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Abstract. We demonstrate that a very simple stochastic model based on 
nonlinear transformation of Gaussian random fields can be successfully used 
to model homogeneous non-Gaussian natural backgrounds observed in a wide 
range of airborne and spacebome sensor imagery. We use this model to 
simulate backgrounds ranging from IR forest terrain to SAR woodland and 
SAR sea surface imagery. The model reproduces the histogram, second-order 
correlations, and third-order correlations measured in the real imagery. We 
discuss applications in the design and analysis of algorithms for automatic 
detection and recognition of objects embedded in natural imagery. 

1 Introduction 
Stochastic models of backgrounds are required for the rigorous analysis of automatic 
detection and recognition in natural imagery. They are necessary tor the design of 
optimum algorithms; decision theory provides a powerful mathematical framework for 
designing optimum detection and recognition strategies, but requires knowledge of the 
probability density for the multidimensional data vector under the assumed 
hypotheses. Stochastic models are also useful for generating large numbers of 
background images for Monte Carlo testing of algorithms when the cost of obtaining 
large quantities of real image data is prohibitive. 

A research program is currently underway at DSTO to investigate stochastic 
modeling approaches to the design and analysis of algorithms for automatic detection 
and recognition of objects in airborne and spaceborne sensor imagery. A problem is 
that the spatial statistics of natural backgrounds in high resolution imagery are quite 

often non-Gaussian 1,2, and are therefore difficult to characterise and model. The usual 
approach is to use a stochastic model that is constrained to have a specified histogram 
and second-order correlation function (but which might differ from the real 
background in higher-order correlations). Even with this limitation, most techniques 

currently available are complicated and computationally intensive 3,4, and this has 
restricted their application in detection and recognition problems. 

We have found that a very simple stochastic model based on the pointwise 
nonlinear transformation of Gaussian random fields (GRF's) can be successfully used 

to model and simulate infrared (IR) homogeneous natural terrain imagery 5. Our model 
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is based on a modification of a method used in Ref. 6, is straightforward to set up and 
implement, and allows simulations to be generated rapidly. 

We show here that the same model can also be successfully applied to synthetic 
aperture radar (SAR) natural imagery; in particular, airborne SAR woodland and 
spaceborne SAR sea surface imagery. The woodland imagery is particularly difficult 

to model and simulate by other means 2. We have computed histograms, second-order 
covariances, and some third-order covariances and demonstrate that the model gives 
results in good agreement with those of the actual data. We describe the current and 
future directions of our work on applying the model to detection and recognition 
problems. 

2 The stochastic model 
To set up the model, we pass sample images of the background of interest through an 
invertible pointwise nonlinear transform that has been specifically designed so that the 
transformed samples have a Gaussian marginal probability density. The 
transformation function F(x) is obtained from the histogram P(x) of the original 
samples: 

F(x) = q~'erf -1 2 P(x')dx" - 1 . (1) 

Here erf -1 denotes the inverse of the error function. The essence of our model is to 
treat the transformed samples as realisations of a GRF. We estimate the second-order 
covariance function for this GRF by directly computing the covariances in the 
transformed samples. We then simulate the original imagery by generating new 
realisations of the GRF with this same correlation structure using one of a number of 
fast algorithms, for example that of Ref. 7, and passing them back through the inverse 
transformation. 

3. Backgrounds and simulations 
Figure 1 shows three different terrains. On the left are real images obtained from field 
trials. The IR forest image is from an ensemble of 254 images, each of size 136 × 272 
pixels, obtained from an airborne sensor in the IR. The SAR woodland image was 
acquired from an airborne X-band sensor, and is of size 512 × 512 pixels. The SAR 
sea surface image was taken from C-band RADARSAT data (standard mode 3), and is 
of size 256 x 256 pixels. Both SAR images are log-amplitude and have not been pre- 
processed to reduce speckle. 

The figures on the right show simulations using the model. In the case of the IR 
forest terrain, the model is set up using all of the available images in the ensemble. 
This is necessary to obtain reliable statistical estimates because of long-range 

correlations that extend over the width of the imagery 1. In the case of the SAR images 
only a single sample image is required. The visual appearance of the simulations is 
very good, and we have found this to be generally true for backgrounds that are not 
too highly structured in appearance. 
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Fig. 1. Real and simulated terrain images 
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4. Image statistics 
The simulations reproduce the histograms, second-order covariances, and third-order 
covariances found in the real imagery, to a good approximation. The second-order and 
third-order covariances for a homogeneous random field x(r~) with mean 

/~ = E[x(N)I are defined as follows: 

+ 

C3(k,-[):E[(x(Tn)-lz)(x(Fn+k)-l~)(x(fn+[)-#) ] (3) 

Our estimates of these quantities are obtained by spatial averaging over each image 
in the usual way, and then averaging over the ensemble of images in cases when an 
ensemble is available (ie. for the IR forest imagery). Figures 2-4 give examples for the 
IR forest, SAR woodland, and SAR sea surface imagery, respectively. In the case of 
the IR forest imagery we compute the statistics of the simulations from an ensemble of 
254 simulated images, and the 1-standard deviation error-bars shown are obtained in 
the manner described in Ref. 1. 

In each of these figures, (a) shows the histograms for real and simulated imagery, 
(b) shows the second-order covariance in the horizontal and vertical directions for real 
(dash-dot) and simulated (solid) imagery, and (c) shows some third-order covariances 
for real (dash-dot) and simulated (solid) imagery. The third-order covariances 

correspond to pixel displacements k = 0 and T lying in the horizontal and vertical 
directions. 

The IR forest and SAR woodland backgrounds exhibit rich correlation structures 
that extend over many pixels, while the SAR sea surface image exhibits correlations 
over a small number of pixels. Although the model does not explicitly constrain the 
covariances to match those in the real background, the second-order and third-order 
covariances appear to be in good agreement; in cases where we have enough data for 
reasonable error-bar estimates, the real and simulated covariances lie within the error- 
bars tbr much of the lag range (see Fig. 2). 

5. Current and future directions: automatic detection/recognition 
Our current investigations involve the analysis of automatic detection and recognition 
in airborne and spaceborne sensor imagery. We have evaluated the effectiveness of 
the model for Monte Carlo testing of small target detection algorithms and have 
obtained promising results. We have inserted artificial targets into ensembles of real 
and simulated imagery, passed them through a number of detection algorithms and 
computed probabilities of detection and false alarm rates. Figure 5 shows a typical 
result for point target detection using a 3x3 median subtraction filter followed by a 
threshold. The results for a simple global threshold are also shown for comparison. 
Statistical performance predictions obtained using the model are in good agreement 
with those using real imagery. We are currently evaluating the model against more 
complex algorithms for extended target recognition. 
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Fig. 2. Statistics of  IR forest image ensemble 
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Figure 5. Receiver operating characteristics for detection of small targets inserted in IR forest 
images 

Future work will involve the design of optimum algorithms. One promising 
approach is to transform the imagery into the "Gaussian-space" where the probability 
density for the multidimensional data vector for the background can be taken to be 
known, and then designing an optimum algorithm for the transformed imagery. Since 
the transform is invertible, no information is lost in the process. 
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