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A b s t r a c t .  Two parameter learning schemes for Gibbs random field im- 
age models with translation invariant multiple pairwise pixel interactions 
are discussed. The schemes allow to estimate both the interaction struc- 
ture and strengths (Gibbs potentials) from a given training sample. The 
first scheme is based on the unconditional MLE of the potentials. The 
estimates are specified in an implicit form and can be obtained in three 
steps: (i) an analytic first approximation of the potentials for a big many 
possible neighbours, (ii) a search for most characteristic neighbours, and 
(iii) a stochastic approximation refinement of the estimates for a chosen 
set of neighbours. The second scheme uses the conditional MLE suggest- 
ing that the training sample has the least upper bound (top rank) in 
its total Gibbs energy within the parent population. This scheme allows 
to deduce an explicit, to scaling factors, analytic form of the potentials. 
Then only the scaling factors have to be learnt using their MLE in a 
like three-step manner. The conditional MLE of the potentials seems to 
be close to the unconditional ones and extends capabilities of the Gibbs 
image models. 

1 I n t r o d u c t i o n  

Gibbs random field (GRF) models describe digital grayscale images presented 
on a finite 2D lattice in terms of an explicit geometric structure and quantita- 
tive strengths of pixel interactions (see, for instance, [2, 3, 10]). The interaction 
between several pixels indicates how the marginal probability distribution of 
gray levels in these pixels differs from the like distribution for the independent 
random field (IRF): the larger the difference, the stronger the interaction. 

Usually, the interactions are represented by a neighbourhood graph connect- 
ing the interacting pixels called the neighbours. In the Maxkov/Gibbs models, 
basic elements of the interaction structure axe cliques, or complete subgraphs of 
the neighbourhood graph [2]. For brevity, the same terms "clique" and "clique 
family" are used for the like elements, but not the cliques in the strict sense, in 
the non-Markov Gibbs models IS]. These latter models take account of admissible 
gray range changes in the images. 

The interaction strength for a given clique is specified by a (Gibbs) poten- 
tial being a scalar function of the gray levels in the clique: the stronger the 
interaction, the higher the potential value [2]. 
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We restrict the consideration only to the Markov and non-Markov Gibbs 
models with the translation invariant multiple pairwise pixel interactions [6, 8]. 
These models are promising in simulating and retrieving specific spatially ho- 
mogeneous image textures [6, 8, 9] and in segmenting piecewise-homogeneous 
textures [7]. Such textures, called stochastic textures in [6, 8], have the interac- 
tion structure given by a first-order clique family of the pixels themselves and 
by several second-order clique families of the translation invariant pixel pairs. 

Traditional Gibbs models, in particular, auto-binomial and auto-normal ones 
[2, 3, 10], possess mostly pre-defined interaction structures and potentials. Thus 
they have rather restricted potentialities in modeling different natural and artifi- 
cial image textures. Models with multiple pairwise pixel interactions are adapted 
more easily to various textures because both the interaction structure and the 
potentials are learnt from a given training sample. 

The paper is organised as follows. Section 2 gives a brief overview of the Gibbs 
image models of homogeneous grayscale image textures. Section 3 describes the 
learning scheme based on the unconditional MLE of the potentials. The poten- 
tials are implicitly specified by a system of stochastic equations to be solved 
first by an analytic and then by a stochastic approximation. Section 4 presents 
the alternative scheme based on the conditional MLE. The additional condition 
suggests that  the training sample attains the least upper bound in total Gibbs 
energy within the parent population. This allows to deduce an explicit, to scaling 
factors, analytic form of the potentials and then approximate only these factors. 
Discussion and concluding remarks are given in Section 5. 

2 Gibbs Models of Stochastic Image Textures 

2.1 A s s u m p t i o n s  and N o t a t i o n  

Let R = {(re, n) : m = 0 . . . .  , M -  1; n = 0 , . . . , N -  1} be a 2D finite 
rectangular lattice with M .  N pixets i = (m, n) supporting digital grayscale 
images g : R -+ Q. Here, Q = {0 , . . . ,  qmax} is a finite set of gray levels (GL). 

Let A be an index set for the pairwise clique families and Ca = {(i , j )  : 
i , j  E R; i - j = consta} denote a particular family with a E A. This family 
has a specific pixel arrangement in the pairs specified by a fixed 2D inter-pixel 
shift consta = (#~ ,~ ) :  if i = (re, n) and j = (m t ,n  ~) then ra t - m = #a and 
n l  - -  n ..~ / In  . 

The interaction strength for the first-order clique family R is given by a 
Gibbs potential function V : R ~ T4 of a gray level (GL) in the pixel. Here, T~ 
denotes the set of real numbers. 

The interaction strength over each second-order family Ca is assumed to 
be a function Va : D -+ T~ of a GL difference (GLD) d = g(i) - g(j)  C D = 
{--qmax,.-. , 0 , . . .  ,qmax} in the clique ( i , j )  C Co.. 

2.2 Markov and N o n - M a r k o v  Gibbs  M o d e l s  

The Markov/Gibbs model introduced in [6] takes into account only arbitrary 
shifts of the gray ranges. More flexible non-Markov Gibbs model in [8] allows 
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for arbitrary changes of the gray ranges: grayscale images g C {gl, g2,...} that 
differ only by gray ranges should have the same Gibbs probability as their nor- 
matised reference image grf. The  gray range normalisation maps initial gray 
ranges [ ~  g(i), n ~  g(i)] onto the maximum range [0, qmax]. The non-Markov 

model embeds this normalisation g --+ grf directly into the Gibbs potentials so 
that the the Gibbs probability distribution (GPD) of the images is as follows: 

1 
Pr(glV) = ~vv .exp (E(gr~tV)) (1) 

where E(grf lv ) = e(grflv ) + Ee~(grflva ) is a total Gibbs energy of pixel inter- 
aCA 

actions in the image g under the potentials V = (V, Va : a E A) for all the clique 
families. For brevity, indices "rf" of the normalised images are omitted below. 
Here, e(g[V) = E V ( g ( i ) )  denotes a partial energy of the pixetwise interactions, 

iER 
ea(glVa) = E Va(g(i)-g(j)) is a partial energy of pairwise pixel interactions 

(~,j)eco 
for the clique family Ca, Zv = E exp(E(g]V)) denotes a scaling factor, and 6 

gE~ 
is the parent population of all grayscale images supported by the lattice R. 

The parameter estimation schemes for the model of Eq. (1) are just the same 
as for the above-mentioned Markov/Gibbs model in [6] except for the gray range 
normalisation of a given training sample. 

3 Learning Based on the Uncondit ional  MLE of 
Potent ia l s  

3.1 Sufficient Stat is t ics  

The partial interaction energy can be represented as a dot product of the centered 
potential vector and the vector of relative sample GL or GLD frequencies, that 
is, of normalised GL or GLD histogram (H) collected over the reference image 
g (see [6, 8] for more detail): 

e ( g I v )  : IRI . F(ql ); 

q6Q 

ea(glVa)  = IRlpa" EVa(d)" Fa(d[g). (2) 
d@D 

Here, F(qlg ) = I-~1" E 5 ( q -  g(i)) and Fa(dlg ) = 1 . Vcz; E 5 ( d -  (g(i) - 
i~R (~,/)~c~ 

g(j))) are the normalised GLH and GLDH, respectively, ] . . .  ] denotes the set 
JC~l and 50 is the Kronecker function. cardinality, Pa = IRI ' 
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The potentials in Eq. (1) are centered as follows [6]: 

~ v ( q )  = 0; w e A ~ V ~ ( d )  = 0 (3) 
qEQ d@D 

that can be deduced from tile unique representation of the Gibbs probability 
distribution (GPD) by a relative Hamiltonian [4]. This centering implies the 
similar centering of the histograms in Eq. (2). Below, both the potentials and 
the histograms are assumed to be centered. 

The resulting exponential family representation of the GPD [1] shows that 
the centered GLH and GLDHs for all the clique families form su]ficient statistics 
for the model of Eq. 1. It, can be proven that conditions imposed in [1] to ensure 
strict tog-concavity of the GPD (or unimodality of the likelihood function) hold 
for this model. 

3.2 Learning the Model Parameters 

Both the characteristic clique families and the potentials are learnt from a given 
training sample gO using analytic and stochastic approximation of the MLE of 
the potentials. This learning scheme introduced in [6, 8] is as follows: 

(1) AnMytic first approximation: 

Vq e q vc0J(q) = ,\I01 F(qlg°); 
Va E A; Vd E D ~,,[0](d) = ~[0]" (Fa(dlg °) - ~Irdif(d)) (4) 

(2) 

(~) 

where ]~'/-dif(d) denotes the centered marginal probabilities of the GLD for 
the IRF (it is easily shown that Mdif(d) - 1 ~  1 (l+qm~x) 2 1+2.q--~) and the 
factor A[0 ] is computed from the same centered normalised GLH and GLDHs, 
too (see [6] for greater detail). 
Search for most characteristic interaction structure using approximate par- 
tial Gibbs energies of Eq. (2) with the potentials of Eq. (4) for comparing a 
big many possible clique families a E W within a large search window W. 
Refinement of the potential estimates for the chosen families by a stochastic 
approximation technique proposed in [11]. 

The search window W is specified by a given range of the intra-clique pixel 
shifts I#a[ _< #max, Ival _< ~max to be exhausted during the search. The partial 
energies over the search window form a model-based interaction map that allows 
to choose most characteristic clique families using an appropriate thresholding 
technique (see [6, 9] for more detail). 

The above learning scheme gives good results in simulating different natural 
textures [6, 8]. These results show that there exist such natural textures that 
can be considered as the stochastic ones described by the model og Eq. (1) with 
the learnt parameters. But, such a learning involves rather big number of the 
potential values to be refined individually by stochastic approximation: in total, 
qmax" (2" IAI + 1) scalar values. Below, we consider a somewhat different learning 
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approach based on an explicit, to scaling factors, form of the potentials. In this 
case the number of parameters to be computed and refined is reduced to only 
the number IAt of the clique families. 

4 Learning Based on the Conditional  MLE of Potent ials  

4.1 Expl ic i t  Fo rm of  the  Potent ia l s  

The explicit form of the potentials is deduced under a specific ranking of the 
training sample gO within 9. The desired potential estimates are obtained using 
the MLE of the scMing factors or, what is the same, the conditional MLE of the 
potentials (CMLE) provided that the training sample g° attains the least upper 
bound (top rank) which is feasible for it within G in the total Gibbs energy [5]. 

Let us rank the images g C G in ascending order of the partial Gibbs energy 
(in particular, e(gIV ) for the pixelwise family R or ea(glVa) for the pairwise 
family Ca; a C A). It is easily seen from Eqs. (1) and (2) that this ranking is 
invariant to potential (and energy) normalisation that reduces the corresponding 
potential vector V = (V(q) : q ~ Q) or Va = (Va(d) : d C D) to the unit vector 

v v = 1-~ or va = tv-~ ' respectively. 

Let F(g °) = (F(qlg °) : q C Q) andFa(g  °) = (F~(dlg °) : q E Q) denote 
the vectors of the centered marginal GL sample frequencies and of the marginal 
GLD sample frequencies for the clique family Ca, respectively. Then it is readily 
shown that unit vectors v ° = ..... iF(go)iF(g°) and va° = iFo(go)iF°(g°) maximise the normalised 
partial energies e(g ° Iv) and ea (g° Ivy), respectively. 

Each potential vector obtained by arbitrary scaling of such a unit vector 
places the training sample gO to the same least top rank in a corresponding 
partial energy among the samples g E ~ as compared to any other potential 
vector. Let the least top rank principle be applied to the ranking in the partial 
energy for each the clique family of the model in Eq. (1). Then the potentials 
V = (V, Va : a C A) ranking the training sample to a feasible top place within 
in the total Gibbs energy have to possess the following explicit, to scaling factors, 
form: 

V°(A) = ()~. F(g°),)~a "Fa(g°) : a e A). (5) 

Here, A = ()~, A~ : a C A) is a vector of arbitrary positive scaling factors. 

4.2 Condi t iona l  MLE of  the  Potent ia l s  

Therefore, the CMLE of the Gibbs potentials V* _= V ° (A*) for the image model 
of Eq. (1) is as follows: 

v*  = (~*. F (F ) ,  ~ .  Fa(F)  : a e A) (6) 

where the desired scaling factors are computed by maximising the likelihood 
function L(Atg °) = in Pr(g ° IV ° (A)): 

A* = argmAax L(dlg°).  (7) 
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Generally, this CMLE may differ from the unconditional MLE of the poten- 
tials. But, for the GPD of Eq. (1) both the estimates are supposedly fairy close 
if not equivalent. This conjecture that needs further theoretical investigations 
has some supporting considerations: in particular, (i) the CMLE of Eq. (6) and 
the analytic first approximation of the unconditional MLE of Eq. (4) have very 
similar forms, (ii) the refined potentials are usually close to their first approx- 
imations, and (iii) the samples possess fixed ranks not only under the uniform 
scaling of the potentials but also, by symmetry, under the like scaling of the 
centered sample histograms. 

4.3 Learning the Factors 

The desired factors of Eq. (7) are learnt in a similar way as the potentials them- 
selves in [6, 8]: first, by the analytic first approximation and searching for a 
characteristic interaction structure and then by refining the factors for chosen 
clique families using the stochastic approximation. 

The analytic first approximation of the factors is obtained by a truncated 
Taylor's series expansion of the likelihood function L(AIg °) about the zero point 
A = 0. This technique is quite similar to that proposed in [6, 8] and results in 
the following approximation: 

where 

and 

A[o] = a[o] - C[o]; 

Va  E A Aa,[o] = a[o] • &, [o ] ,  

= Z F (qlg °) 
qEQ 

(8) 

&,[0] = Pa " E (Fa(dl9°) - Mmf(d)) • F~(dIg °) 
dED 

are relative pixelwise and pairwise total Gibbs energies about the zero point, 
respectively. The scale factor a[0] is computed from these energies as follows: 

where 

4J + Z41o} 
aEA 

 [o1 Viol +  4co1 Volo; 
acA  

(9) 

U[o ] - E O ' i r f  • F2(qlg°); 
qEQ 
X-~ 

F2~d,  o, Ua,[o] = Pa " ~ O ' d i f "  a [  }g ), 
dED 

(lo) 



987 

a n d  O'ir f and aair denote variances of the marginal frequencies of the GL and 
GLD for the IRF, respectively. 

Search for the interaction structure exploits in this case the weighted relative 
partial energies of pairwise pixel interactions: e[o] = {Wa,[O] " Ca,[0] : a G W }  

where the weight wa,[o] = p~ " E F2(dlg°)" 
dcD 

Stochastic approximation refinement of the factors exploits the similar pax- 
tial energies that depend on a proximity between the marginal GL and * GLD 
frequencies for each clique family in the training image sample gO and a sample 
generated by pixelwise stochastic relaxation using the current factors. At each 
step t of the stochastic approximation, the current factors At are updated as 
follows: 

A[t+q = A[t] + a[t] • e[t] (g{t]); 

Va E A Aa,[t+l] = Aa,[t] + a[t]'Ca,[t](g[t]). (11) 

Here, g[t] is an image sample generated at the step t, a[t ] denotes the current 
scaling factor decreasing from the starting value a[0] in Eq. (9) as co+1 (see cl-[-c2"t 
[11] for theoretical and empirical choices of the control values co, cl, and c2), 
and e[t](g[t]) and ca,[t](g[t]) are the current differential partial energies: 

 Etl(gE ]) =   (qlgEt])" F(qlg°); 

Ca,It] (g[t]) : Pa " E Z~a ( d l g [ t ] )  • fa  (dig°). 
dED 

where A(qlg[t]) = F(q lg  °) - F(qlg[t]) and Aa(dlg[t]) = Fa(dlg °) - Fa(dlg[t]). 

(12) 

5 Concluding Remarks 

Both the learning schemes approximate closely the model parameters using the 
sample GLH and GLDHs. But, the learning scheme based on the unconditional 
MLE of the potentials is notably less robust. It exploits the assumption that 
marginal relative sample frequencies, obtained by normalising the sample GLH 
and GLDHs, are consistent statistical estimates of the corresponding marginal 
probabilities under the given model of Eq. (1). But, the bigger the number of 
the gray levels IQI, the larger the size of the training sample to obtain such 
estimates. To simplify the choice of the training samples, for texture simulation 
experiments in [6, 8] this number has been restricted to IQI -- 16. 

In practice, there are much more GLs, usually, IQI = 256. Therefore the 
training samples are usually too small to contain all the possible GLs and 
GLDs. In this case one or another known robust approximation to the unob- 
served marginals from the obtained incomplete sample histograms may be imple- 
mented for getting valid potential estimates. This is quite possible if the learning 
scheme is based on the CMLE becmlse errors in the differential partial energies 
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of Eq. (12) due to such approximation influence, during the refinement process 
of Eq. (11), only the scaling factors but not the overall form of the potentials 
specified by the approximated GLH and GLDHs. 

But, the scheme based on the unconditional MLE of the potentials, updates 
independently each the potential value V[t](q) for q E Q and Va,[t] (d) for d E D 
and a E A using the distinctions between the corresponding marginal frequen- 
cies for the training and current generated samples. Therefore, the unobserved 
marginals have to be approximated at each stochastic approximation step t~ that  
is, for each currently generated image girl. In this case the computational com- 
plexity of the learning increases as compared to the alternative scheme and the 
approximation errors may result in unpredictable errors in the final potential 
estimates. 
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