
BANG-Clustering: A Novel Grid-Clustering
Algorithm for Huge Data Sets

Erich Schikuta and Martin Erhart

Institute of Applied Computer Science and Information Systems, University of Vienna
Rathausstr. 19/4, A-1010 Vienna, AUSTRIA

schiki@ifs, univie, a c . at

A b s t r a c t . In this paper a new approach to hierarchical clustering of
huge data sets is presented, which is based on a Grid-Clustering approach
[Sch96]. It uses a multi-dimensional grid data structure, the BANG-
structure, to organize the value space surrounding the pattern values.
The patterns are grouped into blocks and clustered with respect to the
blocks by a topological neighbor search algorithm.

1 I n t r o d u c t i o n

Conventional clustering algorithms show serious problems in clustering large
pat tern sets, due to hard-to-meet run-time and memory requirements of the un-
derlying algorithms. This led to the development of alternative methods, which
cluster the patterns according to the structure of the embedding space (see
[WK79], [Bro90], or [Sch96]). Based on this approach the BANG-Clustering al-
gorithm presented in this paper uses the block information of a modified multi-
dimensional BANG-file structure and clusters the patterns accordingly to their
surrounding blocks creating a respective dendrogram in turn.

According to the clustering algorithm classification presented by Dubes et
al. [D J80] BANG-Clustering can be identified as

- agglomerative - small clusters are combined to larger clusters,
- exclusive - clusters are not disjoint (i.e. non overlapping),
- intrinsic - only pat tern information is used,

hierarchical - produces a nested clustering, represented as dendrograms,
- polythetie - uses all pat tern features, and
- exhaustive - all patterns are clustered.

2 T h e B A N G - S t r u c t u r e

The BANG-Structure stores the patterns of the underlying value space by a grid
structure, which is called grid directory (similarly to the Grid-File). This struc-
ture (see figure 1), which is administrated by scales, partitions the k-dimensional
value space into grid regions (rectangular shaped subspaces). Each scale repre-
sents one pat tern attribute, and each scale entry resembles a (k-l) dimensional
hyperspace splitting the value space into two.

868

Each grid region is mapped to one data block containing the patterns, but
a data block can be mapped by more than one grid region (l:m mapping).
The union of these grid regions (mapping to the same data block) is called
block region. The value space spanned by a block region is rectangular shaped
(convex).

2.1 Represen ta t ion of the value space

The value space is partitioned into a hierarchical set of grid regions. Each region
is uniquely identified by a pair of keys (r, 1), where r is the region number and 1
is the level number.

The partitioning is binary (a region is split into two equally shaped regions) in
each dimension. The sequence of the split dimensions has to be uniquely defined.
An example is shown in figure 2. Region (0,0) comprises the whole value space
and is partitioned according the defined scheme into subregions.

data blocks

~ / gfiddire~tory

1 f"

scales

0,0 0,1 |,1

2,2 3,2 2,3 6,3 3,3 7,3

0,2 1,2 0,3 4,3 ,3 5,3

Fig. 1. BANG-Structure Fig. 2. Partitioning scheme

Contrary to the Grid-File a grid entry in the grid directory of the BANG-
Structure maps to only a single data block. This means that only block regions
are administrated, which results in a smaller grid directory than in the Grid-File.
The structure of the block regions is defined by the following two axioms [Pre87]

-- The union of all subregions into which the value space has been partitioned
must span the whole value space.

- If two subregions intersect, then one of these subregions completely encloses
the other.

The second axiom allows nested regions (contrary to the Grid-File), which is
shown in figure 3. To reach compact structures algorithms are defined [Fre87],
which guarantee a balance between the data blocks by redistribution. This
proved extremely useful for clustered value sets.

869

2 . 2 M a p p i n g s c h e m e

The pattern values are transformed to the scale (0.,1) in each dimension, Each
pattern is mapped into its respective region. The region is defined by the pattern
values in each dimension accordingly to the scales. The pattern value is Pi and
the extent of value space li in dimension i. The scale value di,h is defined by

di,l~ = lPi * 2z~J, (1)

and the scale value of a higher level ji is calculated simply from di,t~ by

di& !
d~,j~ = k ~ j . (2)

Based on this numbering scheme a value mapping function can be defined
by the following rules:

- Level 1+1 is created by splitting each region in a specific dimension.
- The number of regions of the splitting level 1 is 2 I.
- The region (r,1) is split into (r , l+l) and (r+2 Z, 1+1).
- Region number r and r+2 t are two possible extensions of the binary repre-

sentation of r by one bit (the most significant).
- The value space of a scale is doubled, if the splitting level in dimension i

increases from li t o / i+1 . This represents an extension by one bit.

Derived form these rules it is obvious that in region 0, level 0, i.e. (0,0), each
region of level 1 can be represented by t bits (1 > 0) in binary. A function bits(p)
can be defined, which returns the minimal number of bits of the value p by

bits(di,z,) = I~, Vl~ > O. (3)

Because of the situation that the sum of all sub-levels comprises the whole
value space, i.e.

it concludes that

l = ~ I~, Vh _> O, (4)
i = 1

bits() = bits(di, - l / = l, > 0. (5)

The mapping of the pattern values to a unique region number can now be
performed by a simple concatenation of the binary representation of the scale
values. Sub-levels with the domain 0 are neglected. The split of a dimension
doubles the number of grid regions (i.e. jr, 1+1] and jr*2 t, 1+1]). This is repre-
sented by adding one bit (the most significant one) in the region number and
another bit (the least significant one) in the sub-level of the dimension in focus.
By this algorithm the sequence of splits is fixed, in our special case it cyclic (the
domain of each dimension is between 0 and 1). This algorithm is depicted by the
Mapping-algorithm.

870

Mapping-algorithm

r=O; offset = i; k = O;

while (k < i) {

i = k rood n + I;

j = k div n + i;

if (l[i] >= j) {

r = r + offset * b[i, l[i] - j];

offset = offset * 2;

k=k+ I;

}
}

2.3 Logical Regions

As shown in figure 4 a logical region is build by a region comprising a given value
space (R1 in the figure) minus the value space of all regions contained in this
region (R2, R3, and R4 in the figure).

0,t

t 3,3 t7,5123,.~

1,2

R1 R2

U ?2

Fig. 3. BANG-Structure block regions Fig. 4. Logical regions

Generally each logical region is defined by a set of regions so that a (convex)
region contains the other regions, which in turn subtract from the first region.
The resulting space can be concave. The block regions are stored in the grid
directory. The data blocks contain the patterns of the respective logical regions.
All balancing is done on the logical regions. The directory contains unique bi-
nary tuples of the block regions. By sorting these tuples according to the levels
no ambiguity exists. By the mapping function always the smallest (largest by
numbers) levels is found. This tuple is searched in the directory. If" it is found the
algorithm finishes, otherwise the region is searched which comprises the respec-
tive grid regionJ Therefore, though the directory contains no information about

1 Obviously the algorithm stops in region (0, 0) which comprises everything.

871

the logical regions, the correct unique mapping of the tuples to the regions is
guaranteed.

2.4 Splitting and Merging

Splitting of a region is necessary if a tuple is inserted into a full region (data
bucket). The logical region is split into two regions - one region comprises the
other one - and the region containing more tuples is split iteratively until balance
is reached.

Merging is much simpler than for the Grid File due to lack of deadlocks. If
the number of tuples goes under a defined threshold a merging with the buddy
is tried. If there is no buddy the region is merged with the comprising region. If
the tuple number after merging exceeds the region limit a subsequent split has
to be done, which yields a better tuple distribution.

3 BANG-Clustering

The BANG-Clustering algorithm uses the block information of the grid directory
and clusters the patterns to their blocks accordingly.

3.1 Dens i ty Index

The algorithm calculates a density index of each block via the numbers of pat-
terns and the spatial volume of the block. The spatial volume VB of a block B
is the Cartesian product of the extents e of block B in each dimension, i.e.

= H Bi,i ; 1, . . . ,k. (6)

The density index DB of block B is defined as the ratio of the actual number
of patterns pB contained in block B to the spatial volume VB of B, i.e.

PB DB = (7)

The blocks are sorted accordingly to their density indices. Blocks with the
highest density index (obviously with highest pattern correlation) become clus-
tering centers. The remaining blocks are then clustered iteratively in order of
their density index, thereby building new cluster centers or merging with existing
clusters. Only blocks adjacent to a cluster, i.e. neighbors, can be merged.

3.2 Neighbors

Two types of neighborhood can be distinguished in the BANG-Structure, normal
neighborhood, i.e. neighbors respective block regions, and refined neighborhood,
i.e. neighbors respective logical regions. Further a neighbor degree can be de-
fined by the dimensionality of the "touching" area between 2 regions. Generally

872

the dimensionality can vary between 0 (an point) and k-1 (a k-1 dimensional
hyperplane). For the example shown in figure 5 (2-dimensional case) the level
of dimensionatity is 0 (a point) and 1 (an edge). A normal neighborhood exists
e.g. between regions R2 and R1, R3, R6, and RT, and a refined neighborhood
between regions R2 and R1, R6, and RT.

[]

8,4 12,4 14.4 9,4 3,4

Fig. 5. Grid directory, GD Pig. 6. GD figure 5 as binary tree

Neighbors are found by comparison of the scale values of the grid directory
(see the Neighbor-algorithm). If regions are at the same level, the differences
can be determined directly. If the levels are not at the same level, the lower
level region has to be transformed to the higher level region and the comparison
has to be done appropriately, tn the example of figure 6 the regions and their
identifiers are R1 = (0,0), R2 = (3,2), R3 = (9,4), R4 = (12,4), R5 = (8,4), R6
= (14,4), and R7 = (3,4). R6 and R2 are neighbors but on different region-levels
(R6 on level 4, with x =1 and y = 3, and R2 on level 2, with x =1 and y = 1).
Therefore we have to transform R2 to level 4, which yields in Z m i , ~ = 2 , z r n ~ x =

3, and Y,~i,~ = 2, Ymax = 3.
The region identifier are an ordered set of tuptes. To find possible neighbor

regions the algorithm accesses these tuples. To support this step etficiently we
designed a novel administration structure tbr the region identifiers. Because of
the numbering scheme of the grid regions we chose a binary tree for storing the
grid structure. The basic scheme is shown in figure 6. The split of a region is
directly supported by the tree scheme, and a comprising region is simply found
by backtracking the path to the root (representing the whole value space). The
height of the tree is defined by the number of region levels.

3.3 Dendrogram

The dendrogram is calculated directly by the clustering algorithm. The density
indices of all regions are calculated and sorted in decreasing order. Starting with
the first region (with the highest density index) all neighbor regions are deter-
mined and classified in decreasing order (step 1). The neighbor search is repeated
for each processed region. The found regions are placed in the dendrogram to
the right of the original regions (step 2), respective to the following rules,

873

Neighbor-a~orithm
neighbor(regionl, region2) {

AllowedCount = ... // to be specified;

// calculate grid values

UnmapKegion(regionl, grid);

UnmapRegion(region2, GridCmp);

if (levels of regionl and region2 are equal) {

count = O;

for (each dimension d) {

diff= abs(grid[d] - GridCmp[d]);

if (dill > I) break; // no neighbor

else count = count + I;
}

if (count > AllowedCount) { ... // this is no neighbor }

} else {

// transform higher to lower level - result in GridMin and GridMax

TransformLevel(regionl, region2);

count = O;

for (each dimension d)

// check that cmp[d] is in range [GridMin[d]-1, GridMax[d]+l]

if (count > AllowedCount) { ... // this is no neighbor }
}

}

- is R1 neighbor of R2 and R2 neighbor of R3 and R1 > R2 > R3, then build
with R1, R2, and R3 a cluster (neighbor search starting from R3), and

- is R1 neighbor of R2 and R2 neighbor of R3 and R1 > R2 < R3, then build
with R1, R2, and R3 a cluster (neighbor search starting from R2).

4 The BANG-Clustering System

We implemented the BANG-Clustering algorithm under the Unix operating sys-
tem using Xl l and the Motif libraries providing a user friendly environment,
named the BANG-Clustering System (see [SE97]). Running versions are avail-
able for Linux, Sun and HP workstations.

Compared in the performance to conventional hierarchical and partitional
algorithms and the Grid-Clustering method as well BANG-Clustering excelled
all these methods. It is capable to analyze data sets, which were previously not
tractable due to their size and/or dimensionality without any supplemental input
information. A more comprehensive comparison of the performance results can
be found in [SE97].

5 Summary

In this paper we presented BANG-Clustering, a hierarchical clustering method,
which is based on the idea to organizes the pattern set space, which is partitioned

874

D endrogram-a~orithm
dendrogram() {

// we build two lists:
// DendroList, contains the region with the highest density

// KestOfRegions, contains all other regions

DendroList = Firstgegion;
for (all regions x in DendroList) {

// now we are looking for all neighbors in RestOfRegions

FindNeighbors(x, KestOfKegions);
}

FindNeighbors(region, SetOfKegions) {
for (all regions x in SetOfKegions) {

if (neighbor(region, x)) {

// if a region is identified as a neighbor, it is inserted acc.

// to the density index, starting from the position of region x

InsertIntoDendroList(x);
}

}

by a multi-dimensional data structure. This method is an extension of the Grid-
Clustering algorithm presented in [Sch96], and is capable to dus te r pa t te rn sets
of sizes far beyond the limits of conventional methods.

References

[Brog0]

[DJ80]

[Fre87]

[Sch96]

[SE97]

[WK79]

A.J. Broder. Strategies tbr efl3cient incremental nearest neighbor search. Pat-
tern Recognition, 23:171-178, t990.
R. Dubes and A.K..Jain. Clustering methodologies in exploratory data analysis,
volume 19, pages 113-228. Academia Press, 1980.
M.W. Freestone. The bang file: A new kind of grid file. In Proc. Special Interest
Group on Management of Data, pages 260-269. ACM, May 1987.
E. Schikuta. Grid clustering: An efficient hierarchical clustering method tbr
very large data sets. In Proc. 13th Int. Conf. on Pattern Recognition, volume 2,
pages 10t 105. IEEE Computer Society, 1996.
Erich Schikuta and Martin Erhart. The bang-clustering system: Grid-based
data analysis. In X Liu, P. Cohen, and M, Berthold, editors, Advances in Intel-
ligent Data Analysis. reasoning about Data, Proc. Second [nternationat Sym-
posium IDA-97, volume 1280 of LNCS, London, UK, August 1997. Springer-
Verlag.
C.S. ~Varnekar and G. Krishna. A heuristic clustering algorithm using union

of overlapping pattern-cells. Pattern Recognition, 11:85-93, 1979.

