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A b s t r a c t .  Automatic learning methods have proved to be quite attrac- 
tive in the context of power system security assessment. The complemen- 
tarity of various methods proposed so far, lead us to combine them in a 
toolbox in order to exploit their advantages and discard their limitations. 
In this paper, we show how the nearest neighbor approach could be used 
to face the problem of detecting outliers, i.e. cases not well enough rep- 
resented in the data base Qsed to learn the models. More precisely, such 
detection can be based on distance rejection which implies the choice of 
an appropriate distance. On a particular real life problem, we show how 
the simple nearest neighbor in the candidate attributes space allows to 
reject such cases. 
Keywords  : power system security assessment; automatic learning; near- 
est neighbor; distance rejection. 

1 Automatic Learning Based Approach to Power System 
Security 

Security is the ability of a power system to withstand in a satisfactory way all 
kind of external or internal disturbances. It is a concern of paramount  importance 
for the proper design and operation of electric power systems. The increase in 
international interconnexions and free access organizations together with social 
requirements for uninterrupted electric supply implies increasing intricacy and 
at the same time increasing importance of security aspects. 

Broadly, security covers steady-state and dynamical aspects. Also, in a broad 
sense, security studies are carried out within three different contexts : planning, 
operation planning and real-time operation. Traditional (analytical) approaches 
mainly consist of integrating numerically the non-linear equations of motion 
in the t ime-domain or of eigenvalue analysis of the linearized system in the 
frequency domain. 

The limitations of analytical methods are linked to their inherent weaknesses; 
in particular : (i) lack of synthetic information (which are the driving parame- 
ters? how do they influence the phenomena? (sensitivity); "what if" ? (means to 
control)); (ii) overly specific and very detailed case by case information; in short 
: "black-box" type of information in that  they do not provide proper hints about 
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Fig. 1. Automatic learning tYamework for security assessment 

the parameters influencing the phenomena nor suggestions to control; (iii) in- 
volved heavy real-time computations; (iv) inability to account for uncertainties. 

Automatic Learning (AL) in general is concerned with the design of auto- 
matic procedures able to learn a task on the basis of a learning set of solved 
instances of this task. Three main families of AL methods may be distinguished, 
namely : (i) machine learning, a subfield of symbolic artificial intelligence; de- 
cision trees are members of this family (ii) statistical pattern recognition and 
regression; (iii) artificial neural network based learning. In what follows, we focus 
on non-parametric AL methods. Indeed, parametric methods make too strong as- 
sumptions about the shape of probability densities or classification boundaries; 
they therefore would not be adequate enough for the wide variety of security 
problems. 

In the particular context of power system dynamic security assessment, the 
AL approach may be schematically described by Fig. 1 (see e.g. [1]) : random 
sampling techniques are considered to screen all relevant situations in a given 
context, while existing numerical simulation tools are exploited - if necessary in 
parallel - to derive detailed security information. The heart of the framework 
is provided by AL methods used to extract and synthesize relevant information 
and to reformulate it in a suitable way for decision making. This consists of 
transibrming the data base (DB) of case by case numerical simulations into a 
power system security knowledge base (KB). As illustrated in the figure, a large 
variety of AL methods may be used in a toolbox fashion, according to the type 
of information they may exploit and/or produce. The final step consists of using 
the extracted synthetic information (decision trees, rules, statistical or neural 
network approximators) either in real-time, for fast decision making, or in the 
off-line study environment, so as to gain new physicM insight and to derive better 
system and/or operation planning strategies. 

2 Overview of AL M e t h o d s  Used  in Security  Asses sment  

Two broad types of AL problems may be distinguished : supervised and un- 
supervised learning. While supervised learning usually aims at constructing a 
model for an assumed relationship between input and output parameters, unsu- 
pervised learning (or clustering) essentially aims at either uncovering similarities. 
Note that in power system security assessment, input attributes are variables de- 
scribing the state and topology of a power system, and the output information 
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characterizes its security with respect to plausible disturbances. Both types of 
variables may be either continuous/numerical or discrete/qualitative, 

2.1 Unsupervised Learning and Clustering 

Unsupervised learning is not oriented towards a particular prediction task. Rather, 
it tries to identify existing relationships, either among objects, or among at- 
tributes. Thus, one of the purposes of clustering is to identify homogeneous 
groups of similar objects, in order to represent a large set of objects by a small 
number of representative prototypes. Graphical, two-dimensional scatter plots 
may be used to analyze the data and identify clusters. Another application con- 
cerns the identification of similarities (and redundancies) among the different 
attributes used to characterize objects. 

Note that large scale power system security data bases may contain several 
thousand samples, described by several hundred attributes. Thus, unsupervised 
learning is useful in order to explore large data bases to find groups of similar 
problems, and also to reduce problem dimensionality by identifying correlated 
variables. 

2.2 Supervised Learning 

In what follows, we discuss the three classes of methods providing three comple- 
mentary types of information, focusing on those aspects which are most relevant 
to the subsequent discussions. 

Symbol ic  knowledge  via decision trees [2]. Top down induction of deci- 
sion trees (TDIDT) is one of the most successful classes of machine learning 
(i.e. symbolic learning) methods. A main asset of decision trees (DTs) lies in 
the explicit and logical representation of the induced classification rules and 
the resulting explanatory capability. In particular, the tree induction method 
provides systematic correlation analyses among different attributes and identi- 
fies the most discriminating attributes. From the computational viewpoint it is 
efficient at the learning stage as well as at the prediction stage. 

There are two generalizations of decision trees of interest in the context 
of dynamic security assessment. First, regression trees which infer information 
about a numerical output variable [3]. Second, fuzzy trees which use fuzzy logic 
instead of standard logic to represent output information in a smooth fashion 
[4]. 

In power system security assessment, the main asset of decision tree induction 
lies in its capability to extract simple and interpretable rules from large scale data 
bases. In particular, it is able to efficiently scan a very large number of candidate 
attributes, select the most relevant ones and determine their importance in terms 
of the information quantity they provide on the output information. 
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S m o o t h  nonl inear  app rox ima t ions  via  art if icial  neura l  ne tworks  [5]. 
We restrict ourselves to multilayer perceptrons, MLPs for short. Their first or 
input layer corresponds to the attribute values, and the last or output layer 
to the desired security classification or margin information. Intermediate layers 
enable the network to approximate arbitrarily complex input/output mappings, 
provided that its topology and its weights are chosen properly. 

One of the difficulties with MLPs comes from the very large number of 
weights and thresholds related in a nonlinear fashion, which makes it almost 
impossible to give any insight into the relationship learned. All in all, one can 
say that MLPs offer a flexible, easy to apply, but essentially black-box type of 
approach to function approximation. 

In power system security assessment MPLs are most well adapted to infer 
information about security margins, which behave generally in a smooth fashion. 

M e m o r y  based  reasoning  via s ta t i s t ica l  p a t t e r n  recogni t ion  [6~ 7]. 
The previous two approaches essentially compress detailed information about 
individual simulation results into general, more or less global security character- 
izations. 

Additional information may however be provided in a case by case fashion, 
by matching an unseen (e.g. real-time) situation with similar situations found in 
the data base. This may be achieved by defining generalized distances so as to 
evaluate similarities among power system situations, together with appropriate 
fast data base search algorithms. 

A well known such technique is the "k Nearest Neighbors" (kNN) method 
able to complete decision trees and multilayer perceptrons. The main character- 
istics of this method are high simplicity but sensitivity to the type of distances 
used. In particular, the kNN method is sensitive to irrelevant and/or redundant 
attributes, which are frequently encountered in security assessment problems. 

Let us briefly describe the method developed in order to adapt the kNN 
method to such problems. It combines information obtained by decision tree 
induction and genetic algorithms so as to adapt the kNN parameters in a super- 
vised learning stage. The latter consists of the following three steps [8, 9] : 

1. selection of the relevant attributes, for the particular problem under consid- 
eration, by decision tree induction; 

2. adjusting their weights in the Euclidean distance, in order to take into ac- 
count their respective impact on the problem of concern (initial guess pro- 
vided by the information quantities (IQ) obtained as a byproduct in decision 
tree induction; refinement using genetic algorithms GA); 

3. choice of the appropriate value of k. 

These parameters are determined using the learning set, together with the leave- 
one-out method to appraise generalization to unseen states. The final result is 
assessed using an independent test set. 

Thus the learning procedure summarizes to : for the learning set at hand, 
build a decision tree to identify its test attributes and appraise their correspond- 
ing IQ. Note that since the computing effort for building DTs increases at most 
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linearly with the number of candidate attributes, it is possible (and advisable) to 
use as many candidates as deemed necessary, in order to avoid missing relevant 
ones. The obtained distance gives rise to the kNN-DT+IQ method. 

Common sense suggests and experience confirms that combining the infor- 
mation provided by DTs with the simple sear& of k contributes to improve sig- 
nificantly kNN's accuracy. Yet, it should be possible to improve it further. This 
is suggested by the fact that DTs provide synthetic information which moreover 
is obtained via local optimizations at the successive test nodes. It may there- 
fore hide part of the detailed information and result in a globally sub-optimal 
solution. Hence, the identification of the relevant attributes and the appraisal 
of their weights may be suboptimal. Obviously, appropriate procedures relying 
on a global optimization such as GAs are able to further improve the kNN-DT 
design. 

3 Use of k N N  for Distance Rejection 

3.1 Prac t ica l  Mot iva t ion  

A possible cause of automatic learning methods' failure to correctly assess unseen 
cases is the existence of outliers. These are cases which go beyond the general- 
ization capabilities of a method, because they are not "well enough" covered in 
the data base used to train it. 

In power system security assessment, data bases are generated by random 
sampling. The specifications of random sampling are defined from prior expertise 
about the problem. They are generally biased with respect to actual statistics, 
since it is necessary to ensure a good representation of insecure states, which are 
very infrequent in real life. In this process, the best is made in order to ensure 
the representativity of the data base, however there is no guarantee that this 
objective is fully reached. Thus, the criteria extracted (decision trees, neural 
nets, nearest neighbor classifiers... ) are obviously valid only in the range of 
situations scanned in the data base from which they have been derived. 

For example, one reason for an insufficient coverage is that some driving 
parameters have been overlooked and kept constant while generating the data 
base; it is then hazardous to establish valid similarities between a new case and 
cases of this data base. Another reason is that the new case is "far away" from 
all others, i.e. it has no "close enough neighbors". The former reason comes from 
insufficient expertise of the phenomena; the latter from insufficient scanning of 
the attribute space. Our aim is to focus on this latter cause and detect the 
corresponding outliers. 

Below, we will describe the results obtained with a very simple distance re- 
jection scheme, in the context of a large data base, stemming from a transient 
stability assessment problem of real large scale system. In particular, we will find 
out that in order to detect outliers it would be dangerous to exploit distances 
correlated with the data base (which happens if the distance is tuned by super- 
vised learning). A more appropriate choice consists in using a "neutral" distance, 
based only on normalizing the attributes deemed relevant by the experts. 
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3.2 Detec t ion  P r o c e d u r e  

As was already said, the use of nearest neighbor techniques to assess the security 
of unseen cases requires the choice of an appropriate distance depending the 
problem at hand. However, as shown below, such a distance is not able to provide 
a procedure to detect outliers, i.e. cases not well enough represented in the data 
base used to learn the distance. 

For a given data base (DB), in order to decide whether a new (unknown) 
case is a "normal" one (i.e. well enough represented in the DB) or whether it 
should be labeled as an outlier, we propose the following procedure. 

(i) Consider the multidimensional space defined by the entire set of candidate 
attributes deemed relevant by the experts; compute the distance of the DB states 
to their respective nearest neighbor. Let dmaz denote the maximum distance thus 
found. 

(ii) Proceed similarly with the given new state, i.e. compute its distance, 
d=, to its nearest neighbor in the above multidimensional space. If d~ < d~az 
consider it to "belong" to the DB, i.e. to be a "normal case". Otherwise, declare 
it to be an outlier. 

The computation of d,~a= in step (i) has to be performed once and for all, 
whereas the computation of du in step (ii) has to be repeated with each new 
c a s e .  

3.3 Evalua t ion  on a Real  Life P rob l em 

We will illustrate the above procedure on a stability problem of the 22-North 
configuration of the tIydro-Qu@bec power system (see [9] and [10]). To this pur- 
pose, we will consider two DBs : (i) the "normal" DB built for this configuration 
(denoted ibr short 22N); (ii) an "abnormal" DB, labeled "31-North" (31N for 
short), and built for another stability subproblem of the same power system. 
Each case is described by 74 candidate attributes and by one class, stable or 
unstable. 

The 22N DB is decomposed in two sets : 

1. the learning set (LS), composed of 2746 states (59 % unstable and 41% 
stable ones) and used as reference DB, to build decision trees and learn the 
distance for the kNN, if necessary. 

2. the test set (TS), composed of 657 states (61% unstable and 39 % stable 
ones). 

The 31N DB is denoted by TS2 and is composed of 1450 states (72 % unstable 
and 28 % stable ones). 

A first series of simulations consists of classifying the cases of TS2 by the 
DT and the kNN-DT+IQ methods, both trained with the 22N learning set (the 
decision trees selects 11 attributes among the 74 candidate ones, 95% of the 
information being concentrated in the first 5 ones). The results are reported 
in Table 1. The corresponding error rates show that, obviously, the TS2 cases 
cannot be correctly classified by models (DTs or kNN classfiers) derived from 
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Table 1.22N and 31N test states classified with kNN trained with 22N learning states 

Method Pe ~'5 (%) Pe ~'~'2 (%) 
DT 3.5 22.4 
"Trained" kNN 2.7 20.8 
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Fig. 2. "Neutral" distances to NN (NN found in 22N LS by "neutral" distance) 

the 22N learning set. It should be noted that the assessment of an outlier by 
an automatic learning method trained with the DB of concern is not necessarily 
wrong; simply, one cannot guarantee its correctness. 

A second series of simulations uses the detection procedure applied in the 
following way : 

(i) consider the 22N learning set in the 74-dimensional space of all 74 can- 
didate attributes, with uniform weights combine in the so-called "neutral" Eu- 
clidean distance; 

(ii) compute in the above space the distances of all 22N test states to their 
respective nearest neighbor; 

(iii) compute in the same space the distances of all 31N (i.e. TS2) states. 
The bar diagrams of steps (ii) and (iii) are plotted in Fig. 2. In these dia- 

grams, the overall height of the bars correspond to the number of states in the 
corresponding "neutral" distance interval. The white part of it corresponds to 
states which are correctly classified using the kNN method using the "trained" 
distance; the other parts correspond to different types of errors (dangerous non- 
detections, in black; false alarms and marginal non-detections in grey). 

Figure 2 obviously shows that the two distributions are welt separated. In- 
deed, choosing dma, = 0.78 , will discard all TS2 cases as being "outliers" except 
for 20. Note, however, that among the latter 20 cases which lie below dmax only 
one is misclassified by the methods trained on the 22N data base. Actually, the 
above observations suggest that the 20 cases are not outliers, and corroborate 
the proposed procedure. 

Note that using for the outlier detection procedure the "trained" distance, 
would be completely misleading. This is clearly shown by the complete overlap 
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of  the  two d iagrams in Fig. 3. This  is because the selected a t t r ibutes  and their 
weights in the adap ted  distance have been determined in the absence of  the 
outliers t ha t  one precisely wants  to  detect in order to  decide whether  they  belong 
to the same "problem" (i.e. DB). Their  use would therefore bias this test. 

Figure 4 shows the distr ibutions obta ined in an exper iment  combining the 
two distances. The  nearest neighbor of  a s tate  is found using the "trained" 
distance, then the "neutral" distance among  these two states is computed .  From 
the computa t iona l  point  of  view this procedure would be much faster, since the 
nearest  neighbor search would be carried out  using a much  smaller number  of  
a t t r ibutes  (11 instead of  74). Unfortunately,  the two d iagrams in Fig. 4 still 
overlap significantly, and a large number  of  outliers would not  be detected. 

As a complemen ta ry  exercise, we have interchanged the two d a t a  bases, viz., 
we have t rained the kNN models  with a learning set composed of  the 31N states 
and tested the 22N test states : the conclusion is symmet r i c  : here, the outliers 
are found to be the 22N states. 

We conclude tha t  in order to detect outliers a "neutral" distance should be 
used, which is uncorrelated with the da t a  base. 
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4 C o n c l u s i o n  

This paper  shows that  distance rejection allows to detect outliers. However this 
procedure implies two mains problems. The first one concerns the choice of the 
distance. Our experiments show that  a "trained" distance automat ical ly  learned 
for security assessment is not adapted to outlier detection. The rejection can only 
be based on a "neutral" distance defined by experts who select the at tr ibutes 
potentially influencing the security problem. Consequently, it is harder to find 
a good distance. The second problem concerns the validation of the procedure 
because outliers have by definition a low probabili ty of occurrence. 
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