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Abstract. Normal mixture models are being increasingly used as a way 
of clustering sets of continuous multivariate data. They provide a proba- 
bilistic (soft) clustering of the data in terms of their fitted posterior prob- 
abilities of membership of the mixture components corresponding to the 
clusters. An outright (hard) clustering can be subsequently obtained by 
assigning each observation to the component to which it has the highest 
fitted posterior probability of belonging. However, outliers in the data 
can affect the estimates of the parameters in the normal component den- 
sities, and hence the implied clustering. A more robust approach is to 
fit mixtures of multivariate t~distributions, which have longer tails than 
the normal components. The expectation-maximization (EM) algorithm 
can be used to fit mixtures of t-distributions by maximum likelihood. 
The application of this model to provide a robust approach to cluster- 
ing is illustrated on a real data set. It is demonstrated how the use of 
t-components provides less extreme estimates of the posterior probabili- 
ties of cluster membership. 

1 I n t r o d u c t i o n  

Finite mixtures of distributions have provided a mathemat ical -based approach to 
the statistical modeling of a wide variety of random phenomena (McLachlan and 
Basford (1988), McLachlan (1999)). Because of their usefulness as an extremely 
flexible method  of modelling, finite mixture models have continued to receive 
increasing at tent ion over the years, both from a practical and theoretical point 
of view. For mult ivariate da ta  of a continuous nature, at tention has focussed 
on the use of mult ivariate  normal  components because of their computat ional  
convenience. They can be easily fitted iteratively by m a x i m u m  likelihood (ML) 
via the expectat ion-maximizat ion (EM) algorithm (Dempster,  Laird, and Rubin 
(1977), McLachlan and Krishnan (1997)), as the iterates on the M-step are given 
in closed form. 

However, for many  applied problems, the tails of the normal distribution 
are often shorter than required. Also, the estimates of the component  means 
and covariance matrices can be affected by observations that  are atypical of the 
components  in the normal  mixture model being fitted. Hence we consider the 
fitting of mixtures of mult ivariate t-distributions. This provides a more robust 
approach to the fitting of normal  mixture models, as observations that  are atypi- 
cal of a component  are given reduced weight in the calculation of its parameters.  
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Also, as the t-distribution provides a longer tailed alternative to the normal dis- 
tribution, it tends to give less extreme estimates of the posterior probabilities of 
component membership. 

One useful application of normal mixture models has been in the impor- 
tant field of cluster analysis. Besides having a sound mathematical basis, this 
approach is not confined to the production of spherical clusters, such as with k- 
means type algorithms that use Euclidean distance rather than the Mahalanobis 
distance metric which allows for within-cluster correlations between the variables 
in the feature vector X .  Moreover, unlike clustering methods defined solely in 
term so of the Mahalanobis distance, the normal mixture-based clustering takes 
into account the normalizing term 1 ~ 1-112 in the estimate of the multivariate 
normal density adopted for the component distribution of X corresponding to 
the ith cluster. This term can make an important contribution in the case of 
disparate group-covariance matrices (McLachlan (1992, Chapter 2)). 

Although even a crude estimate of the within-cluster covariance matrix 2/i of- 
ten suffices for clustering purposes, it can be severely affected by outliers. Hence 
it is highly desirable for methods of cluster analysis to be robust. By robustness, 
it is meant that the method is not affected significantly by small departures from 
the assumed model, such as the presence of outliers. The problem of providing 
protection against outliers in multivariate data is a very difficult problem and 
increases with the difficulty of the dimension of the data (Rocke and Woodruff 
(1997)). The related problem of making clustering algorithms more robust has re- 
ceived much attention recently as, for example, in McLachlan and Basford (1988, 
Chapter 3), De Veaux and Kreiger (1990), Campbell (1994), Dav~ and Krishna- 
puram (1996), Frigui and Krishnapuram (1996), Kharin (1996), and Rousseeuw, 
Kaufman, and Trauwaert (1996), and Zhuang et al. (1996), among others. In the 
past, there have been many attempts at modifying existing methods of cluster 
analysis to provide robust clustering procedures. Some of these have been of a 
rather ad hoc nature. The t-mixture model provides a sound mathematical basis 
for a robust method of clustering. We shall illustrate its usefulness in this context 
by a cluster analysis of a real data set. 

2 Normal  Mixture  Mode l  

We let $1, . - . ,  ~n denote an observed p-dimensional random sample of size n. 
With a normal mixture model-based approach to drawing inferences from these 
data, each data point is assumed to be a realization of the random p-dimensional 
vector X with the g-component normal mixture probability density function 
(p.d.f.), 

g 

= . , ,  (1)  

i = l  

where the mixing proportions rri are nonnegative and sum to one and where 
¢(a~; tti, I/i) denotes the multivariate normal p.d.f, with mean (vector) tt and 
covariance matrix E.  Here ~l, = (~h, . - . ,  ~rg-1, O:r) T, where 0 = (01, . . . ,  0~) T 
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and where Oi contains the elements of Au i and the distinct elements of 27i (i = 
1, . . . ,  g). 

3 M u l t i v a r i a t e  t - D i s t r i b u t i o n  

Consider the multivariate normal p.d.f. ¢(a~; 1*, 27). One way to broaden this 
parametric  family for potential outliers is to adopt the two-component normal 
mixture p.d.f. 

(1 -~ )¢ (~ ;  ~, 27) + ~¢(~; u, c27), (2) 

where c is large and e is small, representing the small proportion of observations 
that  have a relatively large variance. Huber (1964) subsequently considered more 
general forms of contamination of the normal distribution in the development of 
his robust M-estimators of a location parameter,  as discussed further in Section 
7. The normal scale mixture model (2) can be written as 

f ¢(~; ~, 27/,,) all(,,), (a) 

where H is the probability distribution that places mass (1 - e) at the point 
u = 1 and mass e at the point u = 1/c. Suppose we now replace H by the p.d.f. 
of the square root of a chi-squared random variable on its degrees of freedom u; 
that is, by the random variable U distributed as 

V " g a m m a ( l u ,  :tu ), (4) 

where the gamma(a , /3 )  density function f(u; a,/3) is given by 

f(u; a,/3) = (fl%o-1/v(,~)} exp(-/3,,)z(0,~)(,,) ; (a,/3 > 0), 

and the indicator function I(0, oo)(u) = 1 for u > 0 and is zero elsewhere. We 
then obtain the t-distribution with location parameter ~, positive definite inner 
product  matr ix  27, and u degrees of freedom, 

F(U2-~ + ) 127[ -1/2 
f(a:; I*, 27, u)= (5) 

( ~ . ) ~ r ( ~ ) { ~  + a(~, u; 27)/,,}½("+~)' 

where 

a(~, m 27) = (~ - ~ , ) T s - I ( ~  _ ~) 

denotes the Mahalanobis squared distance between a~ and/~  (with 27 as the co- 
variance matrix).  As u tends to infinity, U converges to one with probability one, 
and so X becomes marginally multivariate normal with mean/*  and covariance 
matr ix  27. The family of t-distributions provides a heavy-tailed alternative to 
the normal family with mean i* and covariance matr ix that is equal to a scalar 
multiple of 27 (if u > 2). In the above and sequel, we are using f as a generic 
symbol for a p.d.L 
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4 ML Est imation of Mixtures  of t-Distributions 

We consider now ML estimation for a g-component mixture of t-distributions, 
given by g 

:(~; ~') : E 7ri:(~; I~i' .~i,  1]i), (6) 
i=1 

where now qt = ( T : I , . . . ,  7rg_l, 0 T,  liT) T a n d  !: = (ul, . . . ,  ug) T. The applica- 
tion of the EM algorithm for ML estimation in the case of a single component 
t-distribution has been described in McLachlan and Krishnan (1997, Sections 
2.6 and 5.8). The results there can be extended to cover the present ease of a 
g-component mixture of multivariate t-distributions. 

In the EM-framework, the observed data  ~ 1 , . . - ,  ~n, are augmented by 
Zl, . . . ,  zn, where z j  is the component-label vector defining the component of 
origin of a~j, and zi j  = ( z j ) i  is 1 or zero, according as ~j belongs or does not 
belong to the ith component. In the light of the above characterization of the 
t-distribution, it is convenient to view the observed data augmented by the zj  as 
still being incomplete and introduce into the complete-data vector the additional 
missing data, ul, . . . ,  un, which are defined so that given zij = 1, 

X j  I uj ,  zi j  = 1 ,., N( l~i ,  1~ i /u j ) ,  (7) 

independently for j = 1, . . . ,  n, and 

U s l zij  = 1 .-. gamma(½vi, ½t, i). (8) 

Given Zl, . . . ,  z~, the U1, . . . ,  Un are independently distributed according to 
(8). 

It follows that  on the (k + 1)th iteration of the M-step, the ttl and ~71 are 
updated as 

and 

where 

and where 

?2 n 

. (k+l) v - ,  (k)u(k) "X-"  ~::.k)U!k.) ~ i  = 2..., v i i  ~j ~r j l  z_. ,  ~ ~ 
j = l  j=l 

° L "~i(k+l) ---- ~ 7"(k)u(k){~'ij ij k--3 -- ~}k-F1))(~j _ _  ~$~kTl))T/ T:k) 
j----1 j=l 

(9) 

(10) 

is the current estimate of the posterior probability that  a~j belongs to the ith 
component of the mixture (i = 1, . . . ,  g; j = 1, . . . ,  n). It can be seen that  the 

/~}k+l) and 27} k+l) are effectively chosen by weighted least-squares estimation. 

v}k) + P (11) 4?= + 
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The E-step updates the weights T.(k)U{ k.) while the M-step effectively chooses 

/~}k+l) and ~ k + l )  by weighted least-squares estimation. Thus the updates of the 
parameters are available in closed form if the degrees of freedom vi are specified 
in advance. Otherwise, the updated v} k+l) have to be computed iteratively. The 
process can be speeded up using the multicycle ECM and ECME algorithms (Liu 
and Rubin (1995), McLachlan and Krishnan (1997, Section 5.8)). The MIXFIT 
algorithm of McLachlan et al. (1997) for the fitting of normal mixture models 
has an option for the fitting of mixtures of t-components. 

5 Clustering Applications of t-Mixture Models 

The ML estimation of the component means /*i is robust in the sense that 
observations with large Mahatanobis distances are downweighted. This can be 
clearly seen from the form of the equation (9) for the MLE of/z i. As u~ (or its 
estimate if not specified) decreases, the degree of downweighting of an outlier 
increases. For finite ui as I] ~j ]]-+ ec, its effect on the ith component-location 
parameter estimate goes to zero, whereas its effect on the ith component-scale 
estimate remains bounded but does not vanish. Of course there is always the 
option of manually excluding observations considered to be grossly atypical of 
the bulk of the data, using the minimum covariance determinant criterion; see, 
for example, Hawkins and McLachlan (1997). 

It can be therefore seen that the use of mixtures of t-distributions provides 
a sound statistical basis for formalizing and implementing the somewhat ad hoc 
approaches that have been proposed in the past. It also provides a framework 
for assessing the degree of robustness to be incorporated into the fitting of the 
mixture model through either the specification or the estimation of the degrees 
of freedom v~ in the t-component p.d.f.'s. 

6 Example 

To illustrate the t-mixture model-based approach to clustering, we consider the 
crab data set of Campbell and Mahon (1974) on the genus Leptograpsus, which 
has been analysed further in Ripley (1996). Attention is focussed on the sample 
of n = 100 blue crabs, there being nt -- 50 males and n2 -- 50 females corre- 
sponding to groups G1 and G2 respectively. Each specimen has measurements 
on the width of the frontal lip FL, the rear width RW, and length along the 
midline CL and the maximum width CW of the carapace, and the body depth 
BD in mm. In Fig. 1, we give the scatter plot of the second and third variates 
with their group of origin noted. Hawkins' (1981) simultaneous test for multi- 
variate normality and equal covariance matrices (homoscedasticity) suggests it 
is reasonable to assume that the group-conditional distributions are normal with 
a common covarianee matrix. Consistent with this, it was found that the sample 
linear discriminant function (formed using the known classification of the data) 
misallocates only two observations (from G1). 
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We now cluster these data, ignoring the known classification of the data. 
We first fit a mixture of two normal components with equal covariance matri- 
ces. The implied clusters consist of one cluster containing 31 observations from 
G1 and another containing all 50 observations from G2 plus the remaining 19 
observations from G1. Hence this clustering misallocates 19 observations from 
G1 but no observations from G~. We next fitted a mixture of two t-components 
with common inner product matrix and degrees of freedom. The latter was esti- 
mated along with the other parameters from the data. The inferred value for u 
was ~ = 22.5. This t-mixture model-based solution produces a slightly improved 
outright clustering in that one fewer observation from G1 is misallocated with 
the smaller sized cluster now containing 32 observations from G1 and with the 
larger one containing 18 observations from Gt and all 50 from G2. 

Although the use of the t-mixture model has only slightly improved the 
outright clustering, it does produce a less extreme probabilistic clustering of 
the observations. To demonstrate this point, we have listed the estimates of 
the posterior probabilities of membership of group G1 under both normal and t- 
mixture models for those 19 observations from G1 misclassified under the normal 
mixture model in Table 1. It can be seen that the use of the t-mixture model 
results in observation 14 having an estimated posterior probability of belonging 
to the first component of the mixture (corresponding to group G1) of greater than 
0.5. Hence this observation is no longer misclassified in an outright clustering 
of the data. The remaining 18 observations would still be misetassified, but all 
have increased estimated posterior probabilities of belonging to G1; in particular, 
these estimated probabilities for observations 11, 18, and 26 are much closer to 
the threshold value of 0.5. 

7 Prev i o us  Work on M - E s t i m a t i o n  of C o m p o n e n t s  

A common way in which robust fitting of normal mixture models has been 
undertaken, is by using M-estimates to update the component estimates on the 
M-step of the EM algorithm, as in McLachlan and Basford (1988) and Campbell 

(1994). In this case, the updated component means are/~}k+l) are given by (9), 

but where now the weights u! k) ,~ are defined as 

a(k) (k) (k) (12) ~ = f ( d ~  ) / d ~  , 

where 
IkI,T l )-' = ~,~ j -~ (~j - t,}k))}I/2 

and ¢(s) = - ¢ ( - s )  is Huber's (1964) e-function defined by 

¢ ( s )  = s, I ~ 15  c, 

= sign(s) c, I s l >  c, 

for an appropriate choice of the tuning constant c. 
matrix Z} k+t) can be updated as (10), where u{~ ) ' 3  

(13) 

The ith component-covariance 
is replaced by I¢(d(k)~/d(k)l 2 t ", i j  J .  i j  J " 
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An alternative to Huber's C-function is a redescending C-function, for exam- 
ple, Hampel's (t973) piecewise linear function. However, there can be problems 
in forming the posterior probabilities of component membership, as there is 
the question as to which parametric family to use for the component p.d.f.'s 
(McLachlan and Basford, Section 2.8, 1988). One possibility is to use the form 
of the p.d.L corresponding to the C-function adopted. However, in the case of 
any redescending C-function with finite rejection points, there is no correspond- 
ing p.d.f. In Campbell (1994), the normal p.d.fl was used, while in the related 
univariate work in De Veaux and Kreiger (1990), the t-density with three de- 
grees of freedom was used, with the location and scale component parameters 
estimated by the (weighted) median and mean absolute deviation, respectively. 
It can be therefore seen that the use of mixtures of t-distributions provides a 
sound statistical basis for formalizing and implementing the somewhat ad hoc 
approaches that have been proposed in the past. It also provides a framework 
for assessing the degree of robustness to be incorporated into the fitting of the 
mixture model through the specification or estimation of the degrees of freedom 
~ in the t-component p.d.f.'s. 
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T a b l e  1. Es t ima ted  Poster ior  Probabil i ty of Membership of G1 

Normal  t -Mixture  Normal  t -Mixture  
No. Mixture  ~) = 22.5 No. Mixture  P = 22.5 

1 0.0000 0.0004 11 0.1610 0.3237 
2 0,0000 0.0001 12 0.0042 0.0098 
3 0.0003 0.0010 14 0,4932 0.6359 
4 0.0016 0.0036 15 0.0116 0.0189 
5 0.0007 0.0020 16 0.0002 0.0003 
6 0.0056 0.0093 18 0,1702 0.2971 
7 0.0002 0,0005 19 0.0047 0.0068 
8 0.1450 0.1889 20 0.0733 0.0930 
9 0.0011 0.0022 26 0.4163 0.4643 
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F i g .  1. PloL of third versus second variate for nl = 50 male and n2 = 50 female "blue" 
crabs (o denotes  male  and x female) 


