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Abstract. Structural indexing is a potential approach to efficient classifica- 
tion and retrieval of image patterns with respect to a very large number of 
models. Essential problems caused by mapping image features to discrete indi- 
ces are that the indexing is sensitive to noise, scales of observation, and local 
shape deformations, and that a priori knowledge or feature distributions of cor- 
rupted instances are not available for each class when a large number of 
training data are not presented. To cope with these problems, shape feature 
generation techniques are incorporated into structural indexing. The feature 
transformation rules obtained by an analysis of some particular types of shape 
deformations are exploited to generate features that can be extracted from de- 
formed patterns. The generated features are used in model database 
organization and classification. Experimental trials with a large number of 
sample data show that the shape feature generation significantly improves the 
classification accuracy and efficiency. 

1. Introduction 

The needs for shape classification with a large number of models have become practi- 
cal as pattern retrieval from image database has come up as an important application 
of image media technologies. In most of model-based methods for image pattern clas- 
sification and recognition, independent data structures are considered for each model, 
but the efficiency of  classification is drastically degraded when we deal with a large 
number of models, for instance, several hundreds or thousands. Structural indexing 
[1---4] is a potential approach to resolving this difficulty. This technique is based on 
the idea of distributing features associated with model identifiers over a large data 
structure prepared for a model set, along with classification by voting for models with 
reference to the extracted features. An example of such data structures is a large table 
where a shape feature has a correspondence to a table address and the table item 
stores a list of model identifiers with the particular shape feature corresponding to the 
table address. For complex shapes, the correct model is not necessarily selected as the 
top choice obtained by voting, and some other sophisticated algorithms need to be 
applied to the reduced sets of model candidates. Therefore, required properties for 
structural indexing are that the correct model is guaranteed to be included in the 
model candidate set composed of a few to 10 percent of the whole model set, and that 
the time complexity can be ignored compared with sophisticated algorithms. If these 
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requirements are satisfied, classification can be sped up by several tens times without 
degrading classification accuracy. Furthermore, these two properties are also essential 
in achieving adequate performance and efficiency for the application to retrieval from 
large image pattern databases. 

We often encounter a situation where only one sample pattern is available for 
each class in image pattern database applications. Instance patterns are subject to 
noises and local shape deformations, and therefore, we need an efficient and effective 
way for searching a model pattern for the inputted pattern without a priori knowledge 
and parameter distributions of corrupted instances. In particular, structural features are, 
in general, are sensitive to noises and local shape deformations, and their transforma- 
tions are intractable and often catastrophic in that the original, global structures are 
not preserved. We now need to address the following essential problems of the struc- 
tural indexing approach: (1) How can the transformations or distributions of features 
be modeled when only one sample pattern is available for each class? (2) How can the 
robustness of structural indexing be improved against noises and local shape deforma- 
tions? These problems need to be addressed adequately so that the structural indexing 
approach can be useful and effective in practice. 

To address these problems, Stein and Medioni [2] extract structural features from 
several versions of polygonal approximations of the shape contour with a variety of 
error tolerances for approximations. Furthermore, Del Bimbo and Pala [4] proposed a 
method integrating the scale-space method into the structural indexing approach, con- 
structing hierarchical data structures taking noises and local deformations into 
consideration based on structural feature descriptions from each scale. However, there 
are some technical questions about the computational complexity and stability of this 
approach, because the curves are smoothed with a variety of scales and correspon- 
dences of inflection points need to be found among difference scales. Therefore, there 
have been few effective, efficient approaches to the structural indexing that ade- 
quately address the above-mentioned problems. 

In this paper, an efficient, effective algorithm along with data structures is pre- 
sented for indexing and classification of closed contours based on structural features 
in terms of convex/concave parts and quantized directional features along contours. In 
particular, shape feature generation techniques are incorporated into structural index- 
ing to improve the accuracy and robustness of shape classification against noises and 
local shape transformations. An analysis of the feature transformations is carded out 
for some particular types of shape deformations, leading to feature generation rules 
composed of a small number of distinct cases. The rules are exploited to generate 
features that can be extracted from deformed patterns caused by noises and local 
shape deformations. In both processes of model database organization and classifica- 
tion, the generated features by the transformation rules are used for structural 
indexing and voting, as well as the features actually extracted from contours. The 
effectiveness of the proposed method is demonstrated by experimental trials with a 
large number of sample data. Contours contain all information about objects and pat- 
terns, and therefore, there should be a number of applications ranging widely: the 
recognition of isolated objects and symbol/character patterns, the retrieval from very 
large databases of image patterns, and the selection of models and image transforma- 
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Fig. 1. (a) a closed contour with a polygonal approximation, (b) quantized-directional codes 
when N=4, (c) sub-segments when N=4, (d) segments when N=4. 

tion parameters for model-based image coding for bi-level images along with very 
large databases of image pattern models. 

This paper is organized as follows: In Section 2, a structural representation of 
curves by quasi-convex/concave features along with quantized-directional features [5] 
is outlined. In Section 3, the structural indexing is described along with the transfor- 
mation rules of structural features to generate features which can be extracted from 
deformed patterns caused by noises and local shape deformations. In Section 4, the 
proposed method is validated by systematically designed experiments with a large 
number of testing data. Section 5 concludes this paper. 

2. Structural Representation of Closed Contours 

The structural representation of closed contours [5] is outlined in this section, based 
on quasi-convex/concave structures along contours incorporating 2N quantized- 
directional features ( N is a natural number). As shown in Fig. la, the closed contour 
is first approximated by a polygon. On a 2-D plane, we introduce N -axes together 
with 2N quantized-direction codes. For instance, when N = 4 ,  eight quantized- 
directions are defined along with the four axes as shown in Fig. lb. Based on these 
N-axes together with 2N quantized-direction codes, the analysis is carried out 

hierarchically. 
A curve is decomposed into sub-segments at extremal points along each of the 

N-axes.  For adjacent sub-segments a and b, we write a concatenation of sub- 

segments a and b as a j,k > b.  The arrow "-->" means that the sub-segment a is 
concatenated to b so that we turn counterclockwise when traversing them from a to b, 
and " j ,  k '" denotes the direction codes of convexity formed by a and b. 

Example 1: Fig. lc illustrates the decomposition of a contour shown in Fig. la 
into sub-segments when N = 4.  We obtain the following concatenations for these 
sub-segments. 

L 3,3 >M,K 2'2 )L,J ! ' ! ) K , I  0,0 >j, H 7._~__>I,H 3,5 )G, 

F 1,1 >G, E O...~_.+F,D 7,7 >E,C 6,6 >D,B 5,5 >C,A 3,4 )B,A 7,7 )M 
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By linking local features around joints of adjacent sub-segments, some sequences 
of the following form can be constructed: 

a0 j(1,O),j(1,1) >a 1 j (2 ,0) , j (2 ,1)  > . . . .  j(n,O),j(n,l) >an. ( 1 )  

A part of the contour corresponding to a sequence of this form is called a segment. 
Furthermore, the starting point of the segment is defined as the end point of a o that is 

not the joint with a I , and the ending point is as the end point of a ,  that is not the 

joint with an_ 1 . When the part of the contour corresponding to the segment is trav- 

ersed from its starting point to its ending point, one turns counterclockwise around 
any joints of sub-segments. 

A segment is characterized by a pair of integers (r,d), characteristic numbers, 
representing the degree of rotation and the direction of the segment: 

n n -1  

r =  2 {(j(i ,1)-  j(i,O))%(2N)}+ Z {(j(i + 1,0)- j(i,1))%(2N)}+ 2 
i=1 i=1 (2) 

d = :(1,0) 

where a%b (b > O, 0 < a%b < b) is a remainder when a is divided by b. Based on the 

coordinate system defined by the bounding box of the contour (the upright rectangle 
just enclosing the shape) such that its center is located at (05,05) and the length of its 

longer side is 1, each segment is associated with eight parameters describing its size 

and position: location of its starting point (xs.y s), location of its ending point 

(xe.yE), location of the center (xc, y c) and size (W,H) of its bounding box. Fur- 

thermore, in the structural indexing and voting processes, these eight parameters are 
quantized into L intervals, treated as integers 0 through L -  1. Therefore, features of 
a segment are described by a tuple of ten integers: 

(r,a,lt..xsl, lt..ysJ, lL.xE.],lL.yeJ, lL.xc.l, lI..ycJ, (3) 
Adjacent segments are connected by sharing the first sub-segments or last ones of 

the corresponding sequences. The connection sharing the first sub-segments is called 
h-connection, and the one sharing the last sub-segments is t-connection, denoted by 

sat and sZt, respectively, for two adjacent segments s and t. 

Example 2: The following segments, as shown in Fig. ld, are generated from the 
13 sub-segments shown in Fig. le: 
S l: A 7,7 > M, S 2: A 3,4 > B 5,5 ) C,,,,,,,, 6,6 > D 73 > E 0,0 ) F ..... 1,1 > G, 

S3:H 3,5 >G, S4:H 7,7 >I 0~0 ) j  1.1 ) K  2,2 >L 3,3 >M. 

Their characteristic numbers are given by (2,7), (8,3), (4,3), and (6,7), respectively, 

and the connections for the four segments are denoted as S 1 h_s2_t $3 h $4 LS1 " 

In the sequel, we assume that segments are indexed sequentially so that the inte- 
rior of the pattern or object lies on the left side. 
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3,78,346,897 (3 ,4 ,2 ,3 ,1 ,0 ,3 ,2 ,1 ,1 ,1 )  
(3 ,4 ,2 ,3 ,1 ,0 ,3 ,2 ,1 ,1 ,2 )  89, 298, 485 , 837, 917 

(5, 6, 2, 3, 1, 0, 3, 2, 1, 1, 1) 19, 289, 283,584, 739, 937, 997 

Fig, 2. Model database organization by structural indexing. Each table item stores a model 
identifier list with the segment feature corresponding to the table index. 

3. Structural Indexing with Feature Generation Models 

Features of each segment extracted from the contour curve are described by a tuple of 
10 integers. A large table, as illustrated in Fig. 2, is constructed for a model set by 
assigning a table address to a feature (a tuple of 10 integers) and storing a list of the 
model identifiers with the corresponding feature as a table item. Furthermore, classifi- 
cation of the inputted pattern is carried out by voting for each model on the lists 
stored as the table item at the table address corresponding to each segment feature. 

However, the features are sensitive to noises and local shape deformations, and 
therefore, the correct model does not necessarily receive many votes as expected for 
the ideal case. Furthermore, when only one sample pattern is available for each class, 
techniques of statistical or inductive learning from training data cannot be employed 
for obtaining a priori knowledge and feature distributions of deformed patterns. To 
cope with these problems, we analyze the feature transformations caused by some 
particular types of shape deformations, constructing feature transformation rules. 
Based on the rules, we generate segment features that can be extracted from deformed 
patterns caused by noises and local shape deformations. In both processes of model 
database organization and classification, the generated features by the transformation 
rules are used for structural indexing and voting, as well as the features actually ex- 
tracted from contours. 

The following two types of feature transformations are considered in this work: 
(1) Change of convex/concave structures caused by perturbations along normal 

directions on the contour and scales of observation, along with transformations 
of characteristic numbers (rotation degrees and directions). 

(2) Transformations of characteristic numbers (rotation degrees and directions) 
caused by small rotations. 

We describe these two types of transformation in the rest of this section, along with 
the voting and indexing processes. 
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Fig. 3. (a) part of contous similar to one another in terms of global scales, (b) editing struc- 
tural features by merging segment blocks, (c) transformations of characteristic numbers of 
segments by small rotations. 

3.1. Transformations of Convex/Concave Structures 

The convex/concave structures along the contour are changed by noises and local 
deformations, and also depend on scales of observations. For instance, two parts of 
contours shown in Fig. 3a are similar to one another in terms of global scales, but 
their structural features are different. When N = 4,  the curve shown on left is com- 

posed of three segments connected as S 1 t__S2 hS3 with characteristic numbers (6,6), 

(2,6), and (3,2), whereas the one shown on right is composed of five segments con- 

nected as S( ~ S~-h S~ ± S~ h_S~ with characteristic numbers (6,6), (2,6), (2,2), (2,6), 

and (3,2). To cope with such deformations, structural features on the two contours 

are edited so that their features can become similar to one another. For instance, the 
structural features illustrated in Fig. 3a can be edited by merging the two segment 
blocks {$1,$2,$3} and {S~,S~,S~,S~,S~} to two segments S and S' as shown Fig. 

3b. 
In general, rules can be introduced for generating characteristic numbers from a 

segment block (a set of  consecutive segments). 
RULE 1: From a segment block, a characteristic number is generated according to 

the following rules: 

(1) From a segment block {Sill=l,2 ..... n;Slh-S2±...±S,}, where n is odd, with 

characteristic numbers (rt,di), a characteristic number ( -1)  ri,d n is 
i=1 
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n 

generated if r2i_ 1 - -  r2i + r2i÷l :> 2 for i = 1,2 ..... L n / 23 and - l) r/_> 2. 
i=1 

(2) From a segment block { S i i =  1,2 ..... n ; S l t S 2 h . . . h S n } ,  where n is odd, with 

characteristic numbers (r,. ,d i ) ,  a characteristic number - l )  ~,a 1 is 

n 

generated if r2i_ 1 - r2i + r2i+l >- 2 for i = 1,2,..., L n / 2 3 and - ~) r i > 2 
i = 1  

These rules can be introduced from some mathematical properties mentioned in 
Nishida [5]. In the structural indexing and voting processes, for an integer M speci- 
fying the maximum number of segments to be merged, characteristic numbers are 
generated by applying RULE 1 tO consecutive n segments (n = 1,3 .. . . .  M ). 

3.2. Transformations of Characteristic Numbers by Small Rotations 

The characteristic number ( r ,d)  ( r  > 2 ) can be transformed by rotating the shape. 

Rules can be introduced for generating characteristic numbers by rotating the shape 
slightly (see Fig. 3c). 

RULE 2: By applying a small rotation to the segment, the characteristic number 
(r ,d)  can be transformed into one of the following: (1) (r,d), (2) (r + 1,d - 1), (3) 

( r + l , d ) , ( 4 )  ( r - l , d ) ( r > 3 ) , ( 5 )  ( r - l , d + l )  ( r _ 3 ) .  

For instance, when N = 4  and M =  3, six characteristic numbers (2,7), (8,3), 

(10,3), (4,3), (6,7), and (12,7) are generated from RULE 1 from the four segments 

illustrated in Fig. ld with characteristic numbers (2,7), (8,3), (4,3), and (6,7). Then, 

in total, 28 characteristic numbers (2,7), (3,6), (3,7), (8,3), (9,2), (9,3), (7,3), 

(7,4), (10,3), (11,2), (11,3), (9,3), (9,4), (4,3), (5,2), {5,3), (3,3), (3,4), (6 ,7 ) ,  

(7,6), (7,7), (5,7), (5,81, (12,7), (13,6), (13,7), (11,7), (11,8) are further 

generated by applying RULE 2 to these generated ones. 

3.3. Indexing and Voting 

In the model database organization step by structural indexing, features are generated 
from each model pattern by Rules land 2, and the model identifier is appended to the 
model identifier list in the table item at the address computed from each generated 
feature. For each model i ( i  = 1,2 . . . . .  n ), let c i be the number of features generated 

from segment features by Rules 1 and 2. For instance, c i = 28 for the contour shown 

in Fig. la when N = 4 and M = 3. In the classification and retrieval by voting for 
models, from segment features extracted from the inputted curve, features are gener- 



319 

Table 1, Classification rates of deformed patterns by the proposed algorithm, with 
the level of noise and local shape deformations described by fl, in comparison with an 

adaptation of Stein-Medioni method. 

#models p 

100 0.0---0.5 
0.5--1.0 
1.0--1.5 

1.5--2.0 
500 0.0---0.5 

0.5--1.0 
1.0--1.5 

1.5--2.0 
1000 0.0---0.5 

0.5--1.0 
1.0--1.5 

1.5--2.0 

Proposed Method Stein-Medioini 
Top Top Top Time Top Top Top Time 
1% 4% 10% (ms/ I% 4% 10% (ms/ 

sample) sample) 
96.4 99.7 99.9 17.2 84.1 95.8  97.6 61.7 
93.4 99.3 99.8 79.5 93.8  96.4 
84.1 98.1 99.5 69.8 88.7 92.9 
77.3 96.7 98.9 61.3 84.0 90.0 
98.8 99 .9  100.0 23.0 90.2 95.6  97.5 63.3 
97.7 99 .7  I00.0 86.6 93 .6  96.4 
94.0 99.0 99.9 78.6 89.3 93.8 
90.6 98.1 99.7 70.3 84.4  90.9 
99.0 99 .9  100.0 34.4 90.9 95.8 97.6 72.0 
98.0 99 .7  100.0 87.4 93.9 96.6 
94.7 99.1 99.9 79.6 89.7 94.0 
91.5 98.3 99.7 71.5 84.9  91.1 

ated by Rule 1 and 2. Model identifier lists are retrieved from the tables by using the 
addresses computed from the generated features, and voting is carried out for each 
model on the lists. The inputted pattern is classified by selecting out some models 
according to the descendant order of v i I c i , where v i is the number of votes for 

model i (i = 1,2 ..... n ). For instance, for the inputted pattern presented on left of Fig. 

4, forty-five top choices are shown from the model database composed of 1000 pat- 
terns. 

4. Experiments 

In this section, the proposed algorithm is evaluated statistically in terms of the robust- 
ness against noise and shape deformations, based on the systematically designed, 
controlled experiments with a large number of synthetic data. The experimental de- 
sign is composed of the generation of model patterns and their deformations to be 
used as testing samples. A modification of the midpoint displacement algorithm [6] 
based on fractional Brownian motion is employed together with affine transforma- 
tions for the model pattern generation. From each model pattern, a number of testing 
samples are generated by applying small rotations and random perturbations along the 
contours. One thousand models, as shown in Fig. 4, were created by the model gen- 
eration algorithm. 
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Fig. 4. An input pattern with 45 choices from the model database composed of 1000 patterns. 

The main contribution of this work is to incorporate the shape feature generation 
into the structural indexing for coping with shape deformations and feature transfor- 
mations. Therefore, for comparison, we adapted Stein-Medioni method [2] to the 
model database organization and classification, extracting segment features from sev- 
eral versions of polygonal approximations of the shape contour with a variety of error 
tolerances for approximations. By changing the error tolerance for polygonal ap- 
proximation of contours with Ramer's method from 1% to 10%, with a step of 1%, of 
the widest side of the bounding box of the contour, ten versions of polygonal ap- 
proximations were created for each model pattern and inputted pattern. 

Classification rates are presented for top 1% choices, top 4%choices, and top 10% 
choices, in Table 1. For instance, for 1000 models, correct models are included in top 
40 choices with probability 98.3% for proposed algorithm, when f l~ [15,2.0]. 
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Clearly, significant improvements can be observed for the proposed method in terms 
of classification accuracy and processing time. Therefore, the effectiveness has been 
verified through the experiments for the shape feature generation models described in 
Section 3, along with the shape representation mentioned in Section 2. 

Required properties for structural indexing are that the correct model is guaranteed 
to be included in the model candidate set composed of a few to 10 percent of the 
whole model set, and that the time complexity can be ignored compared with sophis- 
ticated algorithms. The result shows that these requirements are satisfied by the 
proposed method, and that classification can be sped up by several tens times without 
degrading classification accuracy. 

5. Conclusions 

We have presented an efficient, effective algorithm along with data structures for 
indexing of closed contours based on structural features in terms of convex/concave 
parts and quantized directional features along contours. In particular, we have ad- 
dressed the problems of improving the accuracy and robustness of shape classification 
against noise and local shape transformations. To cope with these problems in struc- 
tural indexing, shape feature generation techniques have been incorporated into 
structural indexing. The feature transformation rules obtained by an analysis of some 
particular types of shape deformations are exploited to generate features that can be 
extracted from deformed patterns. The generated features are used in model database 
organization and classification. Experimental trials have shown that the shape feature 
generation significantly improves the classification accuracy and efficiency. 
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