
A Survey of Non-thinning Based Vectorization Methods
Liu Wenyin Dov Dori

Faculty of Industrial Engineering and Management
Techniotr--Israel Institute of Technology, Haifa 32000, Israel

{liuwy; dori } @ie.technion.ac.il

We survey the methods developed up to date for crude vectorization of document
images. We classify them into six categories: thinning based, Hough Transform based,
contour-based, run-graph based, mesh-pattern based, and sparse pixel based. The
crude vectorization is a relatively mature subject in the Document Analysis and
Recognition field, though there are rooms to improve. The purpose of the survey is to
provide researchers with a comprehensive overview of this technique for them to
choose a suitable method when developing their vectorization algorithms and systems.
Keywords: Vectorization, Document Analysis and Recognition, Polygonalization

1 Introduction

Vectorization, also known as raster to vector conversion, is a process that finds
the vector lines from the raster images. It is widely used in the document analysis
and recognition (DAR) field as a preprocessing of high-level object recognition, such
as optical character recognition (OCR) and graphics recognition. Basic vectorization
concerns grouping the pixels in the raster image into raw wires that described by
several attributes, such as characteristic points and line width. Advanced
vectorization includes line fitting and extending, which yields fine wires. We refer to
crude vectorization as the basic vectorization process that takes raster (binary) image
as input and yields coarse wire fragments, which may be bars (non-zero width
straight line segments) and polylines (chains of' bars linked end to end).

Many crude vectorization methods have been developed and implemented since
the image processing techniques were introduced more than thirty years ago. These
methods are roughly divided into six classes: Hough Transform (HT) based methods,
thinning based methods, contour based methods, run-graph based methods, mesh
pattern based methods, and sparse pixel based methods. However, except for the HT
based methods, a typical vectorization process includes (t) medial axis points
sampling, or medial axis representation acquisition, which is the kernel processing
for information reduction so that only the important points that represent the medial
axis are determined; (2) line tracking, which follows (tracks) the medial axis points
found in the first stage into chains of points; (3) line segment approximation or
polygonalization, which removes non-critical points from the point chains found in
the second stage and uses bars and palylines to represent the remaining critical
points. The main difference among the above mentioned classes of vectorization
methods lies in the first two subprocesses and there are several polygonalization
algorithms that can be employed in the third subprocess.

Thinning based methods are so conventional that most of the earlier
vectorization systems, e.g., Kasturi et al. (1990), took advantages of them. Generally,
the objective of thinning is to reduce the data volume such that only the image's

231

topological shape, which is size and orientation invariant. The result is usually for
further processing. Most thinning algorithms are capable of maintaining
connectivity. However, the major disadvantages are high time complexities (e.g.,
cubic for iterative thinning), loss of shape information (e.g., line width), distortions
at junctions (e.g., at "T" and "X" intersections), and false and spurious branches
(e.g., at line ends and corners). Although they may be used in vectorization of line
drawings, their common application is OCR, in which the image size is usually
small and the line width is not critical. Comprehensive surveys of thinning
algorithms are given by Tamura (1978), Smith (1987), and Lam et al. (1992).
Performance evaluation of thinning algorithms have been done by Lee et al. (1991),
Lam and Suen (1993), Jaisimha et al. (1993), etc.

In this paper, we survey the non-thinning methods and provide researchers with
a comprehensive overview of this technique for them to choose a suitable one when
developing their vectorization algorithms/systems.

2 Hough Transform Based Methods
Doff (1997) discusses the application of Hough (1962) Transform (HT) in the

vectorization of straight line images by transforming spatially extended patterns in
binary image data into spatially compact features in a parameter space. This means
that a difficult global detection problem in the image space is transformed into a
more easily solved local peak detection problem in the parameter space. One way the
HT can be used to detect straight lines is to parameterize it according to its slope and
intercept. Straight lines are defined in Equation (1).

y = m x + c (1)
Thus, every line in the (x,y) plane corresponds to a point in the (re,c) plane.

Every point on the (x,y) plane can have an infinite number of possible lines that pass
through it. The gradients and intercepts of these lines form on the (m,c) plane a line
described by Equation (2).

c = -xm + y (2)
The (re, c) plane is divided into rectangular "bins" which accumulate for each

black pixel in the (x,y) plane; all the pixels lying along the line in Equation (2).
When the line of Eq (2) is drawn tbr each black pixel, the cells through which it
passes are incremented.

After accounting for all the pixels in the image space, lines are detected as peaks
in the transform space. Taking into account noise, each peak that is greater than a
predefined threshold is used to form a line defined in Eq (1). In practice, this
assumed line may be a combination of several collinear line segments (bars). Hence,
the pixels on the original image along the assumed line is followed so that the end
points of these segments are found. The line width is also determined during the line
tracking by examining the width at each pixel.

For straight line detection, the HT visits each pixel of the image once. Therefore,
its time complexity is linear to the total pixet number, which is the product of the
image width and height. Since each side of the image is linear to the image
resolution, we use the image resolution as the unit in analyzing the time complexity

232

of vectorization algorithms. Hence, the time complexity of the HT based
vectorization method is quadric to the image resolution.

Since peaks are expected to be formed in the (re, c) plane for points whose m and
c belong to broken or noisy lines in the original image, HT can be used to detect
lines in noisy images. However, since the gradients and intercepts are sampled
sparsely, they may not be so precise as the original lines. Hence, the quality of
detected lines is far less precise for slanted lines. This can be seen from Figure 6(b),
which is produced by an implementation of the HT based vectorization method by
Dori (I997). Moreover, the HT based methods can yield bars only and cannot
generate polylines.

3 Contour Based Methods
Aiming at lowering down the computational burden of thinning, another group

of vectorization algorithms try to reduce the data volume before sampling the medial
axis points. The main idea is finding the edges (contour) of the line object (shape)
first and calculating then the middle points of the pair of points on two opposite
parallel edges. This group of vectorization algorithms sample and track (follow) the
medial axis points simultaneously. This is different from thinning based algorithms,
which do line tracking after all medial axis (skeleton) points are sampled. The main
computational operation in these methods is edge detection and polygonalization.
The time complexity of edge detection is linear to the pixel volume, i.e., quadric to
the image resolution. Polygonalization is only linear to the pixels on the contour, as
discussed in Section 7. Hence, this group of vectorization algorithms have quadric
complexity and are much faster than thinning based algorithms. Moreover, the line
width is also much easier to obtain, which is vez: important for higher level drawing
interpretation.

Assuming the edges are found and polygonalized, the medial axis points of two
approximately parallel edges are defined by Jimenez and Navalon (1982) to be the
midpoints of the perpendiculars projected from one side to the other. Starting with a
"well behaved" edge (which is a vector), a linear search finds the nearest edge on the
other side of the object and several perpendiculars are projected from one to the
other. Subsequent edges are easier to find simply by following the edge until a
junction point is found.

The problem with all algorithms of this type is how to deal with junctions. There
are two main problems associated with junctions. The first one is the merging
junction formed by intersection at a small angle, which is most likely be missed
during tracking. The second case is the cross intersection, where how to join up the
lines are problematic. It is important that the algorithm be robust and able to deal
with all images without misjudging a junction and producing an incorrect skeleton.
Hence, it is hard to use in curve image vectorization.

4 Run Graph Based Methods
Extending the ideas of Di Zenzo and Morelli (1989) and Boatto et al. (1992),

Monagan and Roosli (1993) define more formally the run graph as a semi-vector

233

representation of a raster image before line detection and other segmentation. It is
sufficient for structural representation of the line-like images and efficient for line
extraction. It is information preservative and easier to operate.

RI={ t,0,5,9)
, (R2={0,3,7,10) ~ ~ J ~ - - Edge areas ~ ~ ~ . ~ E x t r e r n e

~ Touchi
"-Lt I ~ ~ J u n c t i o n area ~ points

Figure 1. Illustrations of run graph representation of raster image.
As shown in Figure 1, several cases of run graph representation for raster

images are illustrated. A run has a direction, which can be either horizontal or
vertical, It is a maximal sequence of black pixels in its direction. Hence, a run can be
defined using the following quadruplet (quaternion)

R = {d, C,r, bd, e~t}, b,t < e,t
where d is referred to as the direction of the run, which can be either 0 for

horizontal or 1 for vertical, c,r is referred to as the orthogonal coordinate, which is
the coordinate of the run in the direction orthogonal to the run direction, that is, cd,
is the row number if d is horizontal, or the column number if d is vertical, be is
referred to as the begin (directional) coordinate, which is the coordinate of the first
pixel of the run in the run direction, and ed is referred to as the end (directional)
coordinate, which is the coordinate of the last pixel of the run in the run direction. A
vertical run R1 and a horizontal run R2 are illustrated in Figure 1. A run can also be
expressed by two endpoints, in which case, the direction is inferred from the two
points' coordinates. If their x coordinates are equal, the direction is vertical, if their y
coordinates are equal, the direction is horizontal. However, the above expression is
more efficient to operate in the line extraction procedure.

More definitions is required in order to give the formal definition of run graph.
A subrun is a part of a run. Runs A and B are adjacent if they have the same
direction, the difference of their orthogonal coordinates is 1, and the difference of
their maximal begin coordinates and their minimal end coordinates is less than or
equal to 1. If A and B are adjacent and A's orthogonal coordinate is smaller than
that of B, A is called predecessor of B, and B is called successor of A. A run is
regular is it has only one predecessor and only one successor, otherwise, it is
singular. Two runs are conjugate if they are orthogonal and overlap one and only
one pixel, i.e., they cross. A vertical run is a short run if it is regular and not longer
than all its conjugates. A horizontal run is a short run if it is regular and shorter than
all its conjugates.

An edge area consists of a maximal sequence of adjacent short runs in the same
direction. An extreme area consists of only one run that has no adjacent run on one
side. A junction area consists of a maximal sequence of adjacent vertical
runs/subruns of pixels belonging neither to vertical nor to horizontal short runs.
Monagan and Roosli (1993) introduce the concept of touching point, which does not
actually cover any pixel point in the image. A touching point is formed between two
adjacent runs if they do not overlap in their direction, or between two orthogonal
runs if they do not overlap but touch each other end to end, as shown in Figure 1.
However, this definition is contradictory to the definition of edge area, since two

234

touching and adjacent runs are parts of an edge area. Removing this definition, a run
graph RG can be formally defined as follows.

RG = <V; E>,

where V is a set of nodes (vertices), which are either junction areas or extreme
areas, and E is a set of edges, which are edge areas that linking between nodes.

According to Boatto et al. (1992), the procedure of constructing a run graph of
an image is as ~bllows. The first step is to build both horizontal and vertical simple
run graphs, which consists of only horizontal runs and vertical runs, receptively.
Second, edges are built as sets of adjacent regular short runs. The remaining pieces
of the image, encoded as lists of vertical runs and subruns, are the node areas.

The line extraction procedure takes as input such a run graph. The shape of each
node is then refined by a heuristic procedure (runs splitting) that attempts to
minimize the area of the node and to maximize the lengths of the connected edges.
The midpoints of the short runs in the edge areas are taken as the skeleton points,
which further undergo a polygonalization procedure to produce final polylines (or
bars). As can be seen, the line extraction is efficient due to working on the semi-
vector run graph representation.

However, the preprocessing, the run graph construction also takes time, which
visits each black pixel on the image at least once. This means, the complexity of the
run graph based vectorization is quadric to the image resolution. Disadvantages of
the method also include inaccurate intersection points due to coarse locations of
junction areas, false (undesirable) junction areas yielded when the run direction
changes, or at noise points on uneven edges. So it is not appropriate for curve (arc)
representation, i.e., vectorization of arc images.

5 Mesh Pattern Based Methods
Mesh patterns are first introduced by Lin et al. (1985) to detect characteristic

patterns in diagrams, e.g., logic connection diagrams. A connection diagram
understanding system is then developed based on this method. The basic idea is to
divide the entire image using certain meshes and the characteristic patterns are
detected by only checking the distribution of the black pixels on the border of each
unit mesh. A control map is then made for the image using these patterns. Finally,
the extraction of long straight line segments are performed by analyzing the control
map. Figure 2 shows the principle of the mesh pattern based line detection method.
In Figure 2(a), the image is divided into square meshes, which are defined by an
equal proper mesh size, n. Each unit mesh is analyzed according to the pixels on the
one pixel wide border only. It is then labeled according to its characteristic pattern
identified to a known one in the pattern database. The image is then represented by a
control map, in which each unit mesh in the original image is replaced with its
characteristic pattern label. In Figure 2(b), the central part of the image in Figure
2(a) is represented by a control map consisting of two meshes, whose labels are "K"
and 'T', respectively. The lines are recovered and tracked from mesh to mesh in the
control map by analyzing the characteristic patterns of the meshes, as shown in
Figure 2(c).

235

1 t :::::::::::::::::::::::::::::::::::

(a)

,) T - -

"22~12Z-}

(b)

V--

it
'i/

(c)

-ii
j l
~ z

Figure 2. Illustration of mesh pattern based line extraction method. (a) image and
meshes. (b) mesh pattern labels and the control map of the two central meshes of the
image. (c) Lines extracted by analyzing the control map.

In their characteristic pattern database, Lin et at. (1985) have defined 51 known
characteristic patterns and give each of them an identification label. The other
unknown complicated patterns are labeled with question marks (?). Such areas are
further processed by a more complex detailed processing procedure during the
control map analysis. This procedure scans every pixel in these areas and every black
pixel is labeled as being a line pixel or a feature point accordingly.

Vaxivere and Tombre (1992, 1995) extend the mesh pattern based method for
mechanical engineering drawings analysis and recognition. They use dynamic
meshes. Complicated (question labeled) meshes are further split into several smaller
but known mesh patterns, whose shape may not be squares. Their vectorization result
is a data structure describing the image as segments of different types (e.g., thick
line, thin line, and contour of black btob) and junctions between these segments.

The mesh pattern based line detection methods are fast due to sparse pixel
access. Since only the pixels on the mesh border are visited, its time complexity is
linear to one side of the image, i.e., linear to the image resolution. The access ratio,
which is the ratio of the number of accessed pixels to the total number pixels in the
image, is about 2In, if all meshes are labeled with known labels. However, if no extra
memory is used for borders of neighbor meshes, each accessed pixel may be accessed
twice since it is on the border of two neighbor meshes. Anyway, as claimed by Lin et
al. (1985), the access ratio, is about 2/15 to 3/15, when n is 16 pixels. The access
time increases as the number of question labeled meshes increases. Lin et al. (1985)
also claimed that an optimum mesh size is just a little larger than the maximum line
width in the image, in which case, the processing time is about 55% of the
processing time of the complete application of the detailed processing procedure to
the entire image.

However, the mesh size is hard to control. Big mesh size introduces more
question labeled meshes, which requires much more processing time. Small mesh
size increases the access ratio and may also make the line extraction difficult.
Moreover, it is not suitable for detection of more complex line patterns, e.g., arcs and
discontinuous lines (e.g., dashed and dash-dotted lines). As claimed by Lin et al.
(1985), the proper mesh size, n, should be larger than the maximum width of the line
segments but smaller than the minimum interspace between two line segments on
the image. In this case, in the areas where only long straight line segments exist,
each side of a unit mesh border intersects mostly one line segment of the image.

236

Moreover, n should be smaller than the smallest (shortest) line segment of the image,
so that the background area judgment can be simply performed on the control map
by detecting the characteristic patterns labeled with blank labels. This excludes the
dot segments, whose lengths can be as small as their widths, or even shorter). These
dot segments may be missed during line tracking. It may obtain good performance to
apply the method to sparse, straight, and long lines.

The nature of investigating only the borders of meshes may link lines with gaps
that are shorter than the mesh size. This may be a big advantage in some cases but a
big disadvantage in others, since its better to fill the gaps of a broken line due to
noise but gaps of dashed lines should be left unattended.

6 Sparse Pixel Based Methods
Orthogonal Zig-Zag (OZZ) is a novel vectorization algorithm developed by Dori

et al. (Chai and Dori 1992, Dori et al. 1993). Like the mesh sampling (Lin et al.
1985), OZZ samples the image sparsely. The idea of OZZ is as follows. A horizontal
scan line, which moves down 10 pixels each time, goes from left to right of the
image. When it encounters a black pixel, it enters in the area and an OZZ procedure
begins. It goes ahead until a white pixel is encountered (i.e., the light hits the edge of
the area) or the traveling length within the black area (which is referred to as a run)
exceeds a predefined threshold. If it hits the edge of the area, the midpoint of the run
is recorded, it turns orthogonatly within the black area, and the OZZ procedure is
continued, as shown in the slant case of Figure 3. If the run exceeds a predefined
threshold, e.g., 30 pixels (Chai and Dori 1992), it stops, two new lights are emitted
from the stop orthogonally, one to left and the other to right. When they hit the edges
of the black area, a run is formed by joining the two lights' traces together. The
midpoint of the joint run is recorded and a new light that is orthogonal to the joint
run is emitted from the midpoint, The OZZ procedure is continued from this newly
emitted light, as shown in the horizontal case of Figure 3. After the OZZ procedure
hits the end of the area, another OZZ procedure is performed by emitting a light
orthogonal to the scan line from the point where the scan line hits the area outside
for the first time, if a slant area is visited, as shown in the slant case of Figure 3.
These midpoints are followed during the light tracking and used as the medial axis
points of the bar image. They are further processed by the polygonalization, so that
only bars are yielded by breaking the point chain into bars where necessary.

After the horizontal pass is finished, a vertical pass is performed similarly to the
horizontal pass. In the vertical pass, the vertical scan line goes from top down every
10 pixels. When the scan line hits the edge of a black area, the OZZ procedure
begins. After the vertical pass is over, the combination of bars found in the two
passes are performed, so that overlapped bars are omitted.

OZZ is time-efficient due to the sparse sampling of the image. As shown in
Figure 3, the number of pixels visited by OZZ is linear to sum of the image width
and height. Hence, it is linear to the image resolution. However, it is also noise-
sensitive. Moreover, it is designed to yield bars only. Hence, curve images are
vectorized to a set of bars overlapping each other at their ends. This is shown in
Figure 6(c). Therefore, it does not perform well in vectorizing arc images.

237

sc n "qlh
~nco..!er~ / ~ ~ \ /
blackpixel / . , ~ Orthogonalruns &
here O r t h o g o n a l l) ~ their midpoints

zig-zag here
Figure 3. The principle of Orthogonai Zig-Zag (O Z Z) vectorization algorithm.

Inspired by the OZZ idea, Liu and Dori (1996) developed the sparse pixel
vectorization (SPV) algorithm. SPV improves the OZZ method in the following
three aspects. (1) The general tracking procedure starts from a reliable starting
medial axis point found by a special procedure for each black area. (2) A general
tracking procedure is used to handle all three cases of OZZ, i.e., horizontal, vertical,
and slant. Therefore, only one pass of the scanning is needed and combination of the
two passes is avoided. It is faster than OZZ. (3) Junction recovery procedure is
introduced wherever a junction is encountered during line tracking.

2o start the SPV algorithm, a reliable starting medial axis point is found first,
e.g., P3 in Figure 4, which is approximately middle points of both the horizontal and
vertical runs passing it. The lengths of both the horizontal and vertical runs are
known at the first medial axis point P3. If the horizontal run is longer than the
vertical run, the bar's inclination is more horizontal than it is vertical (i.e., its slant
is less than 45°), in which case the length direction is set as horizontal, otherwise the
length direction is defined to be vertical. The width direction is defined to be
orthogonal to the length direction. If the length direction is horizontal, the tracking
is done first to the right, then to the left, and if the length direction is vertical, the
tracking is done first downwards, then upwards.

1. The tracking step ~- - - - - - - - 4. Track in the l ' . The tracking step stops
• . . p~:l~ '~. o,,,,osite direction here when exceeds max stops here wnen . . . ~::* t ev i

• ~ii ~.'. .~o track step. encounters w h , t e . ~ ~ . ~ . . ~ ; ~ , J

~ U ~ 2 . Width R.ns ~ ~ :
I Legend I e ~ " Medial Points

l Width Run ' I ~ . 3. ~ ;
I Medial Axis P°int "1 ~ - - - - - w b ~ ~

continuity condition I Medial Axis " ' ' " ". I (a) " (b)

Figure 4. Illustrations of the general procedure of Sparse Pixel Tracking. (a) A vertical
tracking case. (b) A horizontal tracking case.

As Figure 4(a) shows, going from the first medial axis point P3 in the tracking
direction, which is vertical, we begin the main Sparse Pixel Tracking procedure for
this area: To start the tracking cycle, we take a tracking step from the last medial
axis point and reach point P4. From P~ we make two opposite directed width runs,
from which we get the (undirected) width run and its middle run point P5 that serves
as the new medial axis point. This is the end of tracking this cycle. We repeat these
tracking cycles while recording and monitoring the medial axis points and the width
run lengths, as long as all of the following lbur continuation conditions are satisfied.

238

(1) The difference among the width runs is below some threshold.
(2) The medial axis point is not in an area occupied by another detected vector.
(3) The pixel visiting direction is the same as that of the previous tracking cycle.
(4) The length of the tracking step is greater than zero.

(a) (d) (b) (c)

(f) (g) 0a) (e) (i)
Figure 5 Demonstrat ion of the Junction Recovery Procedure. (a)-(d) Cross case. (e)-(i)
Corner case.

J

I ~ I /

1,6,0 ~

i I L - , ,I . / -I l ' l (Z , ~ ,

(a) (b)

160 [i -4

(c) (d)
Figure 6. Comparison of HT, OZZ, and SPV results. (a) Original image. (b) I-IT based
vectorization. (e) OZZ veetorization. (d) SPV.

When one or more of the first three continuation conditions is violated, the
Sparse Pixel Tracking procedure pauses and a Junction Recovery Process starts using
tl'e Junction Recovery Procedure, as exemplified by a cross and a corner in Figure 5.
Junction recovery is an iterative procedure consisting of three steps: (1) retreating to
the last medial axis point; (2) adjusting the tracking step length by halfsizing the
length of the current tracking step; and (3) testing the conditions at the new position.
If the test fails, i.e., the new medial axis point also violates one of the above
conditions, a new iteration is reapplied with the tracking step halfsized again. The
iterations halt when the tracking step becomes zero, as in the fourth condition. If at

239

the new medial axis ,~oint all the conditions are met again, then we continue the
general tracking procedure, using the normal tracking step from the new medial axis
point. By so doing, the procedure may overcome some uneven area, where the width
runs are significantly different, as demonstrated in Figure 5(a-d). If the tracking step
length becomes zero, the tracking stops at the last medial axis point, as in the case of
a corner, shown in Figure 5(e-i).

Figure 6(d) has shown the SPV improvement to the OZZ algorithm and the HT
base method. SPV has been successfully used for line detection by Yoo et al. (1998)
and evaluated by Liu and Dori (1997) as time ell]cient and shape preservative.

7 Polygonalization and Line Width Determination
The result of the line tracking procedure is a chain of points (or polyline) that

are on the approximate medial axis of the black area. Although it can also be
regarded as a vector representation of this black area, some intermediate points are
redundant because they are (approximately) on the straight line segments formed by
their neighbors. These points should be removed from the chain list in order to give
the most concise vector representation of this black area, that is, to use the polyline
with the fewest edges (or vertices) to approximate the original one while maintaining
the original shape well. This is done by a procedure called polygonal approximation.
Most vectorization methods apply the polygonalization procedure to the tracked
coarse polyline. To preserve the original shape well, a value denoted by e is
predefined as a parameter to decide which points should be removed and therefore to
constraint the precision of the resulting polyline. The smaller the value, the more
vertices but the more precise the edges. Usually e is set to be about 1 pixet to keep
the original shape to the most extent in the coarse vectorization. But in the situation
of polygonal approximation to engineering drawing lines, ~ can be set up to half of
the line width.

It is usually done by finding as few as possible critical points from the point
chain, such that the distances of the non-critical points between every two nearest
critical points to the line joined by these two critical points are less than ~. So the
criticality of a point is determined by its distance to the line formed from its two
neighbor critical points on both sides. But critical points can not be available in
advance. The determination of critical points is the main procedure of
potygonalization.

Various polygonalization algorithms are also developed, which can be classified
into two groups. The first class of methods, e.g., those of Montanari (1970) and
Hung and Kasvand (1983), use a global way to examine the criticality of points. The
second class of methods, e.g., those of Sklansky and Gonzalez (1980) and Jimenez
and Navalon (1982), use local optimization, that is, the polygonalization is done by
going ahead from a new critical point (one endpoint of the chain is a critical point
for initialization) each time and finding as many as possible intermediate non-
critical points before the next critical point is found. Among the above four
polygonalization algorithms, the one of Sklansky and Gonzalez (1980) is suitable for
all applications. Although it cannot guarantee the minimum number of critical

240

points due to one-pass local optimization, it is very time efficient and the criticality
of the remaining points is guaranteed. Moreover, the algorithm is theoretically sound
very much and quite simple to implement. In general, the time complexity of this
method is linear to the number of the original vertices. This is confirmed by
experiments of Dunham (1986), who also shows that the number of critical points
left are also minimum among the nine algorithms tested.

After the fine polyline is determined, the line width can be calculated from the
average of the width at each intermediate points of the polyline. The procedure can
be applied to all groups of vectorization methods. If the width is not recorded, the
original image should be referred so that the width at these points can be obtained.

8 Summary
Comparing the vectorization methods discussed in this paper, we list some

characteristics of them in Table 1. Good methods should preserve the shape
information, which includes line width, line geometry, and intersection junction, as
much as possible so that the post processing may have a good basis to start.
Moreover, it should be fast enough for practical use in real life systems.
Table 1. Characteristic corn mrison of the vectorization methods.
Method

HT
Iterative
thinn!n~
Contour
Run-
graph
Mesh
OZZ
SPV

Subprocess 2ore- 3eometrN
~equence* Jlexity tuality
FIT, t :luadric ?oor
5, t zubic ~igh

~dge detection, tuadric Poor
"un-graph luadric ?oor
Construction, t
rs while t inear Poor

while t inear Poor
while t inear Good

*s means medial axis points sampling and

Reference

Width function Image
:emain :ecovery constraints
No Yes sparse, straight
No 3/0 clean, thin

Yes 3/0 straight
Yes 3/0 straight

Yes Yes sparse, long
Yes Yes straight
Yes (es

~,pplications
:xamples
Dori [5]
Kasturi et al, [11]

101
goatto et al. [1]

15][241125]
Dori et aL [2][4]
-17][26]

t means line tracking.

Boatto L e t al. (1992) An Interpretation System for Land Register Maps. IEEE
Computer 25(7):25-32

[2] Chai I, Dori D (1992) OrthogonaI Zig-Zag: An Efficient Method for Extracting
Lines from Engineering Drawings. In: Visual Form, eds. Arcelli C, Cordella LP,
Sanniti di Baja G, Plenum Press, New York London, pp 127-136

[3] Di Zenzo S and Morelli A (1989) A useful image representation. In: Proc of 5th
Int. Conf. on Image Analysis and Processing, Singapore, pp 170-178.

[4] Dori D, Liang Y, Dowell J, I. Chai (1993) Spare Pixel Recognition of Primitives
in Engineering Drawings. Machine Vision and Applications 6:79-82

[5] Dori D (1997) Orthogonal Zig-Zag: an Algorithm for Vectorizing Engineering
Drawings Compared with Hough Transform. Advances in Engineering Software
28(1): 11-24

[6] Dunham JG (1986) Optimum uniform piecewise linear approximation of planar
curves. IEEE PAMI 8(1):67-75

241

[7] Hough PVC (1962) A method and means for recognizing complex patterns,
USA Patent 3,096,654, 1962.

[8] Hung SHY and Kasvand T (1983) Critical points on a perfectly 8- or perfectly 6-
connected thin binary line. Pattern Recognition 16:297-284.

[9] Jaisimha MY et at. (1993) A Methodology for the Characterization of the
Performance of Thinning Algorithms. In: Proc. of2nd ICDAR, pp 282-286

[10]Jimenez J and Navalon JL (1982) Some Experiments in Image Vectorization.
IBM J. Res. Develop 26:724-734

[l l] Kasturi R et al. (1990) A System for Interpretation of Line Drawings. IEEE
PAMI 12(10):978-992

[12]Lain L, Lee SW, and Suen CY (1992) Thinning methodologies - A
comprehensive survey. IEEE PAMI: 14(9):869-887.

[13]Lam L, Suen CY (1993) Evaluation of Thinning Algorithms from an OCR
Viewpoint. In: Proc. of2nd ICDAR, Tsukuba, Japan, pp 287-290

[14]Lee Se t al. (1991) Performance Evaluation of Skeletonization Algorithms for
Document Image Processing. In: Proc. of Ist ICDAR, France, pp 260-271

[t5] Lin X et al. (1985) Efficient Diagram Understanding with Characteristic Pattern
Detection. Computer Vision, Graphics and Image Processing 30:84-106

[16] Liu W e t at. (1995) Object Recognition in Engineering Drawings Using Planar
Indexing. In: Proc. of GREC'95, Penn. State Univ., USA, pp 53-61

[17]Liu W, Dori D (1996) Sparse Pixel Tracking: A Fast Vectorization Algorithm
Applied to Engineering Drawings. In: Proc. 13th ICPR, Vienna, Austria,
Volume III (Robotics and Applications, pp 808-811

[18] Liu W, Dori D (t997) A Protocol for Performance Evaluation of Line Detection
Algorithms. Machine Vision Applications 9(5/6):240-250

[19] Monagan G and Roosli M (1993) Appropriate Base Representation Using a Run
Graph. In: Proc. of2nd ICDAR, Tsukuba, Japan, 1993, pp 623-626

[20] Montanari U (1970) A note on the minimal length polygonal approximation to a
digitized contour. CACM 13(1):41-47.

[21] Sklansky J and Gonzalez V (1980) Fast Polygonal Approximation of Digitized
Curves. Pattern Recognition 12:327-331

[22] Smith RW (t987) Computer Processing of Line Images: A Survey. Pattern
Recognition 20(1) :7 - t5

[23]Tamura H (1978) A Comparison of Line Thinning Algorithms from Digital
Geometry Viewpoint. In: Proc. of4th ICPR, Kyoto, Japan, pp 715-719

[24]Vaxiviere P and Tombre K (1992) Cellestin: CAD Conversion of Mechanical
Drawings. IEEE Computer 25(5): 46-54

[25]Vaxiviere P and Tombre K (1995) Subsampling: A Structural Approach to
Technical Document Vectorization. In: Shape, Structure and Pattern
Recognition, eds. Dori D and Bruckstein A, World Scientific, 1995, pp 323-332

[26] Yoo J-Y et al. (1998) Information Extraction from a Skewed Form Document in
the Presence of Crossing Characters. In: Graphics Recognition--Algorithms and
Systems, eds. K. Tombre and A. Chhabra, Lecture Notes in Computer Science,
Vol. 1389, pp139-148, Springer, April, 1998

