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Abs t rac t .  In this paper an overview of regular adjacency structures 
compatible with topologies in 2 dimensions is given. This means that 
the different discrete structures are investigated on the equivalence of 
topological-connectedness and path-connectedness which is induced by 
the underlying adjacency. 
In the second part a method is suggested how to construct topologies 
on irregular graphs and their compatibility to the adjacency structure 
is analyzed. Examples of basic adjacency structures are given. These 
topologies on regular grids and especially on irregular graphs are appro- 
priate to be applied to image hierarchies in the field of image processing. 

1 I n t r o d u c t i o n  
Is there a topological structure which fits best on a discrete structure? There 
is no homogeneous topology on a grid like 7/2 except the discrete topology, 
because of the result: any local finite Tl-topology is discrete. But there exist 

o homogeneous topological structures like the semi-topological space [8] and 
o non-homogeneous (To minus T1)-topologies like cellular models [2, 5, 6], 

the star-topology[l] and the n dimensional Marcus-Wyse topology[12]. 

Cellular models can be translated into adjacency graphs with an easy construc- 
tion which is demonstrated in Fig. 1. 
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Fig. 1. Cellular models and adjacency neighborhood strudtures. 

In the 4-grid (x l ,x2 )¢2  v2 the 2 dimensional Marcus-Wyse topology T M W  is 
induced by the sets U: 

fU4((xl,x2)) : i f x l + x 2 i s e v e n ,  
UCTMw==- ~ {(Xl,X2)} : else 

where U4((xl, x2)) := {(xl,  x2), (xl - 1, x2), (xl ,  x2 + 1)(xl + 1, x2), (xt ,  x2 - 1)}, 
(xt ,  x2) ~ 7/2 (even and odd can be exchanged). The topology TMW is not homoge- 
neous, but  the property that  path-connectedness is equivalent to topological con- 
neetedness is given in this environment. This is not true for 6 or 8-adjacency [8, 
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10, 12]. The equivalence of path-connectedness and topological connectedness 
of regular graphs will be summarized in theorem 1 in section& In section4 a 
topology on an irregular graph is constructed and the discussion about equiv- 
alence of path-connectedness and topological connectedness will be formulated 
in theorem 2. Digital image-operations and algorithms like image hierarchies are 
intended to be applied on such digital topological structures. 

2 Bas ic  def in i t ions  

In order to investigate regular but also irregular adjacencies a graph structure 
G(V, E) is used where V(G) is the set of vertices and E(G) is the set of edges. 
Instead of the geometicat information the adjacency neighborhood relation be- 
comes important  (Fig. 2). 

Fig. 2. Two ~'topological equivalent" 3-adjacency-pattern. 

On a graph G(V, E) neighborhoods can be formulated in a natural  way: A neigh- 
borhood of a vertex U(v), v e V  is defined as a set of vertices w e V  with w is 
adjacent to v, i.e. U(v) := {weV(G);(w,v)~E}U{v} .  

The vertex v is per definitionem element of the neighborhood itself. The degree 
of vertex deg(v), v e V  is the number of all adjacent vertices w. In a regular 
structure the degree of every vertex v is constant: 

deg(G) := min{deg(v); v ~ V} = max{deg(v); v e V} . 

If the deg(v) > 1, v ~ V, such a neighborhood U(v) is called a star set. 

D e f i n i t i o n  o f  p a t h - c o n n e c t e d  on  t h e  g r a p h  G(V~ E) 
Let W be a subset of V(G). Suppose that  v, w e W. Then W is path-connected, 
if to each v, w e W there exists a path in W that  combines v and w. A path in 
W is a finite sequence of vertices v = vl, v2 , . - . ,  vn = w that  vi E W is a neighbor 
o fv i_ l ,  l < i < n .  

The graph G(V, E) regarded as a neighborhood structure where the basic neigh- 
borhoods are defined by the sets of all adjacencies of a vertex v (v is included) 
gives a topological structure. Because of the loss of the intersection property 
the neighborhood structure cannot be a topology. But there exist topologies 
on graphs like the Marcus-Wyse topology ~-MW on a 4-grid. A n-grid means an 
infinite plane graph G,~(7/2, E)  in the plane with deg(Gn) = n. 

D e f i n i t i o n  o f  t o p o l o g i c a l - c o n n e c t e d  on  t h e  g r a p h  G(V, E) 
Let r be a topology on the graph G(V, E). A subset W of V is connected if there 
are no two disjoint (open) sets O1,02 e ~" existing that  (Or f~ W) U (02 N W) = W. 

In a graph G(V, E)  a topological-connected set should also be path-connected. 
We call the topology ~- on the graph G compatible to the underlying adjacency 
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structure (defined by E) if path-connectedness is equivalent to topological con- 
nectedness [4, 11]. 

3 Regular Adjacency neighborhood structures 
in 2 dimensions  

In the following theorem the connectedness results for n-adjacency neighborhood 
structures in 2 dimensions are summarized. 

T h e o r e m  1 - -  c o n n e c t e d n e s s  on r egu la r  g raphs  in 2 d i m e n s i o n s  
Let G(V, E) be a regular infinite graph in the plane with degree deg(G) = n. 
There exists exactly one type of topology ~- for each case of adjacency n smaller or 
equal 4 that  the topology ~- is compatible to the underlying adjacency neighbor- 
hood structure, i.e. path-conneetedness and topological-connectedness is equiva- 
lent. (One type means homeomorphic spaces, e.g. regarding the different Marcus- 
Wyse topologies resp. odd and even.) 
Especially for the case n = 4 the proof is given in detail in the literature in [4, 
8, 10,12]. For the cases n >__ 0 the same strategy is possible. After the proof we 
will give a list of these topologies. 

S t r u c t u r e  o f  t h e  p r o o f :  
Let v ~ V(G) .  It is to show, if the set U(v) is the smallest neighborhood of v, 
which is an open set in a topology v compatible with n-adjacency, then U(v) 
must be smaller than the star set of v, all the adjacent vertices of v and v in- 
cluded itself: U(v) C { w e V ( G ) ; w  = v or ( w , v ) e E } .  

Let V 1 : =  {V} and V2 := V -  {w e V(G); w = v or (w, v) e E} ,  then both Vt and V2 
are connected but V1UV2 is not. It follows that there is a topological neighborhood 
of v in any topology compatible with n-adjacency which is disjoint with l/~. This 
means that such a set U(v) must be a subset of {w ~ V(G); (w, v )cE}  U {v}. 
In a further step it is to show either U(v) = {v} or U(v) = { w c V ;  (w,v)eE} U 
{v}: I f  U(v) ~ {v} and U(v) ~ { w e V ; ( w , v ) e E }  there exist a w' e Y  with 
(w', v) e E but w' flU(v). This means v and w' can be separated by U(v) e ~- and 
a set U(v ' )c  v, v 'e  V with (v', w ' ) e  E - which is contradicted to v and w' are 
n-adjacent. This set U(v ~) with v' ~/U(v) exists, because we can assume that 
deg(w ~) > 2 and the structure G is infinite. 

It is obvious that  the singleton sets {v}, v e V cannot constitute the neighbor- 
hoods for all v e V, we would obtain the discrete topology. The discrete topology 
is only compatible to 0 and 1 adjacency. It is also obvious that  the star sets 
U(v) = {w e V(G); (w, v) e E} U {v}, v e V cannot be the smallest neighborhoods 
because of the intersection property of a topology. Thus, in every topology com- 
patible with n-adjacency (except the case n = 0 of course) we must have both 
the singleton smallest neighborhoods and the "star-like" neighborhoods. 
How to take the neighborhoods for the case n > 2 we guide along the well known 
case of 4-adjacency and we show an example e.g. for the case n = 5 (Fig. 3). Be- 
low we will give a list of all adjacencies. 
At last for n _~ 4 it would be necessary to proof that  the constructed topology 
is compatible with the underlying n-adjacency. This has been done in detail for 
n = 4 in [12]. 
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In the case of higher adjacencies n > 5 a counter-example fulfills the proof. A 
counterexample for the case n = 5 is shown in Fig. 5. 

Fig. 3. Two versions of a 5-adjacency pattern, "star-sets" are figured out. 

Instead of looking for counter-examples for higher adjacencies we can argue that  
if two graphs G1 and G2 give two adjacency structures and G2 is finer than 
G1, then the absence of a compatible topology for G1 implies the absence of a 
compatible topology for the finer structure G~. 

T h e  d i f fe ren t  n - a d j a c e n c y  s t r u c t u r e s  ( regu la r  g r a p h s  w i t h  degree  n): 

• Adjaceney~ i.e. 0 - A d j a c e n c y  Let V C 7/2. Each vertex v e V is re- 
lated only to itself. There is exactly one topology on V the discrete topology 
which fulfills path-connectedness is equivalent to topological-conneetedness. 

-- ~ Adjacency~ i.e. 1 - A d j a c e n c y  There exists a structure like the dis- 
crete topology which fulfills path-connected is topological-connected. Each pair 
of adjacent vertices {v, w} is in that  topology. To arrange that  the topology 
fulfills the To separation axiom we choose one single point set {v} out of it. Sets 
of vertices of different pairs are disconnected in the sense of the adjacency and 
the topology - this means every set with 3 vertices is disconnected. 

: ~ Adjacency ,  i.e. 2 - A d j a c e n c y  There are topological structures in 2 
dimensions of the type of paths which inherit the 1-dimensional Marcus-Wyse 
topology - path-connectedness is equivalent to topological-connectedness. The 
case of finite paths if they are closed is discussed below. 

Fig. 4. A 3-adjacency-pattern which is topologically (but not geometrically) regular 
and its (irregular) dual graph, a 4 combined with an 8 adjacency pattern, the vertices 
are the regions of the graph. 

Regarding a 3-adjacency pattern 
¢ / . . . . . . . .  (Fig. 4), a regular infinite graph with .~ ~ct jacency,  1.e. o - A o j a c e n c y  . . . . . . . .  

, ~  oegree 6, ~nere exists one ~opomgy on 
the graph which is compatible to the underlying adjacency structure. 

In a 4-adjacency pattern (a 4-grid) the 
~ Ad jacency ,  i.e. 2-dirnensional Marcus- Wyse topol- 4 - A d j a c e n c y  

ogy is the only topology which fulfills 
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path-connected is equivalent to topological-connected. This result compared with 
the 8-adjacency is a often discussed case in literature, thinking of Jordan's curve 
theorem. 

~ _ ~  ~ ~ ~ Adjacencies ,  
i.e. 5~ 6~ 8~ 12-Adjacency 

In n-adjacency structures n _~ 5 path-connectedness is not equivalent to the 
topological connectedness. Often discussed adjacencies are 6, 8 and 12 adjacen- 
cies. 
A counter-example for a 5-adjacency structure G5(V,E) (Fig. 3) is shown in 
Fig. 5, four star sets are chosen U(i) = {wcV; (w, i )~E} U {i), 1 <_ i <_ 4, 
ieV(G5). The set of the 2 points (the intersection of U(2) and U(4)) is 5- 
connected resp. the adjacency relation, 

Fig. 5. A counter-example for the case n = 5. 

but can be separated by the sets U(1) n U(2) e7 and U(3) N U(4) e~- (The inter- 
section points are marked in black). Which means that the set of these 2 points 
is not connected in a topological sense, 

Regular Adjacency neighborhood structures in higher dimensions 
In higher dimensions obviously the n dimensional Marcus-Wyse topology is com- 
patible to the underlying 2n adjacency structure. But in n dimensions there exist 
compatible topologies on higher adjacencies > 2n, which can be seen in the case 
n = 3 adding one edge in the direction of a space-diagonal that each vertex has 
degree 7. 
On adjacency structures where intersections of star sets are sets of single points 
or at least points which are not adjacent there exists a compatible topology. 
(This will be seen in the next section where a topology will be constructed.) 
But on the other side in every dimension there must be a highest number N e lN 
where a compatibility of a topology and a N-adjacency can be shown. If the de- 
gree n is too high there will appear substructures excluded in the 2 dimensional 
c a s e .  

4 A t o p o l o g y  on irregular adjacencies in 2 d imens ions  

Let G(V, E) be an irregular (plane) graph. The graph can be finite or infinite 
(like the dual graph in Fig. 4). A construction for a topology will be given on an 
irregular graph in the plane and the connectedness condition will be discussed. 
The relative topology on an arbitrary subset W C V of the graph G resp. the 
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topology T gives topologies on small sets, also the star sets. On the other hand 
the topology on the whole graph G can be composed in a suitable way by the 
help of these "basic" topologies on the small sub-graphs. 

First we give some examples of such topologies 7 on small graphs (not all unions 
of sets in 7 are mentioned - only basic sets, the whole set itself and the empty 
set 0): 

71 = { { 1 , 2 } , o , { 2 } } ,  

71 = { { 1 , 2 , 3 } , 0 , { 2 , 3 } ,  {3}}, 

71 = {{1,2,3},0,  {2}, {3}}, 
72 = {{1, 2, 3}, O, {2, 1}, {3, 1}, {1}}, 

71 = { {1 ,2 ,3 ,4 ,5 } , 0 ,  {2} , {3} , {4} ,  {5}},  
72 = { { 1 , 2 , 3 , 4 , 5 } , 0 , { 2 , 1 } ,  {3, 1},{4,  1}, {5, 1}, {1}},  

71 = {{1, 2, 3, 4, 5}, 0, {2}, {2, 3, 4}, {4}, {4, 5}}, 
72 = {{1 ,2 ,3 ,4 ,5} ,~ ,{2 ,3 ,4 ,5} ,{3 ,4 ,5} ,{4 ,5} ,{5}} .  

These topologies 71 are constructed by typical star sets with its center assumed 
by 1 e V. The topology 71 of the first, third and fourth set are the Marcus- 
Wyse topology. The topology 71 on the last set uses the I dimensional Marcus- 
Wyse topology: Comparing the topology 71 with v2, w2 is not compatible to the 
underlying adjacency structure, because e.g. vertex 2 and 4 cannot be separated 
by set U,U'e72. 

Topo log i ca l  c o n n e c t e d n e s s  on  c losed  p a t h s  
There exist two types of closed paths Gcyd~(V, E), these with odd vertices and 
even vertices. An example shows the way how to treat getting compatible topolo- 
gies in the even case: 

7 = {{1,2,3,4},0,  {1,2,4}{2}, {2,3,4}, {4}}. 

The 1 dimensional Marcus-Wyse topology again gives the solution. The centers 
of the star sets are 1, 3 ~ V. But in the odd case the construction of a compatible 
topology is more ambitious: 

7 = {{1,2 ,3 ,4 ,5},0 ,  {2, 1,5,4}, {2}, {2,3,4,5}, {4,5},{5}}. 

The centers of the star sets are 1, 3 ,4c  V. Larger closed paths (odd or even) 
can be reached by exchanging vertex 2 with an arbitrary set of odd numbers of 
vertices equipped with the 1 dimensional Marcus-Wyse topology. 
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In the following theorem the construction of a topology is given and it is demon- 
s t rated if the topology is compatible to its graph structure. 

T h e o r e m  2 - -  c o n n e c t e d n e s s  o n  i r r e g u l a r  p l a n a r  g r a p h s  
Let G(V, E) be a general planar graph. There exist topologies ~- on the graph G, 
where the compatibil i ty of path-connectedness and topological-connectedness is 
maintained if the graph exists of vertices v ~ V of degree smaller or equal 4. In 
general a topology ~- on G(V, E) cannot be unique. 

P r o o f  
Let G(V, E) be an irregular plane graph which is finite. The construction of the 
topology ~': 

o First n = 1 we choose one vertex vl~ V. Then we build the star set 
U(Vl) = {w £ Y(a ) ;  (w, Vl) {~ E} U {Vl } £ T. 

o In a second step n = 2 we choose a vertex v2 e V with v2 ¢U(vl) but  adjacent 
to a vertex w e U(vl) and we build the star set U(v2)e v. 
The intersection of U(Vl) and U(v2) is a subgraph where we install a topology 
as mentioned above. Is the intersection a set of one vertex v then {v} is in 
the topology r.  On an intersection of adjacent vertices v, w the above simple 
topology will be installed. In the next steps we take vertices v e V adjacent 
to a vertex w e U(vl)) ,  if there are some left. 

o In n = 3 we take a vertex v3 eV with v.~ ~U(vl) U U(v2) and v3 is adjacent 
to a vertex w e U(vl) U U(v2). 

o In the n step we choose a vertex Vn e V with the condition vn f'(U(vl) U'-. t_J 
U (vn-1) ) and Vn is adjacent to a vertex w e (U (vl ) U . . . U U (vn-1) ). 

o We finish with finite N > 0 steps since G(V, E) is finite. If an infinite graph 
- like the infinite graph in Fig. 4 - is given, a construction condition of G to 
the infinity must  be used. 

The topology v cannot be unique. The topology depends on the start ing point 
as well as the choice of the vertices vn in every step. Remember  at this place 
the Marcus-Wyse topology which is not unique too. There are 2 topologies on 7/ 
(starting with odd or even). In the present case of irregular graphs G, when it 
is a finite structure,  of course, there also must  be a finite number of topologies. 
The condition considering only vertices v e V(G) with deg(v) < 4 is sufficient 
to exclude all bad cases which can appear  disturbing a compatibili ty to the 
constructed v, e.g. the case of the counter-example in Fig. 5. But  it is not a 
necessary condition which can be seen easily in the following Fig.: 

= {{1, 2, 3, - - -, 8, 9}, 0, {2, 3,4}, {4, 5, 6}, {6, 7,8}, {S,9, 2}}. r 

On the graph vertex 1 has deg(1) = 8, but T is compatible to it 's adjacency 
structure. A t ransformation of higher adjacencies into less or equal 4 can be 
proposed in the following. 

T r a n s f o r m a t i o n  o f  h i g h e r  a d j a c e n c i e s  in to  < 4 a d j a c e n c i e s  
Let G(V, E) be a graph in the plane then it is possible to t ransform locally large 
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adjacencies into adjacencies less or equal 4. This will be demonstrated in the 
following drawing: 

Fig. 6. A transformation of a vertex with degree 8. 

A vertex v e V with degree deg(v) = n wilt be extended into a subgraph G~, with 
n vertices and deg(G~) = 3. The vertex v merged into the subgraph G~ can be 
interpreted as a view on the unit in detail - more than one input and output  
interfaces are seen. The edges can be established with infinitesimal length to 
emphasize the character of the unit. 

5 C o n c l u s i o n  
The equivalence of path-connectedness and topological-connectedness is dis- 
cussed in regular adjacency structures in 2 dimensions. Result must be given 
for higher dimensions in future. A topology is given to irregular graphs with a 
condition that  path-conneetedness and topological-connectedness must be equiv- 
alent. 
Digital image-operations and algorithms like image hierarchies can be applied on 
such irregular topological structures. Especially in the dual graph contraction [7] 
an implementation of the algorithm, which builds topologies on irregular graphs, 
is aimed. 
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