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Abstract 

This paper reviews various optimum de(:ision rules for l)atter~ recogHition, namely, 
Bayes rule, Chow's rule (optimum error-reject tradeoff), and the recently proposed 
class-selective rejection rule. The last one provides the optimum tradeoff between the 
error rate and the average number of (selected) classes. The usage of each of these 
rules as well as their relationship are discussed. Some common properties to these 
rules are pointed out, e.g. the linear time complexity. 
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1 Introduction 

Classification of an unknown pattern into one of a finite number of known classes is a com- 
mon task for many pattern recognition systems. For such a task, the system performance 
is mainly characterized by its error rate. ltowever, because of noise and other uncertain 
factors inherent in any real system, the error rate can be excessive for some applications, 
such as bank check reading [15]. Recognition with a reject option provides a means to 
reduce the error rate through a rejection mechanism, i.e., withhold making a decision if the 
confidence is not high enough and direct the rejected pattern to an exceptionM handling, 
such as manual inspection. With a reject option, the system performance is characterized 
by the error-reject tradeoff [5, 6, 7]. 

However, for certain applications like computer-aided face identification, a rejection 
would require the operator to compare the rejected pattern with hundreds, if not thou- 
sands, of reference faces [3]. Therefore, a useful system should not make a simple rejection, 
but should provide a (preferably short) list of candidates or classes. For instance, the top- 
n ranking is such a mechanism. In this context, the rejection is class.selective in the 
sense that only the best classes are selected and the remaining classes are rejected. As a 
consequence, the error-reject tradeoff becomes the error-(number-of-classes) tradeoff. 

More generally, classification is usuMly a first step to more sophisticated automatic 
processing, e.g. symbolic reasoning the complexity of which depends strongly on the num- 
ber of classes provided by classification. In such a case, minimizing the number of classes 
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becomes a critical factor for the overall performance of the recognition system. Such con- 
terns have emanated from typical applications in speech and character recognition [25, 
pp. 257-261][4, 1, 28]. In the simplest case, classification actually plays the role of pres- 
election (or preclassification) and is usually carried out by a simple and fast classifier for 
selecting the most promising classes to be examined by a second, more accurate classifier, 
which usually consists in an exhaustive comparison of the input pattern with all selected 
classes. The second classifier can, for instance, be based on tlidden Markov models or 
nearest neighbour rule. Clearly, reducing the number of selected classes fastens the overall 
system. 

Although the optimum error-reject tradeoff has been known for a long time [5], the 
optimum error-(number-of-classes) was discovered only recently [16, 18]. This paper aims 
at presenting some milestones along the way from the basic Bayes rule to the most recent 
results. 

2 O p t i m u m  D e c i s i o n  Rules  - A n  Overv iew 

In statistical pattern recognition, the probability that a given sample or pattern x belongs 
to tile i th class, in a N-class problem, is provided by the posterior probability P ( i / x )  
through the Bayes formula: 

Pi(x) - P ( i / x )  = p(x / i )  ; ~r! ; i = 1, . . ,N  (t) 
r,(x) 

where p(x / i )  is the i th class conditional probability density function (p.d.f.), r~ is the a 
priori probability of observing the i th class, ~/N=I ri = 1, and 

N 

p(x)  = ~ p ( x / j ) . r j  (2) 
j = l  

is the unconditional probability density function (also called mixture density or absolute 
probability density function) [11, 14]. If p(z)  = O, { P ( i / x ) ; i  = 1, .., N} are conventionally 
set to 0 [23]. Otherwise, the posterior probabilities sum up to 1, i.e., 

N 

P ( i l x )  = 1, (3) 
/=1 

for x E X = {x :p(x)  > 0}, which constitutes the main region of interest in this paper. 
The connection between classification ;~nd decision is illustrated in Fig. 1, for a three- 

class problem. In most practical applications, {P( i / x ) ;  i = 1, .., N} are unknown but can 
be estimated from a set of labelled patterns, called training set. Many estimation methods 
exist, e.g. Parzen estimate, nearest neighbour, potential functions, and neural networks 
[1l, 14, 22, 28]. In the following, we assume that { P ( i / x ) ; i  = 1, . . ,N} are known and 
concentrate our discussions on the decision process. 

Section 2.1 presents the B~ves rule. The extension of the Bayes rule to deal with 
rejection is summarised in Section 2.2, and that to deal with class-selective rejection in 
Section 2.3. A synthetic view of these three rules is presented in Table 1. 
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Figure 1: Relation between classification and decision. All possible outcomes of the deci- 
sion process are shown on the right side. 
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(a) (b) (c) 

Figure 2: Three decision types. The empty set @ represents the region over which p(x) = O. 

2.1 B a y e s  R u l e  

Based on the posterior probabilities, the Bayes decision rule assigns to pattern z the class 
that has the highest posterior probability. It is known that this rule is optimal in the sense 
that no other rules can yield a lower error probability e, or error rate, given by 

= fx  risk(z)p(x)dx (4) 

where risk(x) is the (conditional) probability of making a wrong decision, for a given x. 
The (conditional) Bayes risk, i.e., the risk induced by using the Bayes decision rule is: 

riskB,~,(z) = 1 - max {P~(x)} (5) 
~e[~,..,~] 

In the Bayes decision rule, the possible outcomes of the decision process are limited to 
the singletons, i.e., subsets that are formed by exactly one class each. They are {1}, {2}, 
and {3} for a three-class problem. Fig. 2a illustrates the partition of the pattern space 
X into three regions, each of which corresponds to a single class, when the Bayes rule is 
used. 

2.2  C h o w ' s  R u l e  

The Bayes rule was modified by Chow to cope with a reject option [5, 6]. The idea is that 
when a pattern ties on or near a separation plane between two classes, the assignment to 
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one or the other class is merely a guess. In such a case, it may be better to withhold 
making the assignment (decision) and to reject the input pattern. The reject option is 
desirable in those applications where it is more costly to make a wrong decision than 
to withhoht making a decision. With a reject option, the optimality espouses another 
meaning, that of a tradeoff between the error rate and the reject rate (reject probability). 
More specifically, Chow's optinmm rule miuimises the error rate for a given reject rate, 
or vice versa. The rule simply consists in rejecting the pattern if its highest posterior 
probability is lower than some threshold (1 - t), t E [0, 1 - ~]; otherwise, the decision is 
identical to Bayes' one, i.e. choosing the best class. Chow's rule is optimal is the sense 
that for the same reject rate specified by the threshold t, no other rules can yield a lower 
error rate. Interestingly, the outcomes of Chow's rule are also singletons, like in the Bayes 
rule, but augmented by the reject class; see Figs. 1 and 2b. The difference between Chow's 
reject class and the empty set 0 is discussed in [10, 26, 28]. 

For a given value of the threshold t, Chow's rule partitions the pattern space into a 
rejection region X~, shaded in Fig. 2b, and an acceptance region X~, nnshaded. 

The acceptance rate, a(t), is the integral of the absolute p.d.f, p(x) over the acceptance 
region. The reject rate, r(t), is the integral of the same function over the (complementary) 
rejection region. 

= / . .  (6) 
J 2 [  a 

r(t) = Jx[~ p(x)dx (7) 

It follows that 
a(t) + r(t) = 1 (8) 

which means that a pattern is either accepted or rejected. When it is accepted, the decision 
can either be correct or wrong. 

The accuracy or correct recognition rate, c(t), is the expected value of the maximum 
posterior probability, maxleI1,..,N]{P~(x)}, over the acceptance region. 

c(t) = (9) 

The error rate, e(t), is the expected value of the Bayes risk over the acceptance region 

e(t) = .Ix/.(1 - '~l,max, .,t~] {P~(x)})p(x)dx (10) 

Obviously, 

and therefore 

a(t)=c(t)+e(t) (11) 

c(t) + e(t) + r(t) = 1 (12) 

As t increases from 0 to ( 1 -  ~),  the rejection threshold (1 - t )  decreases, and the reject 
rate r(t) decreases whereas the error rate e(t) increases. When t = 1 - ~ ,  the rejection 
threshold (1 t) equals 1 - ~,  and Chow's rule becomes Bayes rule, also called recognition 
at zero rejection level or forced choice. Figure 3 shows a typical error-reject, e(r), tradeoff 
c u r v e .  
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Figure 3: A typical e(r) curve. 

It turns out that it is possible to express the error rate directly as a function of the 
reject rate via the Stieltjes integral [6]. 

f0 t°~e e ( t o . )  = - t .  d r ( t )  ( 1 3 )  

where 'ope' stands for operating. (For an introduction to the Stieltjes integral, see [27].) 
The marvelous feature of the above equation is that it allows the computation of the error 
rate at any level t from r(t) solely and that the latter can be estimated from unlabetled 
patterns, by just counting the rejects. In other words, the error rate at any level can be 
estimated without knowing the true classes of the patterns. For a more detailed discussion, 
see also [13]. In particular, the Bayes error rate is given by 

t.  dr(t) (14) e B ~ y , o  = e ( t o .  = I - - ~ )  = - --o 

2.3 O p t i m u m  C l a s s - S e l e c t l v e  R e j e c t i o n  R u l e  

Recently, the optimum class-selective rejection rule was proposed [16, 18]. It differs from 
Chow's in that the outcomes of the decision process are extended to the power set of the 
set of classes, while excluding the empty set t~. In Chow's rule, a pattern is rejected if its 
highest posterior probability is lower than a given threshold, disregarding the probability 
distribution of the remaining classes. Instead, the new rejection rule is class-selective. 
That  is, it does not reject the pattern from all classes but only from those classes that 
are most unlikely to issue the pattern. For instance, for a pattern lying on the separation 
plane between classes 1 and 2, while being very far away from the center of the third 
class, the rule rejects only the third class and declares that the pattern belongs to the 
group composed of the first and the second classes. In other words, the pattern space is 
partitioned into regioas each of which corresponds to a subset of classes. Since there are 2/v 
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subsets in a set of N elements, the resulting partition comprises 2 N - 1 regions, excluding 
the empty set, in a N-class problem. In Fig. 2c, there are 2 3 - 1 = 7 regions corresponding 
to the subsets {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, and {1,2,3}. It can readily be seen 
that there exists a trivial partition - that assigns the whole pattern space to the group 
composed of all N classes - which nulliiies tile error rate. '['his partition would correspond 
to a no-decision rule, however. 

In order to define tile optimality of the class-selective rejection rule while avoiding 
the trivial partition, an additional constraint - the average number of classes fi - was 
introduced [16]. 

p 

= Jx n(x)p( )dx fi (16) 

where n(x) is the number of classes assigned to pattern x. The choice of fi = Ex[n(X)] is 
natural, and moreover, it can be directly estimated from experiments by the sample mean 
J-  ~N_' l nl, where ni is the number of classes assigned to pattern x,., and N, is the total 
N, 
number of patterns involved in the experiment. 

The optimality of the class-selective rejection rule is then deiined as the rule that 
minimises the error rate for a given average number of classes. The error rate is still given 
by Eq. (4), but risk(x), i.e., the conditional probability of making an error becomes 

= 1 -  = (16) 
iESeleeted Subset t~Rejeeted Subset 

For instance, if the Selected Subset for pattern x is {i,3} in a three-class problem, then 
risk(x) = 1 - [Pl(x) + Pa(x)] = P2(x), due to Eq. (3). Notice that Eq. (16) is a general 
form of Eq. (5) in that if the Bayes rule is used, i.e., select only the single best class, then 
Eq. (16) becomes Eq. (5). Substituting Eq. (16) into Eq. (4), the error rate becomes 

e = f [ 1  - ~ P,(x)]p(x)dx (17) 
a A  iESelected Subset 

The optimum class-selective rejection rule assigns to pattern x all classes whose poste- 
rior probability is greater than a pre-specified threshold t. If there exist no such classes, 
the rule simply selects the (a) single best class [16, 18]. Notice that the key point in this 
rule is the choice of the number of best classes, n(x, t), to be assigned to pattern x. The 
rule is optimum in the sense that for a given average number of classes, no other rules can 
yield a lower error rate. 

Let us consider the range of t. Since the decision rule involves the comparison between 
t and posterior probabilities, it makes sense only for t E [0,1]. On the other hand, when 
t _> ½, it can be easily seen that the rule is identical to the Bayes rule, i.e., choose the 
single best class. Only when t becomes smaller than ½ does the rule provide the possibility 

0 1 of choosing more than one class. In sum, the range of t is [ , ~] 
The tradeoff between error rate and average number of classes at all levels t is an 

important description of the performance of recognition systems. When t varies from ~ to 
0, the average number of classes fi(t) increases due to the emergence of groups composed 
of more than one class each. At the same time, the error rate e(t) decreases since assigning 
more classes to a pattern reduces the risk of making an error. Thus both fi(t) and e(t) 
are monotonic functions of t, and we can compute the traxteoff curve e versus fi from e(t) 
and ~(t). Fig. 4 shows a typical e(fi) curve. 
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Figure 4: A tyl)ical e(ii) curve. 

Analogously to the error-reject tradeoff, there also exists a functional relation between 
e(t) and fi(t), and fi(t) alone completely specifies e(t) in the same manner as Eq. (t3) does 
for the e(r) curve. 

j top~ 

e(top~) = - t.  dfi(t) (18) 
= 0  

In particular, the Bayes error rate is given by 

1 
f ~  t.  d~(t) (19) eno~e, = e(to~e = 7 )  = - 0 

Full details about this functional relation can be found in [17]. 

3 S o m e  R e m a r k s  

Inspecting the three rules summarised in ]'able 1, one can see that their time complexity 
is linear in the total number of classes. This common property is important in those 
applications where the number of classes is very large, e.g. Chinese character recognition. 

The functional relation between error rate and average number of classes, Eq. (18), 
takes the same form as Chow's optimum error-reject tradeoff curve, Eq. (13). Likewise, 
the optimum e(fi) curve shares many properties with Chow's optimum error-reject, e(r), 
curve. It has been shown in [17] that the slope of the e(fi) curve is - t .  That  is, the 
ratio of error reduction to additional average number of classes is most effective near the 
origin (fi = 1,t = ~). This is common in our practical experience: excessive additional 
classes are generally required to reduce residual errors. In fact, Chow already observed 
this behaviour in the error-reject curve: excessive rejection is generaJJy required to reduce 
residual errors [6]. Moreover, the non-decreasing nature and the upward concavity are 
common properties to both the e(fi) and e(r) curves. 
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Table 1: A synthetic view of optimum decision rules. MAP stands for maximum a poste- 
riori. 

OP'HMAM'PY 

miuimise c 

RULE 

MAP. 

minimise e / r ;Vr  minimise e/fi; V~, 

IF MAP < ( l - t )  
REJEC'[  

ELSE 
USE MAIL 

( ) < l <  1 - ±  N 

All classes whose 
Post. Prob. > t. 

IF NONE 
USE MAP. 

0 < t < ~  

ESTIMATION - FUNCTIONAL RELATION 

~o t° ~o t° e = Ex[Ti,~k(X)] e(to) = - ~, dr(t) e(to) = - t .  dr~(t) 

Cost(t) = 

C . e  
t c , . e ( t ) + c ,  "~(0 

topt - - ~  

co. e(t) + c . -  ~(t) 

topt = 

In some sense, when nearest neighbour (NN)  estimates are used instead of posterior 
probabilities, Bayes rule can be replaced by the k - N N  rule [8], and Chow's rule by the 
(k, k') - N N  rule [21]. Nearest neighbour version of the functional relation between e(t) 
and r(t) was discovered by Devijver [9]. 

4 Conclus ion 

We have reviewed various optimum decision rules for pattern recognition, namely, Bayes 
rule, Chow's rule, and class-selective rejection rule. It can be said that the theory of 
optimum decision rules for pattern recognition is well understood. To the author's view, 
future research should be concentrated on the estimation of posterior probabilities which 
remains a difficult problem for complex models such as Hidden Markov models. 
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