fur- 
thermore assume that the shape models may be translated but not rotated.) The 
partitioning of the shapes after matching every shape to every other and the re- 
lated partial matches are shown in Figs. 4 and 5, respectively. The corresponding 
segmentation graph is given in Fig. 6. 

About Fig. 6 we can make a number of observations: First, each of the shapes 
Zi, 1 < i < 3, is represented by a cycle whose edges are labeled with Zi. Secondly, 
if a node represents a partial match (~, ~) from M~j, then it has incident edges 
labeled with Zi and Zj.  Moreover, we observe that the cycles leading through 
nodes containing (c~s, ag, al ,  as, aa,/~5) and 031,/32,/3a, 77,/39) correspond to the 
shape models that generated the shapes Z1, Zu and Za. On the other hand, not 
every cycle corresponds to a possible shape model. 

Based on these observations, the algorithm for shape model synthesis pro- 
ceeds as follows. It sequentially considers each node in the segmentation graph 
as starting node of a cycle. For each starting node, it enumerates all cycles that 
pass through it. If a cycle represents a closed contour and contains edges labeled 
with two different shape identifiers ~i and Zi, i 5£ j, at least, it is kept and 
recorded as a model. Otherwise it is discarded. All nodes and edges that belong 
to a potential model are deleted from the segmentation graph. This process is 
repeated as long as new cycles are found. 

If for example the shape model synthesis procedure receives the segmentation 
graph given in Fig. 6 as input, the algorithm yields the two cycles shown in Fig. 7. 
Theses two cycles represent the two model shapes in Fig. 8(a) and Fig. 8(b). 
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Fig. 7. Cycles within the segmentation 

, f t . . . .  t 
| | | 

(~) 

,Taph 

(b) 

Fig. 8. Resulting model shapes. For each segment only one of the labels is given 

4 E x p e r i m e n t a l  r e s u l t s  

The method described in Sections 2 and 3 has been implemented and tested on 
a number of image sequences. The models that were used for the generation of 
the scenes were jigsaw puzzle parts, similar to those used in [14]. The sequences 
presented to the system consisted of four to eight images with either two or three 
models involved. All computat ion times reported in this section were measured 
on a SUN Ultra 1 (Model 170E) station. 

In Fig. 9 a sequence consisting of four images is shown. From this sequence 
the system has identified two shape models. These models are superimposed 
to the original images in Fig. 10(a) and (b). In this example the segmentation 
graph consisted of 85 nodes. The model synthesis as described in section 3 took 
about 24 seconds computation time. 
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Fig. 9. A sequence of four images 

(a) First model superimposed to Fig. 9 

(b) Second model superimposed to Fig. 9 

Fig. 10. The system has identified two different shape models from Fig. 9 

~u4 v x /  ( F ~  

Fig. 11. Another sequence of eight images 

(a) First model superimposed to Fig. 11 

(b) Second model superimposed to Fig. 11 

Fig. 12. The system has identified two different shape models from Fig. 11 

Another sequence and the corresponding results are shown in Fig. 11 and 
Fig. 12, respectively. In this example, the segmentation graph consisted of 96 
nodes. About 26 seconds computation time were needed for model synthesis. 

A sequence of eight images involving three different shapes is shown in Fig. 13. 
The shape models that were identified are presented in Fig. 14. In this example, 
the segmentation graph consisted of 613 nodes. About 743 minutes computation 
time were needed for shape synthesis. 
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Fig. 13. A third sequence containing eight images 

(a) First model superimposed eo Fig. 13 

(b) Second model superimposed to Fig. 13 

(c) Third model superimposed to Fig. 13 

Fig. 14. The system has identified three different shape models from Fig. 13 

Our method is based on the assumption that each segment of the model 
shapes can be observed at least in two of the input scenes. If an input sequence 
does not meet this constraint the model synthesis procedure will eventually not 
provide a correct result. Moreover, if the models forming the scenes are heavily 
overlapping each other the partial shape matching algorithm will deliver only 
short partial matches. The shorter and more numerous these partial matches are, 
the more likely is the graph search procedure to fail to return correct results. 

5 S u m m a r y  a n d  c o n c l u s i o n s  

In this paper, we have presented a novel approach to the learning of shape models 
from cluttered scenes. The method consists of two steps. First, matching partial 
shapes across different images are identified. This procedure is based on string 
matching. Secondly, partial matching shapes are assembled into complete shape 
models using a graph search procedure. The proposed method has been imple- 
mented and tested on images containing overlapping parts of jigsaw puzzles. 



209 

References  

[1] 

[2] 

[3] 

[4] 

[5] 

[6] 

[7] 

[8] 

N 

[10] 
[11] 

[12] 

[13] 

[14] 

[15] 

D.H. Baltard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 
Pattern Recognition, Vol.13, 1981, pp. 111-122 
J.L. Turne, T.N. Mudge, R.A. Volz, Recognizing Partially Occluded Parts, 
IEEE Trans. Pattern Anal. Mach. Intelt., Vol.7, No.4, 1985, pp. 410-421 
W.E.L. Grimson and T. Lonyano-Perez, Localizing Overlapping Parts by 
Searching the Interpretation Tree, IEEE Transc. Pattern Anal. Mach. Intell., 
Vol.9, No.4, 1987, pp. 469-482 
N. Ayache, O.D. Faugeras, HYPER: a New Approach for the Recognition and 
Positioning of two-dimensional Objects, IEEE Trans. Pattern Anal. Mach. 
Intell., Vol.8, No.I, 1986, pp. 44-54 
Y.-T. Tsay, W.-H. Tsai, Model-guided Attributed String Matching by Split-and- 
merge for Shape Recognition, Int. J. Pattern Recognition Artif. Intell. No.3, 
1989, pp. 159-179 
H. Bunke, T. Glauser, Viewpoint Independent Representation and Recognition 
of Polygonal Faces in 3-D, IEEE Trans. Robotics Automat., Vol.9, No.4, 1993, 
pp. 457-462 
H.J. Woffson, Model-based Object Recognition by Geometric Hashing, Proc. 
1st Eur. Conf. Comput. Vision Antibes, 1990, pp. 526-536 
D. Huttenlocher, G. Klaudermann, W. Ruckbfidge, Comparing Images Using 
the HausdorffDistance, IEFF Trans. Pattern Anal. Mach. Intell., Vol.15, No.9, 
1993, pp. 850-863 
K.Y. Kupeev, H.J. Wolfson, A New Method of Estimating Shape Similarity, 
Pattern Recognition Letters, No.17, 1996, pp. 873-887 
A. Hutchinson, Algorithmic Learning, Oxford University Press, 1994 
J.W. Shavfick, T.G. Dietterich (eds.), Readings in Machine Learning, Morgan 
Kaufman, San Mateo, 1990 
Y. Kodratoff, S. Moscatelli, Machine Learning for Object Recognition and 
Scene Analysis, Int. Journal of Pattern Recognition and Artificial Intelligence, 
Vol.8, No.l, 1994, pp. 259-305 
B. Bhanu, T. Poggio (guest eds.), Special Section on Learning in Computer 
Vision, IEEE Trans. Pattern Anal. Mach. Intell., Vol.16, No.9, 1994, pp. 865- 
919 
H. Bunke, U. Bfihler, Applications of Approximate String Matching to 2D 
Shape Recognition, Pattern Recognition, Vol.26, No.t2, 1993, pp. 1797-1812 
R.A. Wagner, M.J. Fischer, The String-to-string Correction Problem, Jour. 
ACM, Vol.21, 1994, pp. 168-173 


