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A b s t r a c t .  In this paper a new approach to hierarchical clustering of 
huge data sets is presented, which is based on a Grid-Clustering approach 
[Sch96]. It uses a multi-dimensional grid data structure, the BANG- 
structure, to organize the value space surrounding the pattern values. 
The patterns are grouped into blocks and clustered with respect to the 
blocks by a topological neighbor search algorithm. 

1 I n t r o d u c t i o n  

Conventional clustering algorithms show serious problems in clustering large 
pat tern  sets, due to hard-to-meet run-time and memory requirements of the un- 
derlying algorithms. This led to the development of alternative methods, which 
cluster the patterns according to the structure of the embedding space (see 
[WK79], [Bro90], or [Sch96]). Based on this approach the BANG-Clustering al- 
gorithm presented in this paper uses the block information of a modified multi- 
dimensional BANG-file structure and clusters the patterns accordingly to their 
surrounding blocks creating a respective dendrogram in turn. 

According to the clustering algorithm classification presented by Dubes et 
al. [D J80] BANG-Clustering can be identified as 

- agglomerative - small clusters are combined to larger clusters, 
- exclusive - clusters are not disjoint (i.e. non overlapping), 
- intrinsic - only pat tern information is used, 

hierarchical - produces a nested clustering, represented as dendrograms, 
- polythetie - uses all pat tern features, and 
- exhaustive - all patterns are clustered. 

2 T h e  B A N G - S t r u c t u r e  

The BANG-Structure stores the patterns of the underlying value space by a grid 
structure, which is called grid directory (similarly to the Grid-File). This struc- 
ture (see figure 1), which is administrated by scales, partitions the k-dimensional 
value space into grid regions (rectangular shaped subspaces). Each scale repre- 
sents one pat tern attribute, and each scale entry resembles a (k-l) dimensional 
hyperspace splitting the value space into two. 



868 

Each grid region is mapped to one data block containing the patterns, but 
a data block can be mapped by more than one grid region (l:m mapping). 
The union of these grid regions (mapping to the same data block) is called 
block region. The value space spanned by a block region is rectangular shaped 
(convex). 

2.1 Represen ta t ion  of  the  value space 

The value space is partitioned into a hierarchical set of grid regions. Each region 
is uniquely identified by a pair of keys (r, 1), where r is the region number and 1 
is the level number. 

The partitioning is binary (a region is split into two equally shaped regions) in 
each dimension. The sequence of the split dimensions has to be uniquely defined. 
An example is shown in figure 2. Region (0,0) comprises the whole value space 
and is partitioned according the defined scheme into subregions. 

data blocks 

~ / gfiddire~tory 

1 f" 

scales 

0,0 0,1 |,1 

2,2 3,2 2,3 6,3 3,3 7,3 

0,2 1,2 0,3 4,3 ,3 5,3 

Fig. 1. BANG-Structure Fig. 2. Partitioning scheme 

Contrary to the Grid-File a grid entry in the grid directory of the BANG- 
Structure maps to only a single data block. This means that only block regions 
are administrated, which results in a smaller grid directory than in the Grid-File. 
The structure of the block regions is defined by the following two axioms [Pre87] 

-- The union of all subregions into which the value space has been partitioned 
must span the whole value space. 

- If two subregions intersect, then one of these subregions completely encloses 
the other. 

The second axiom allows nested regions (contrary to the Grid-File), which is 
shown in figure 3. To reach compact structures algorithms are defined [Fre87], 
which guarantee a balance between the data blocks by redistribution. This 
proved extremely useful for clustered value sets. 
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2 . 2  M a p p i n g  s c h e m e  

The pattern values are transformed to the scale (0.,1) in each dimension, Each 
pattern is mapped into its respective region. The region is defined by the pattern 
values in each dimension accordingly to the scales. The pattern value is Pi and 
the extent of value space li in dimension i. The scale value di,h is defined by 

di,l~ = lPi * 2z~J, (1) 

and the scale value of a higher level ji  is calculated simply from di,t~ by 

di& ! 
d~,j~ = k ~  j . (2) 

Based on this numbering scheme a value mapping function can be defined 
by the following rules: 

- Level 1+1 is created by splitting each region in a specific dimension. 
- The number of regions of the splitting level 1 is 2 I. 
- The region (r,1) is split into (r , l+l)  and (r+2 Z, 1+1). 
- Region number r and r+2 t are two possible extensions of the binary repre- 

sentation of r by one bit (the most significant). 
- The value space of a scale is doubled, if the splitting level in dimension i 

increases from li t o / i+1 .  This represents an extension by one bit. 

Derived form these rules it is obvious that  in region 0, level 0, i.e. (0,0), each 
region of level 1 can be represented by t bits (1 > 0) in binary. A function bits(p) 
can be defined, which returns the minimal number of bits of the value p by 

bits(di,z,) = I~, Vl~ > O. (3) 

Because of the situation that the sum of all sub-levels comprises the whole 
value space, i.e. 

it concludes that  

l = ~ I~, Vh _> O, (4) 
i = 1  

bits( ) = bits(di,   - l / =  l, > 0. (5) 

The mapping of the pattern values to a unique region number can now be 
performed by a simple concatenation of the binary representation of the scale 
values. Sub-levels with the domain 0 are neglected. The split of a dimension 
doubles the number of grid regions (i.e. jr, 1+1] and jr*2 t, 1+1]). This is repre- 
sented by adding one bit (the most significant one) in the region number and 
another bit (the least significant one) in the sub-level of the dimension in focus. 
By this algorithm the sequence of splits is fixed, in our special case it cyclic (the 
domain of each dimension is between 0 and 1). This algorithm is depicted by the 
Mapping-algorithm. 
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Mapping-algorithm 

r=O; offset = i; k = O; 

while (k < i) { 

i = k rood n + I; 

j = k div n + i; 

if (l[i] >= j) { 

r = r + offset * b[i, l[i] - j]; 

offset = offset * 2; 

k=k+ I; 

} 
} 

2.3 Logical Regions  

As shown in figure 4 a logical region is build by a region comprising a given value 
space (R1 in the figure) minus the value space of all regions contained in this 
region (R2, R3, and R4 in the figure). 

0,t 

t 3,3 t7,5123,.~ 

1,2 

R1 R2 

U ?2 

Fig. 3. BANG-Structure block regions Fig. 4. Logical regions 

Generally each logical region is defined by a set of regions so that a (convex) 
region contains the other regions, which in turn subtract from the first region. 
The resulting space can be concave. The block regions are stored in the grid 
directory. The data blocks contain the patterns of the respective logical regions. 
All balancing is done on the logical regions. The directory contains unique bi- 
nary tuples of the block regions. By sorting these tuples according to the levels 
no ambiguity exists. By the mapping function always the smallest (largest by 
numbers) levels is found. This tuple is searched in the directory. If" it is found the 
algorithm finishes, otherwise the region is searched which comprises the respec- 
tive grid regionJ Therefore, though the directory contains no information about 

1 Obviously the algorithm stops in region (0, 0) which comprises everything. 



871 

the logical regions, the correct unique mapping of the tuples to the regions is 
guaranteed. 

2.4 Splitting and Merging 

Splitting of a region is necessary if a tuple is inserted into a full region (data 
bucket). The logical region is split into two regions - one region comprises the 
other one - and the region containing more tuples is split iteratively until balance 
is reached. 

Merging is much simpler than for the Grid File due to lack of deadlocks. If 
the number of tuples goes under a defined threshold a merging with the buddy 
is tried. If there is no buddy the region is merged with the comprising region. If 
the tuple number after merging exceeds the region limit a subsequent split has 
to be done, which yields a better tuple distribution. 

3 BANG-Clustering 

The BANG-Clustering algorithm uses the block information of the grid directory 
and clusters the patterns to their blocks accordingly. 

3.1 Dens i ty  Index  

The algorithm calculates a density index of each block via the numbers of pat- 
terns and the spatial volume of the block. The spatial volume VB of a block B 
is the Cartesian product of the extents e of block B in each dimension, i.e. 

= H Bi,i ; 1, . . . ,k.  (6) 

The density index DB of block B is defined as the ratio of the actual number 
of patterns pB contained in block B to the spatial volume VB of B, i.e. 

PB DB = (7) 

The blocks are sorted accordingly to their density indices. Blocks with the 
highest density index (obviously with highest pattern correlation) become clus- 
tering centers. The remaining blocks are then clustered iteratively in order of 
their density index, thereby building new cluster centers or merging with existing 
clusters. Only blocks adjacent to a cluster, i.e. neighbors, can be merged. 

3.2 Neighbors 

Two types of neighborhood can be distinguished in the BANG-Structure, normal 
neighborhood, i.e. neighbors respective block regions, and refined neighborhood, 
i.e. neighbors respective logical regions. Further a neighbor degree can be de- 
fined by the dimensionality of the "touching" area between 2 regions. Generally 
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the dimensionality can vary between 0 (an point) and k-1 (a k-1 dimensional 
hyperplane). For the example shown in figure 5 (2-dimensional case) the level 
of dimensionatity is 0 (a point) and 1 (an edge). A normal neighborhood exists 
e.g. between regions R2 and R1, R3, R6, and RT, and a refined neighborhood 
between regions R2 and R1, R6, and RT. 

[] 

8,4 12,4 14.4 9,4 3,4 

Fig. 5. Grid directory, GD Pig. 6. GD figure 5 as binary tree 

Neighbors are found by comparison of the scale values of the grid directory 
(see the Neighbor-algorithm). If regions are at the same level, the differences 
can be determined directly. If the levels are not at the same level, the lower 
level region has to be transformed to the higher level region and the comparison 
has to be done appropriately, tn the example of figure 6 the regions and their 
identifiers are R1 = (0,0), R2 = (3,2), R3 = (9,4), R4 = (12,4), R5 = (8,4), R6 
= (14,4), and R7 = (3,4). R6 and R2 are neighbors but on different region-levels 
(R6 on level 4, with x =1 and y = 3, and R2 on level 2, with x =1 and y = 1). 
Therefore we have to transform R2 to level 4, which yields in Z m i , ~  = 2 ,  z r n ~ x  = 

3, and Y,~i,~ = 2, Ymax = 3. 
The region identifier are an ordered set of tuptes. To find possible neighbor 

regions the algorithm accesses these tuples. To support this step etficiently we 
designed a novel administration structure tbr the region identifiers. Because of 
the numbering scheme of the grid regions we chose a binary tree for storing the 
grid structure. The basic scheme is shown in figure 6. The split of a region is 
directly supported by the tree scheme, and a comprising region is simply found 
by backtracking the path to the root (representing the whole value space). The 
height of the tree is defined by the number of region levels. 

3.3 Dendrogram 

The dendrogram is calculated directly by the clustering algorithm. The density 
indices of all regions are calculated and sorted in decreasing order. Starting with 
the first region (with the highest density index) all neighbor regions are deter- 
mined and classified in decreasing order (step 1). The neighbor search is repeated 
for each processed region. The found regions are placed in the dendrogram to 
the right of the original regions (step 2), respective to the following rules, 
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Neighbor-a~orithm 
neighbor(regionl, region2) { 

AllowedCount = ... // to be specified; 

// calculate grid values 

UnmapKegion(regionl, grid); 

UnmapRegion(region2, GridCmp); 

if (levels of regionl and region2 are equal) { 

count = O; 

for (each dimension d) { 

diff= abs(grid[d] - GridCmp[d]); 

if (dill > I) break; // no neighbor 

else count = count + I; 
} 

if (count > AllowedCount) { ... // this is no neighbor } 

} else { 

// transform higher to lower level - result in GridMin and GridMax 

TransformLevel(regionl, region2); 

count = O; 

for (each dimension d) 

// check that cmp[d] is in range [GridMin[d]-1, GridMax[d]+l] 

if (count > AllowedCount) { ... // this is no neighbor } 
} 

} 

- is R1 neighbor of R2 and R2 neighbor of R3 and R1 > R2 > R3, then build 
with R1, R2, and R3 a cluster (neighbor search starting from R3), and 

- is R1 neighbor of R2 and R2 neighbor of R3 and R1 > R2 < R3, then build 
with R1, R2, and R3 a cluster (neighbor search starting from R2). 

4 The BANG-Clustering System 

We implemented the BANG-Clustering algorithm under the Unix operating sys- 
tem using Xl l  and the Motif libraries providing a user friendly environment, 
named the BANG-Clustering System (see [SE97]). Running versions are avail- 
able for Linux, Sun and HP workstations. 

Compared in the performance to conventional hierarchical and partitional 
algorithms and the Grid-Clustering method as well BANG-Clustering excelled 
all these methods. It is capable to analyze data sets, which were previously not 
tractable due to their size and/or dimensionality without any supplemental input 
information. A more comprehensive comparison of the performance results can 
be found in [SE97]. 

5 Summary 

In this paper we presented BANG-Clustering, a hierarchical clustering method, 
which is based on the idea to organizes the pattern set space, which is partitioned 
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D endrogram-a~orithm 
dendrogram() { 

// we build two lists: 
// DendroList, contains the region with the highest density 

// KestOfRegions, contains all other regions 

DendroList = Firstgegion; 
for (all regions x in DendroList) { 

// now we are looking for all neighbors in RestOfRegions 

FindNeighbors(x, KestOfKegions); 
} 

FindNeighbors(region, SetOfKegions) { 
for (all regions x in SetOfKegions) { 

if (neighbor(region, x)) { 

// if a region is identified as a neighbor, it is inserted acc. 

// to the density index, starting from the position of region x 

InsertIntoDendroList(x); 
} 

} 

by a multi-dimensional data  structure. This method is an extension of the Grid- 
Clustering algorithm presented in [Sch96], and is capable to dus te r  pa t te rn  sets 
of sizes far beyond the limits of conventional methods. 
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