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Abstract. A method for the linear discrimination of two classes is presented. It maximizes the 
Patrick-Fisher (PF) distance between the projected class-conditional densities. Since the PF 
distance is a highly nonlinear function, we propose a method, which searches for the directions 
corresponding to several large local maxima of the PF distance. Its novelty lies in a neural 
network transformation of the data along a found direction into data with deflated maxima of 
the PF distance and iteration to obtain the next direction. A simulation study indicates that the 
method has the potential to find the global maximum of the PF distance. 
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1 Introduction 

We discuss discriminant analysis of two classes which is carried out by a linear 
mapping of n-dimensional observations, which maximizes the Patrick-Fisher (PF) 
distance [6]. Unfortunately, the PF distance is a highly nonlinear function with 
respect to the mapping, and has more than one maximum. In most applications, the 
optimal solution is searched for along the gradient of the PF distance, hoping that 
with a good starting point the optimization procedure will converge to the global 
maximum or at least to a practical one. Some known techniques such as principal 
component analysis, Fisher discriminant analysis and their combination [1] may be 
used for choosing a starting point for the optimization procedure. Nevertheless, the 
observed maximum of the PF distance can be merely a local maximum, which is far 
away from the global one in some data structures. In [3] we proposed a recursive 
method which searches for several large local maxima of the PF distance. In this 
work we generalize this method using a neural network implementation, which 
increases its efficacy. 

In Section 2 we describe a normalization of the data, called sphering [7] (or 
whitening [5]), which is required by our method. In Section 3 we present our method 
for linear discriminant analysis by recursive optimization of the PF distance [3] using 
the terminology of neural networks. The new proposal, called '~eural Network 
Reduction of the Class Separation" (NN RCS) is described in Section 4. Section 5 
contains results and discussions of a simulation study. 

* This work has been partially supported by the Paul Ivanier Center for Robotics and 
Production Management, Ben Gurion University of the Negev, Israel 
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2 Sphered Data 

Suppose we are given training data (zbcl), (z2,c2) .... , (ZNt,eNt) comprising a set 
Zt={z~, z2, ..., ZN t} of Nt training observations in n-dimensional sample space (zjsR", 
n>2) and their associated class-indicator vectors % j=l,2,...,Nt. We discuss a two 
class problem and we require that ej is a two-dimensional vector cj=(clj, c2j) T which 
shows that zj belongs to one of the classes ~o~ or co 2. The components c~j, c2j are 
defined to be one or zero according to the class-membership ofzj, i.e. clj=l, Czj=0 for 
zj~ co t and clj=0, c2j=l for zjc co 2. The class-indicator vectors ej imply decomposition 
of the set Zt into two subsets corresponding to the unique classes. We denote by Nti 
the number of the training observations in class co~. 

To achieve data sphering [5],[7] we perform an eigenvalue-eigenvector 
decomposition S~=RDR T of the pooled sample covariance matrix S~ estimated over 
training set Zt. Here R and D are nxn matrices; R is orthonormat and D diagonal. 
We then define the normalization matrix A = D m R  T. The matrix Sz is assumed to be 
non-singular, otherwise only the eigenvectors corresponding to the non-zero 
eigenvalues must be used in the decomposition [7]. In the remainder of the paper, all 
operations are performed on the sphered training data Xt ={xj: xj=A(zj-mz), zjsZt} 
with mz the sample mean vector estimated over Zt. For the sphered training data Xt 
the pooled sample covariance matrix becomes the identity matrix ASzA~=I. 

3 Training SL Network for Classification by Recursive 
Reduction of the Class Separation (RCS) 

Here we present our method for linear discriminant analysis by recursive 
reduction of the class separation (RCS) [3] using the terminology of single-layer 
(SL) neural networks for classification [5]. We discuss an SL network with linear 
activation function of the output. It carries out a linear mapping y=wTx, xsW, y~R ~, 
n_>2, with x an arbitrary n-dimensional observation, and w a vector containing the 
weights of the network (Fig. 1). We require w to have unit length, and y=wTx can be 
interpreted geometrically [5, pp.77-79] as the projection of the observation x onto 
vector w in x-space (Fig.2). 

We train the network by maximizing the Patrick-Fisher (PF) distance [6] 

with 

PF(w) = {f [ -~f i (wTx[coa)  - N t e  t3(w'rx[co.,)]2dx} ve (1) 
R n t Nt " 

Nt 

~ ( , w T x I ( O i  ) _ h 2"f~Ntil {2@; Z c i j  exp [wT(x-x j ) ]  2} , i=1,2 (2) 
7 

the Parzen estimators with Gaussian kernels of the class-conditional densities of the 
projections y=wrx. Here x is an arbitrary observation (xeRn), eli is the class-indicator 
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which constrains the summation in (2) on the coi-training 
corresponding to cij=l), and h is a smoothing parameter. 
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Fig.1. Representation of a linear 
mapping as a neural network diagram. 

Fig.2. Linear mapping (y=wTx) in a 
two-dimensional x-space. Class-condi- 
tional densities p(wTxI~o0 and p(wTxlco2) 
along the vector w. 

PF(w) (1) measures the separation of the class-conditional densities along 
vector w (see Fig.2). The theoretical motivation of PF(w) is its resultant upper bound 
on the Bayes error along w. It is known that PF(w) induces an upper bound which is 
larger than those of other probabilistic class separability measures [9]. Nevertheless, 
PF(w) is more practical, because of the existence of an analytical expression of its 
gradient used in the training [6, pp.277-280]. 

PF(w) is a nonlinear function with respect to w. We train the SL network using 
a local optimizer for maximizing PF(w). We choose the starting point of the 
optimizer by means of an extended Fisher discriminant analysis [1,2] which has 
proved to be suitable in the practical applications. Nevertheless the observed 
maximum of PF(w) can be merely a local maximum in some data structures. 

tn order to search for several large local maxima of PF(w) we have proposed a 
method for recursive maximization of PF(w) [3]. We obtain a vector of weights w* 
related to a local maximum of PF(w*) and then we transform the data along w* into 
data with greater overlap of the class-conditional densities (deflated maximum of 
PF(w) at the solution w*), and iterate to obtain a new vector of weights. 

The main point of the method is the procedure for deflating the local maximum 
of PF(w) called "reduction of the class separation" (RCS). In order to deflate PF(w) 
at w* (to increase class overlap along w*), we transform class-conditional densities 
along w* to normal densities. For this purpose, we rotate the data applying the linear 
transformation 

r=Ux (3) 

with U an orthonormal (nxn) matrix. We denote the new coordinates as rl, r2, ..., r, 
(r=(rl, r2 . . . . .  r,)T). We require that the first row of U is w*, which results in a 
rotation such that the new first coordinate of an observation x is the output of the SL 
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network having weight vector w* ( rl=y=(w*)TX ). Assume that p(y[ coi), i=1,2 are the 

class-conditional densities ofy=(w*)Tx and, myl~ % , 0 "2y1~ol their means and variances. 

We transform p(ylco) to normal densities and leave the coordinates r2, r3, ..., r, 
unchanged. Let q be a vector function with components ql,q2,...,q, that carries out 
this transformation: rl'=ql(y) with rl' having normal class-conditional distributions 
and ri'=qi(ri), i=2,3 ..... n each given by the identity transformations. The function q~ is 
obtained by the percentile transformation method [2,3,7]: 

- for observations x from class o~1: 

ql(Y) = [aP'~(F(yl ol))]( 0-2ytfol 5:: A0- 2 )1/2 + (mvlco 1 -Aml); 

- for observations x from class co2: 

ql(Y) = [¢bl(F(yl %))]( 0-2 + A0-2 )l/z + ( m  -Am2). 
Ylco 2 Y[CO 2 

(4) 

(5) 

Here ,  A0- 2 (0<  A0-2_<1), Aml, Am2 are user-supplied parameters, F(y[~) is the class- 
conditional (cumulative) distribution function of y=(w*)Tx for i=1,2 and a9 "1 is the 
inverse of the standard normal distribution function ~.  Finally, 

x' = UTq(Ux) (6) 

transforms the class-conditional densities of the output of the SL network to give 
normal densities 

p(rl'lcoi)=N(mt~oi-Ami, 0 -2 ---A0- 2) (7) 
YlCO i 

leaving all directions orthogonal to w* unchanged. 
In [3] we proposed a procedure for defining the values of the control parameters 

A0- 2, Am~, Am2 and the sign (+ or -) of the change +A0- 2 in order to direct the local 
optimizer to a new maximum of PF(w), and to keep the class-conditional densities of 
x' (6) as close to the densities of the original data x as is possible. 

We presented the method in its abstract version based on probability 
distributions. The application to observed data is accomplished by substituting an 
estimate of the distributions over the training set X~ [3,7]. 

4 Neural Network Reduction of the Class Separation (NN RCS) 

Here we propose a neural network implementation of the procedure for 
"reduction of the class separation", called NN_RCS. We use an auto-associative 
multi-layer network having non-linear activation functions in the hidden units 
(Fig.3). The targets used to train the network are the input vectors themselves, so that 
the network is attempting to map each input vector onto itsel£ 
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Fig.3. Auto-associative network. It is trained to map input vectors into themselves in 
such a way that the data along w* have normal class-conditional densities. 

We train the network by minimizing an error function of the form 

with 
E(u) = (1-v)E AA (u)+ vf~(u), O_<v<l, (8) 

Nt 
E~(u)=x~--~ 1 Z [r(xj; u) - x j l T [ r ( x j ; u ) - x j ] ,  (9) 

j=l 

1 Nt 
~(u)  = ~ t t  Z [ ( w * ) ' r  r ( x j ; u ) -  qlf(w*) T x j ) ]  2 . (10) 

j=l 

Here, EAA(u) is the standard mean-square error of the auto-associative network, ~(u)  
is the penalty function and v is the parameter controlling the extent to which the 
penalty term ~(u) influences the form of the solution. In (9) and (10) r(xj;u) 
represents the output vector xj'=r(xj;u) of the auto-associative network (Fig.3) as a 
function of the input training vectors xj, j=l ,  2 . . . .  ,Nt  and vector u comprising the 
adjustable weights of the network; q]((w*)Txj) is the function which transforms the 
class-conditional densities of y=(w*)Txj to the normal densities (see (4) and (5)). 

The auto-associative network is trained by minimizing the total error function 
E(u) (8) with respect to u. A function r(xj;u) which provides a good fit to the training 
data xj, j=l ,2 .... , Nt will give a small value for EAA(u) (9), while one which produces 
data with the normal densities along w* will give a small value for ~(u)  (10). 
Minimizing E(u) (8) we obtain the network mapping r(xj; u) which is a compromise 
between fitting the training data xj and reducing the class separation along w* 
(deflating PF(w) (1) at w* for suitable v, z~o ~, Am1 and Am2). We can view this 
network as a neural network implementation of the data transformation (6). Here the 
auto-associative network (Fig.3) performs principal component analysis [5,p.314] 
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constrained on the class-conditional densities of xj along w* to be normal densities. 
Since the penalty term ~SL(u) (10) is a highly non-linear function (see Exprs. (4) and 
(5)) we use nonlinear activation functions in the hidden units of the network despite 
the fact that the standard network for principal component analysis has linear 
activation functions in the hidden units [5, p.314]. 

The computational complexity of the NN_RCS is higher than that of our 
method proposed in [2,3]. Here we have to use an intensive non-linear optimization 
technique for training the auto-associative network, and also the values of the 
parameters v, Ace, Amb Am2 must be specified in advance of training the network, 
so that it is necessary to train and compare several auto-associative networks for 
different values of v, Au 2, Am~, Am2. This high computational complexity is the price 
that we pay in order to gain the following advantages: 

1. NN RCS improves the preservation of the training data: Our method for 
reduction of the class separation (RCS), explained in Section 3, exactly preserves the 
data in the subspace orthogonal to the vector w*. In order to preserve the data as 
much as possible in the entire space, we have proposed in [3] a procedure which 
searches for the smallest values of the parameters A~ 2, Am1 and Am2, which direct 
the local optimizer to a new maximum of PF(w). Nevertheless, in some applications 
[3] our procedure causes large changes of the class-conditional distributions of the 
transformed data x' (6), which is undesirable. The NN_RCS by performing highly 
non-linear data transformation increases the range of data preservation, which is 
demonstrated by the experiments explained in the next Section 5. 

2. NN RCS can be applied for reduction of  the class separation of the non- 
linear classification functions: Actually, by using the NN RCS, we overcome the use 
of the orthonormal matrix U in the transformation (3). This makes it possible to 
apply NN_RCS for the non-linear classification functions y(x). We have just to obtain 
function qt(Y) which transforms the class-conditional densities of y(x) to normal 
densities and to use the non-linear mapping y(xj) instead of the linear one (w*)Txj, 
for xj=r(xj; u) in the penalty function (10). In [4], using NN RCS, we have proposed 
a method for recursive training of a multi-layer (ML) neural network by reduction of 
the class separation for the non-linear classification functions obtained by the IVIL 
network. 

5 Simulation Studies 

Here we compare the preservation of the data after deflating a local maximum 
of the PF distance by RCS (Section 3) and by our new proposal NN_RCS (Section 4). 
We ran experiments with samples for two classes of the sample sizes Ntl=Nt2=150, 
which were drawn from two-dimensional normal mixtures: 

for class ¢91 : 
p(x],x2 ICOl)=l/3N([-1 0] T, 0.1I)+1/3N([0.5 3] x, 0.1I)+1/3N([-0.5 -3] x, 0.1I), (11) 

for class m2: 
p(xbx2lco2) = 1/3N([-0.5 3] T, 0.1I)+1/3N([3 0] T, 0.1I)+1/3N([0.5 -3] T, 0.1I). (12) 
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Here, N([~tl ~t2]T,I) denotes bivariate normal density with a mean vector [~h ~t2] T 
and a unit covariance matrix. Fig.4 presents the sphered data (see Section 2). For this 
data we computed the PF distances for 91 equally angled directions into the (xl,x2)- 
plane. The solid path . . . .  in Fig.5 presents the PF distances for the vectors w 
directed under different angles with respect to xl-axis. We observe local maxima of 
PF(w) at angles 15 °, 49 °, 64 °, t09 °, 124 °, 135 ° and 162 °. The global maximum (PF 
distance 0.7838) is at 15 ° . 

1.1 

0.7 

04 
0.3 

8 
o -0.1 

-0.5 

-0.9 

-1.3 

Class 1 + 
Class 2 o 

. . . . . . . .  i ' i -1.1 -0.5 0 1 0.7 1 3 
Coordinate 1 

Fig.4. Sphered data set 

,19 

We reduced the class separation along the direction under 64 °. Here we study a 
situation which is highly unfavorable to our procedures: we use data with 
significantly nonnormal class-conditional distributions (see Fig.4), and we try to 
deflate the local maximum at 64 ° which has a large value (PF distance 0.7003) and 
which is located close to the global maximum at 15 ° . 

We applied RCS along the direction under 64°: we set Am~=O, Am2=0, Ao2=0 
in (4) and (5) and computed the transformed data x' (6). Then we calculated the PF 
distances for x' (dotted path "...." of Fig.5). Theoretically [7, p.254] and [8, p.456], 
the setting Ao2=0 implies minimal changes of the data after the "reduction of the 
class separation". Nevertheless, we observed a strong destructuring of the 
classification structure of the data in the result obtained (dotted path "...." of Fig.5). 
RCS deflates the PF distance in the range 00-90 ° including the location of the global 
maximum at 15 ° which is undesirable for our recursive optimization procedure [2,3]. 
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Fig.5. PF distance for various directions into (x],x2)-plane: . . . .  original sphered 
data; "...." transformed data after RCS at 64 °. 

We ran NN_RCS setting Am1=0, Am2=0, A(y2=0 in (4) and (5), and v=0.3 in (8) 
using a two layer auto-associative network with 10 hidden units having sigmoid 
activation functions. We trained the network minimizing error function E(u) (8) by a 
sequential quadratic programming method (routine E04UCF in the NAG 
Mathematical Library). We set the number of the batch (major) iterations of  the 
optimization routine E04UCF to 150. We trained the network (Fig.3) using the 
original training data (Fig.4) and a penalty function (10) for the direction w* under 
64 ° . Then we propagated the original data through the trained auto-associative 
network and obtained a transformed data set (Fig.6). For this data set we calculated 
the PF distance for different directions (dotted path "_.." in Fig.8). We gained some 
decrease of  the class separation along the direction under 64 ° but we didn't manage 
to deflate the PF distance at 64 °. We iterated the NN_RCS, i.e. we re-trained the 
auto-associative network using the transformed data (Fig.6) as a training set and the 
penalty function (10) computed for the direction under 7t °, which is the modified 
location of the maximum which we try to deflate. Finally, we propagated the 
transformed data (Fig.6) through the re-trained auto-associative network and 
obtained a new data set shown in Fig.7. For the latter data set we computed the PF 
distances and observe that after two successive reductions of the class separation, 
N N R C S  deflates the maximum at 64 ° and preserves the location of the maximum at 
15 ° (path" . . " i n  Fig.8). N N R C S  decreases the value of the maximum at 15 °. We 
view this as desirable because in our recursive optimization procedure [3] we can 
restore the actual value of the maximum found. 
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6 Summary and Conclusion 

We have discussed a method for the linear discrimination of two classes 
proposed by us in [3] previously. It searches for the discriminant direction which 
maximizes the Patrick-Fisher (PF) distance between the projected class-conditional 
densities. Since the PF distance is a highly nonlinear function, a sequential search for 
the directions corresponding to several large local maxima of the PF distance has 
been used. In order to ensure that a maximum already found will not be chosen again 
at a later stage we transform the data along a found direction into data with deflated 
maxima of the PF distance and iterate to obtain the next direction. For the success of 
this procedure it is important to preserve the location of  the large local maxima 
which were not found in the previous stages. 

In this paper we proposed a neural network implementation of our procedure for 
deflating a local maximum of  the PF distance. The neural network by performing a 
highly non-linear data transformation, increases the efficacy of the procedure. By 
means of a simulation we demonstrated that the neural network succeeds in a 
situation which was highly unfavorable to our method. It managed to preserve the 
location of the global maximum of the PF distance after deflating a large local 
maximum which was located close to the global one. 

The proposed neural network implementation can be used to reduce the class 
separation of the non-linear classification functions. In [4] we applied it for training 
an ML neural network by successive reductions of the class separation for the non- 
linear classification functions obtained by the ML network. It was proved that this 
training was more successful than conventional training with random initialization 
of the weights. 
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