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Abs t rac t .  This paper discusses three methods to test the significance 
of classification efficiency (i.e. the fraction of correctly classified patterns 
of a test set), which cam be applied to multiple class problems: the ex- 
act probability test, the Monte-Carlo test and the X 2 test. First, a short 
theoretical description of the three methods is given. The methods have 
been applied to different classification problems. A comparison is made 
in terms of the following criteria: required assumptions, power and time 
behaviour. To conclude, the paper describes a set of criteria for the se- 
lection of the appropriate classification efficiency testing method. 

1 I n t r o d u c t i o n  

Consider a classification experiment involving k pat tern  classes and applied to 
a test set (referred to, from now on, by superscript T),  independent of the set 
which has been used to design the classifier under study. The result of this 
experiment is a frequency distribution NT ~- (•ll,W ftl2,.W , ,  W of the .. nkk ) patterns, 
where n w represents the number of elements, belonging to class £2~, which have 
been assigned by the classifier to class $/j ( i , j  e { 1 , . . . ,  k}). The classification 
efficiency e for a set of pat terns is defined as the correctly classified fraction: 

k 

e = e ( g )  = y~k k (x 100%). 
i : 1  ~ j : l  ?~ij 

In the case of the test set members, we have e T = e(NT),  which can be consid- 
ered as an unbiased point estimation of the classification efficiency E{e T} = e 
at population level. Demonstrating the significance of e T, can be approached 
as a statistical hypothesis testing problem, where H0 - - t h e  null hypothes is- -  
expresses tha t  N w is generated by a random classifier. H0 is tested against the 
alternative hypothesis Hi: e > eo, where e0 is the expected efficiency under Ho. 
We consider different methods which can be used to perform the significance 
test  for k _> 2: the exact probability test [2, 3], the Monte-Carlo test [4], and the 
X 2 test (e.g. [8]). 



891 

In order to simplify the mathematical expressions, we introduce the following 
notations: 

s t s t 

n[s]j  = n i j  , ni[t] -~ nij  , nN[t ] = n i j .  

i-~l j = l  i-~1 j = l  

2 M e t h o d s  

The Exact  Probability Test. Testing the significance of the efficiency of a multi- 
class classifier can be performed by applying the following procedure[2]: 

1. search for the distributions N, belonging to the set Af>, defined as follows: 

k 2 
N = {NI N = ( n 1 1 , . . . ,  n k k )  e IN , nij  s a t i s f y  ( 2 ) , ( 2 ) } ,  

JY'> = {Y[  g e J~, nij  satisfy (3)}, 

referring to the constraints: 

V i e  {1 , . . . , k}  : 

V j e  { 1 , . . . , k }  : 

k k 

i = l  i~--1 

T 
ni[k] = ni[k], (1) 

n[~]j = n~]j, (2) 

(3) 

2. calculate 
k k cnt,-a]~ Cn,~ 

p>= Z i i i i  -,.-,,[,, -.r,l c~nf,l ' , (4) 
NEAt'> s = 2  t = 2  ~n[~]{*l 

where C~' = n ! / ( ( n  - n')!n'!) denotes the number of combinations in which 
n ~ objects can be selected from a set of n distinct objects; 

3. if p> < a (a is a chosen significance level), the null hypothesis H0 that  the 
distribution N w was obtained through random classification, is rejected in 
favour of the alternative hypothesis H1 that the efficiency of the classifier 
under study is higher than expected under H0. 

This procedure is based on the idea that  distribution N T is a member of the 
population of distributions N with the same marginal totals in the rows and 
columns of the k x k contingency table (i.e., a square table containing the n~j 
values, where i is the row index and j ,  the column index) - -which is expressed 
by constraints (1) and (2). The terms in (4) are the exact probabilities, under 
H0, of those distributions showing the same or a higher classification efficiency 
than N w --which is expressed by constraint (3). 



892 

The Monte-Carlo Test. This method is based on a comparison of the distribu- 
tion N T with the members of a sample of distributions Af a, which have the same 
marginal distributions as N w and which are generated by a truly random classi- 
fier. The generation of distribution sample Af R can easily be performed through 
stochastic simulation: in order to obtain one member of it, it sufficient 

- to start with a sample of patterns containing for each class f2i, niT[k] class 
members, 

- to rank these patterns randomly, yielding a random series, 
- to assign the first n~] 1 pattern of this series to class/21, the subsequent n[T]2 

patterns to class ~22 ... and so on. 

The size f of 3f  R (i.e., f = # { N  [ N E HR}) should be chosen carefully. The 
author suggests to use an f value, exceeding the values fmin given by Table t 
[4]. 

Table 1. Suggested values for fmi, for different values of the significance level a. 

In order to perform the Monte-Carlo test[6], we define the frequency dis- 
tribution fl of the efficiencies e(N), calculated for the elements of sample A/rt, 
i.e.: 

k 
n T V l e l , . . . ,  [kl[k] : f l = # { N [  N E N  a , ~ n i i = l } .  

i----1 

The test procedure consists of calculating 

T) ~N-,n[kl[~] 
\Z-,/=zT fl + 1 k 

t with l T ~ T 
= = l t i l  ~ 

P> f +  1 i=1 

and rejecting the null hypothesis Ho if p~ < a (o~ is a chosen significance level). 

The X 2 Test. Here again, distribution N T, obtained through the classification 
experiment on a test set, is regarded as an instance of the population of distri- 
butions, having the same marginal distributions. Under the null hypothesis Ho 
that the population was obtained through random classification, the probabil- 
ity that a pattern, belonging to class /?i, is assigned by the classifier to f2j, is 
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independent of the former class; this probability is obviously n T ,In~k k There- [ b  [][ ]" 
W fore, since the subsample size of the patterns, belonging to class ~2i, is ni[k] , the 

expected value n E of nij under H0, is: 

n T n T 

nE. i[k] [k]j ~3 : a T 
[kl[k] 

In order to obtain a X 2 testing procedure for the appropriate alternative 
hypothesis as specified in Sect. 1, we define nc and nw: 

k 

= nc nii and nw n[k][k] -- nc, 
i--1 

symbolising resp. the number of correctly and wrongly classified patterns in a 
sample. The test starts with the calculation of 

E n E n w 

Tables of critical v a l u e s  Xc2r i t (df  : 1) or probabilities Pcrit associated to critical 
values for the )/2 test, can be found in any standard text book on statistics 
(e.g. [8]). The null hypothesis H0 should however only be rejected, when two 
conditions are satisfied simultaneously: 

1. n T ) nn'c, 
2. h > X2rit ( df = 1). 

Consequently, since under H0 condition 1 occurs with a probability of 0.5 and is 
independent of condition 2, the tabulated probability Pcrit must be halved. To 
enable a comparison between the different techniques, we set p~ = Pcrit/2 and 
describe the testing procedure as rejecting H0 in favour of H1, when condition 1 
is verified, and p~ < a (a is a chosen significance level). 

3 E x p e r i m e n t s  

3.1 Experiments Involving Ulcer Patient Data 

The methods have been applied to the distribution, already described in [2], 
shown in Fig. 1 and taken from [1]. The exact probability test, applied to this 
example, yields p> = 5.85 × 10 -5. The Monte-Carlo test, used with ] values of 
103 , 104 , 105, 106, 10 T, yields ld> values of resp. 10 -a , 10 -a,  6.0x 10 -5, 6.6 x 10 -5, 
5.87 × 10 -5. The X 2 testing method yields: p~. = 4.08 × 10 -5. 

We also reduced artificially the size of the test set, by replacing the entries 
n T. of the contingency table by the rounded result of n T / 3 ,  and we applied both ~3 

the exact probability test and the )/2 test. The methods yield resp. p> = 1.13% 
and p~ = 0.68%. 
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9 713 
15 17 13 
3 728 

Fig. 1. Contingency table, showing classification results for the data of 102 ulcer pa- 
tients; the three classes correspond to three types of pathology evolution. 

3.2 Eva luat ion  of  T ime  Behav iour  

The exact probability test and the Monte-Carlo test have been implemented in 
the C programming language on a SPARCstation 1, under the Solaris UNIX 
operating system. Source code can be obtained from the author (via electronic 
mail only). 

In order to illustrate the behaviour of the exact probability testing method, 
we applied it to a number of uniform N rr distributions, i.e. where all n w are 
equal to the same value n. Figure 2 shows for different values of k and n the size 

I[k[ t# of terms[,> I[ 
1 30 0.61 

3 2 204 0.58 
3 748 0.57 

4 1 5532 0.59 
2 501394 0.55 

5 1 11809690 0.58 

Fig. 2. Number of terms, to be calculated and summed to yield p> in the worst case of 
a contingency table showing a uniform distribution (all n w = n) of the test set patterns 
over the k classes. 

of A/'> and consequently, the number of terms that  have to be evaluated in the 
T = 5 (for all values of i and j )  - -  right hand side of (4). For k = 5 and n~W[k] = n[k]j 

like in the last row of the table in this figure--,  but  with e T -- 40%, the number 
of terms in (4) is still 1254250. In order to calculate the exact probability value 
(p> = 1.95%), the mentioned computer program needs about  393s of computing 
time; the Monte-Carlo testing program needed about 3.4s, to obtain a p~ value 
of 2.04% with f = 30000; (the X 2 test yielded p~ = 0.62%). 

In order to show the applicability of the Monte-Carlo method for much larger 
problems~ we applied it to a problem involving 10000 test patterns: k = 10, 
nWi[k] : 1000 and n[k] jT = 1000 (for all values of i and j ) .  We applied the technique 

with f = 30000 (for different efficiency values); in all cases, the computing t ime 
was about  1440s. For a classification efficiency of 10.5%, we obtained p~ = 5.0% 
(X 2 test: p~ = 4.8%); for a classification efficiency of 11%, we obtained p~ = 
7.7 × 10 -4 (X 2 test: p~ = 4.3 x 10-4). 
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4 D i s c u s s i o n  a n d  C o n c l u s i o n  

From a theoretical point of view, the most appropriate test method of the ones, 
proposed here, is the exact probability method: 

- it maximally exploits all available information in the distribution of the test 
set patterns and in that sense it is power efficient; 

- its application does not require the choice of other test procedure parameters 
than a, the significance level (unlike the Monte-Carlo method, which requires 
the choice of f);  

- it does not require special assumptions, like the )/2 test where the calculated 
h-variable is assumed to satisfy a )/2 distribution. 

As a first conclusion, we recommend the reader to use the exact probability test, 
whenever the size of the problem does not prevent its use due to combinatorial 
explosion (as described in Sect. 3.2 and illustrated by Fig. 2). 

The Monte-Carlo test is as reliable as the exact probability test, but its power 
is greatly influenced by the statistical experiment, which not only consists of ob- 
serving the distribution N T of test set patterns, but also includes the observation 
of a set N a of distributions, generated through the stochastic simulation of a 
random classifier. The null hypothesis Ho is actually the hypothesis that N w and 
the f members ofAf R are taken from the same population (i.e.: obtained through 
random classification). Choosing a small f-value weakens the testing procedure 
as demonstrated in Sect. 3.1; as a consequence, p~ values are higher than the 
exact probability value p>; it can however been shown that. limf_~oo p~ = p> [4]. 
The time behaviour of the method for larger problems on the other hand, is more 
favourable than the exact probability method; time consumption is practically 
independent of k and a and is linearly dependent on the total number nW[k][k] of 
test set patterns. As demonstrated in Sect. 3.2, the method can be successffilly 
applied for large test sets, provided that the f-value is chosen with care (e.g., 
using the table of Fig. 1). In [4], a slightly more complicated, but more refined 
methodology for choosing f ,  is described. As conclusion of this paragraph, we 
recommend the reader to use the Monte-Carlo test method as an alternative to 
the exact probability test; its application is also limited by the size of the prob- 
lem and by the quality of the pseudo-random number generator, used during 
stochastic simulation (we use function ran0 () (cf. [5])). 

The X 2 test method outperforms the other methods so far as computing time 
consumption is concerned: it essentially involves the calculation of the value of h 
(requiring mainly a sum of k 2 values to obtain w n[k][k] , a sum of k values to obtain 

n T and a sum of k simple expressions to obtain nc E) and the calculation of p~ or 
)/2rit(d f ~ 1) .  When applying the )/2 testing method, one should however bear 
in mind that it is based on an assumption which is never fully satisfied and in 
some cases may severely be violated: the calculated test variable h is assumed 
to satisfy a )/2-distribution. This probably explains why the values of p~ are 
systematically lower than p>. (Like in parametric hypothesis testing methods, 
the introduction of supplementary assumptions enhances the power of the test). 
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Also, the difference between p~ and p> decreases for increasing test set sizes 
and for increasing significance levels. Textbooks (e.g. [7]) mention that  a valid X 2 
test, applied to the cell frequencies of a contingency table, can only be performed 
under very specific conditions: all expected frequencies n E should at least be 1 
and at least 80% of the cells should have an expected frequency, exceeding 5. The 
example of Sect. 3.2, where k = 5, niT[k] = nw[k]j = 5 and e T = 40% is an example 

where the method should not be applied (which is confirmed by the unacceptable 
difference between p~ = 0.62% and p> = 1.95%). The last paragraphs of 3.1 and 
3.2 illustrate that ,  even when the mentioned criteria are satisfied, one should be 
careful in using the )/2 method. We conclude this paragraph by suggesting to 
use the X 2 test only when the size of the problem prohibits the use two other 
methods; in tha t  case, we recommend the choice of a sufficiently high significance 
level. 
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