
Performance and Attention in Multi-Agent
Tasks ?

Yiming Ye

IBM T.J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598, USA
yiming@watson.ibm.com ??

Abstract. A well designed cooperation strategy for a task oriented
multi-agent team is important as it can improve performance. A chal-
lenging research issue in cooperation concerns the extent to which an
agent should pay attention to the actions and e�ects of other agents. In
this paper, we address this issue in the context of an object search team.
We �rst propose the concept of an activity window which captures an
agent's view of the activities and e�ects of the team. Then we pinpoint
some criteria that can be used to determine whether it is bene�cial for an
agent to put an action of the team into its window. Finally, we present
experimental results to test these criteria.

1 Introduction

An agent is a computational system that inhabits dynamic, unpredictable envi-
ronments. It has sensors to gather data about the environment and can interpret
this data to re
ect events in the environment. Furthermore, it can execute mo-
tor commands that produce e�ects in the environment. Multi-agent systems are
computational systems in which several autonomous agents interact and work
together to perform tasks or satisfy goals. Many researchers are building agents
that can work in complex, dynamic multi-agent domains[8]. Such domains in-
clude virtual theater[1], realistic virtual training environments [5][6][8], RoboCup
robotic and virtual soccer [4], among others.

Coordinating the actions of the agents is very important because an agent
that considers the activities of other agents when forming its own plan is usually
better able to choose actions that lead to outcomes that it favors. On the one
hand, it is obviously not a good strategy for the agents of a cooperative multi-
agent team simply to ignore each other, because the intended e�ects of one

? First International Workshop on Collective Robotics, La Cite des Sciences, Paris,
France, July, 4- 5, 1998, Proceedings published by Springer-Verlag in Lecture Notes
on Arti�cial Intelligence volume 1456

?? The author would like to thank John Tsotsos, Demetri Terzopoulos, Allan Jepson,
Chris Brown, Hector Levesque, and Eugene Fiume for their valuable comments on his
Ph.D. thesis, and Eric Harley and the reviewers of CRW for their valuable comments
on this paper.

agent's action may already have been achieved by the actions of other agents.
On the other hand, it is also not a good strategy for each agent to keep track of all
the activities of the other agents, because the e�ort required might prevent the
agent from doing useful work itself. For example, in the robotic soccer domain,
ignoring teammates is ill-advised, but so is delaying action until one has complete
knowledge of what all the other players are doing. A player that is going to shoot
at the goal only needs to know its own surrounding and the situation around
the opposing team's goalkeeper; while a goalkeeper only needs to observe the
surrounding situation and the actions of the goal shooter in order to save the
goal.

These observations motivate examination of how and to what extent an agent
should consider the activities of other agents, and what factors are important in
deciding local coordination strategy. Sen, Roychowdhury and Arora [7] study the
e�ect of limited local knowledge on group behavior for the resource utilization
problem where a number of agents are distributed between several identical
resources. They conclude that an agent may bene�t more from limited knowledge
of the environment rather than complete global knowledge. Hogg, Huberman and
Kephart [2] [3] analyze a similar problem and study the e�ects of local decisions
on group behavior. They show that system parameters like decision rate can
produce stable equilibria, damped oscillations, persistent oscillations, or chaos.
Vidal and Durfee [9] present an algorithm for an agent to determine which of its
nested, recursive models of other agents are important to consider when choosing
an action.

In this paper, we address the issue of how and to what extent an object search
agent should consider the activities of other agents during a multi-agent object
search process | the process of searching for a 3D object in a 3D environment
by a group of pan, tilt, and zoom cameras (or a group of robots). The goal of
the team is to maximize the probability of detecting the target within a given
time constraint. Given the real-world nature of the multi-agent object search
task, the issues studied in this paper re
ect many of the characteristics of other
real-world tasks in a dynamic multi-agent environment.

2 The Multi-agent Object Search Team

In this section, we describe some concepts concerning the multi-agent object
search system. These concepts are important for further discussions in the rest
of the paper. We assume throughout the paper that there are in total m search
agents a1, a2, : : :, am available in the team.

The model of the search agent is based on Laser Eye - a pan, tilt, and zoom
camera (Fig. 1(a)). The state sa of a search agent a is uniquely determined by
7 parameters (xa; ya; za; wa; ha; pa; ta), where (xa; ya; za) is the position of the
camera center, wa; ha are the width and height of the solid viewing angle of the
camera, pa; ta are the the camera's viewing direction (Figure 1(c)). An operation

f (ai; sai ; r
(j)
ai) for agent ai entails two steps: (1) take a perspective projection

image according to state sai , and then (2) search the image for the target using

the recognition algorithm r
(j)
ai . We assume that each agent can have several

recognition algorithms that can be used to detect the target; r
(j)
ai refers to agent

ai's jth recognition algorithm. The cost t(f) for an action f = f (ai; sai ; r
(j)
ai)

gives the total time needed for agent ai to execute the action. It includes (1)
time to manipulate the hardware to the state sai speci�ed by f ; (2) time to take
a picture using the camera on ai; and (3) time to run the recognition algorithm

r
(j)
ai speci�ed by f .
To encode the agent's knowledge about the possible target position, the

search environment
 is tessellated into a series of elements ci:
 =
Sn

i=1 ci
and ci

T
cj = 0 for i 6= j (Fig. 1(b)). In addition, we introduce another \cell"

cout to refer to the region that is outside the search region
. Each cell c is associ-
ated with a probability distribution p for each agent. The term p(ai; cj; �) gives
the belief of agent ai regarding the probability that the center of the target is
within cell ci at time � . The term p(cj; �) gives the real target probability distri-
bution at time � . Before the search process, p(cj; �) and p(ai; cj; �) (1 � i � m)
are the same, but they may diverge during the search process.

To calculate the e�ects of applying a given action by a given agent ai, we
introduce the detection function b(ai; cj; f), which gives the conditional proba-
bility that agent ai will detect the target given that the center of the target is
located within cell cj, and the operation is f . The value of b(ai; cj; f) can be
obtained by transformation from a pre-recorded standard detection function for
the recognition algorithm used by f [10]. Obviously,

P (f) =
nX

j=1

p(ai; cj; �f)b(ai; cj; f) ; (1)

gives agent ai's belief on the probability of detecting the target if f is applied,
where �f is the time just before f is applied. The actual probability of detecting
the target can be calculated by replacing p(ai; cj; �f) of the above term with
p(cj; �f).

For any agent ai, its beliefs on the possible target positions p(ai; c; �) (for
all c) change over time as the multi-agent team perceives the world. Suppose
another agent aj executes an action f , then if agent ai does not care about the
e�ects of f , its belief will stay unchanged. Otherwise, its belief will be updated
according to Bayes law:

p(ai; cj; �f+)
p(ai; cj; �f) (1� b(ai; cj; f))Pn;out

k=1 p(ai; ck; �f) (1� b(ai; ck; f))
; (2)

where j = 1; : : : ; n; out.
For a given agent ai, one of the most important tasks during the search

process is to select actions to search for the target. This action selection process
is guided by the agent's knowledge p(ai; ck; �) | the agent always selects an
action f with the maximumP (f) (Formula (1)). Usually, there are a huge number
of actions to be considered, most of which are not necessary. In [10], we develop
a method that reduces the many possible actions to a limited set �[ai] of actions

that must be considered. Thus, during the search process, agent ai only needs to
select the next action from �[ai]. The method is to calculate term (1) for each
action in �[ai]. The �rst action that maximizes term (1) is selected.

(x,y,z)
(p,t)

(w,h)

(a) (b) (c) (d) (e)

Fig. 1. (a) The object search agent model: Laser Eye. (b) The tessellation of the en-
vironment. (c) The state parameters of an action. (d) The e�ective range (the dark
layer) and the in
uence range (the dark and the light layers) (e) A scene of an object
search team in an environment.

The performance of the object search team is measured by the probabil-
ity of detecting the target within a time constraint T by the multi-agent ob-

ject search team (Fig. (1)(e)). Suppose Fai =
n
f
(1)
ai ; f

(2)
ai ; : : : ; f

(Nai
)

ai

o
is the

set of actions actually selected by agent ai (1 � i � m) during the search
process, where Nai is the number of actions selected by agent ai. Then F =
Fa1

S
Fa2

S
: : :
S
Fam is the set of all the actions applied by the team during the

search process. The total number of elements in F is jFj = Na1 + : : :+Nam . Let

(f
(j)
ai) = fc j b(ai; c; f

(j1)
ai1

) 6= 0g and
(f j1ai1 � � � f
jr
air

) =
(f j1ai1)
T
� � �
T

(f jrair).

Let
P

F(f
(j1)
ai1

:::f
(jk)
aik

)
be the sum operation over all the di�erent subset ff

(j1)
ai1

; : : : ; f
(jk)
aik
g

of F, where 1 � k � m. Then the probability of detecting the target P [F] by
the e�ort allocation F is calculated by the following formula [11]:

P (F) = (�1)1+1
X

F(f
(j)
ai

)

 X
c2
(f

(j)
ai

)

p(c; �0)b(ai; c; f
(j)
ai

)

!

+(�1)2+1
X

F(f
(j1)
ai1

f
(j2)
ai2

)

 X
c2
(f

(j1)
ai1

f
(j2)
ai2

)

p(c; �0)b(ai1 ; c; f
(j1)
ai1

)b(ai2 ; c; f
(j2)
ai2

)

!

+
...

+(�1)r+1
X

F(f
(j1)
ai1

:::f
(jr)
air

)

 X
c2
(f

(j1)
ai1

:::f
(jr)
air

)

p(c; �0)b(ai1 ; c; f
(j1)
ai1

) : : :b(air ; c; f
(jr)
air

)

!

+
...

+(�1)jFj+1

 X
c2
(f (1)a1

:::f
(Nam)
am

)

p(c; �0)b(a1; c; f
(1)
a1

) : : :b(am; c; f
(Nam)
am)

!
: (3)

3 The Activity Window for a Given Agent

When an agent in a cooperative object search team (Fig. 1)(e) executes an
action, it will also broadcast the parameters of the action (i.e., the viewing
direction and the viewing angle size) to all the other members of the team
(the communication time among agents for this purpose is small enough to be
ignored). Thus, during the search process, an agent continually gets information
on the action execution situations of other agents. The activity window W[ai]
for agent ai refers to the views of agent ai on the activities of the search team.
By putting an action f executed by agent aj into the activity window of agent
ai (represented as f 2W[ai]) refers to the fact that agent ai updates its target
distribution according to Formula (2) when f is executed by aj . As we have
discussed before, an agent a selects actions based on its knowledge p(a; c; �)
(8c 2
). If it keeps track of every other agent's actions and updates its own
knowledge (Formula (2)) accordingly, then its knowledge represents the true
target distribution, thus it can select good quality actions during the search
process. Otherwise, its knowledge will be di�erent from the true distributions,
thus it may not be able to always select good actions during the search process.
Although it may seem that it is better for an agent to keep track of all the
actions of other agents during the search process, this may not be a good strategy
because it takes time to update the agent's knowledge. Thus, it is important for
an agent in a multi-agent team to decide the extent to which it should heed the
activities of other agents, or in other words, to decide the content of its activity
window.

3.1 Factors that may in
uence team performance

As we have discussed above, good performance of the team depends on �nding
the proper balance between the bene�t and the cost of updating an agent's
knowledge based on what other agents are �nding. Here, we pinpoint some factors
that may in
uence this balance. Let nupdate be the number of actions in the
activity window of agent ai which are heeded after the previous action is executed
and before the beginning of the action selection process for the next action. Then

there are three costs associated with an agent ai's action f : (A) t
[i]
select, the time

needed for the agent to select an action; (B) nupdate � t
[i]
update, the total time

needed for the agent to update the environment for the nupdate actions in its

activity window, assuming time t
[i]
update for each; (C) t[i]execute, the time needed

for agent ai to execute an action. If the cost t
[i]
execute of executing an action is

considerably higher than the update time t[i]update, then it is worth putting more
actions in the activity window. Then more accurate knowledge about the target

distribution is used and higher quality actions are selected. However, if t
[i]
execute

is considerably lower than t
[i]
update, then it is not worth spending time to keep

track of the activities of other agents | better to devote the time to executing
more actions.

Let T be the time used for search; ni be the total number of actions applied
by agent ai within time T ; and nij be the number of actions of agent aj that
are heeded by agent ai. Then for a team in which every agent keeps track of all
the actions of other agents, the following relations hold:

(A) nij � nj (j 6= i) and nii = ni � 1.

(B) ni(t
[i]
select + t

[i]
execute) + (ni1 + : : :+ nim)t

[i]
update � T (for 1 � i � m).

3.2 Determining the contents of the activity window

The important task of deciding which actions should be put in to the activity
window is is di�cult, because both the bene�t, (which is not obvious sometimes),
and the cost must be considered. Here, we discuss some criteria that can be used
to determine whether it is bene�cial to attend to an action of another agent.

Clearly, there may be certain agents in the multi-agent environment whose
activities have no e�ect on set �[a] of potential actions for agent a. These
irrelevant activities should not be considered by agent a, because there are no
bene�ts. In the following, we study which agents' activities are irrelevant to agent
a. We �rst explain some concepts. For a given camera angle size hw; hi, there is an
e�ective range corresponding to a spherical layer surrounding the camera (Fig.
1(d)) such that if the target is within this layer, the possibility that it be detected
by a correctly directed action with size hw; hi is high. The actions in �[a] with
size hw; hi are partly determined by this layer (refer to [10] for details). There
is also an in
uence range corresponding to a larger spherical layer surrounding
the camera (Fig. 1(d)), such that if the target is outside this range, it cannot
be detected by an action with camera angle size hw; hi [10]. The outer radius of
the in
uence range is the in
uence radius and is represented as Ra(hw; hi). The
intersection of the viewing volume of a given action f with the in
uence range for
the angle size hw; hi of f de�nes the in
uence volume
(f) = fc j b(a; c; f) 6= 0,
where f 2 �[a]g (Section 2). An agent a can have di�erent zoom factors and
thus di�erent in
uence ranges. The smallest angle size that can be achieved by
agent a produces the largest in
uence radius, denoted Ra. If the target is outside
Ra, then no matter how a adjusts its state parameters, it will not be able to
detect the target.

The following theorem and Properties can be used by agent a to select its
activity window during the team search process.

Theorem: Suppose f is an action applied by agent aj during the search

process. If
(f)
T

[ai] = ;, then there is no bene�t in putting f in the activity

window W[ai] of agent ai. In other words, the actions selected by agent ai will

not be in
uenced whether f belongs to W[ai] or not.

Proof: Suppose f� is the next action selected by agent ai when f is not
included inW[ai]. Then we have: P (f�) = maxfP (f

0

) j f
0

2 �[a]g and f� is the
�rst such action chosen during ai's action selection process.

Now suppose that f is put inW[ai]. We need to prove that after the probabil-
ity updating process of ai, f� will also be selected as the next action to execute.
Let p(ai; c; �) (for all c 2
) be the target distribution when ai selects f� in the
situation that f is not in W[ai]; p

0

(ai; c; �) be the target distribution after the
probability updating process when f is in W[ai]; and P

0

(f
0

) be the calculated
probability of detecting the target by f

0

when f is in W[ai]. Then we have

P
0

[f�] =
nX

j=1

p
0

(ai; cj; �)b(ai; cj; f
�)

=
nX

j=1

p(ai; cj; �) (1� b(ai; cj; f))Pn;out
k=1 p(ai; ck; �) (1� b(ai; ck; f))

b(ai; cj; f
�)

=
X

c2
(f)

p(ai; c; �) (1� b(ai; c; f))

1� P (f)
b(ai; cj; f

�)

=
X

c2
(f)

p(ai; c; �)

1� P (f)
b(ai; cj; f

�) =
P (f�)

1� P (f)
�

P (f
0

)

1� P (f)
= P

0

(f
0

): (4)

Thus, P
0

(f�) = maxfP
0

(f
0

) j f
0

2 �[a]g. Since the algorithm selects f� as
the next action to execute when f is not included inW[ai], it will also select the
same f� as the next action when f is included in W[ai]. 2

The above theorem is important because it states criteria for determining
whether it is bene�cial to include an action in an agent's activity window. How-
ever, it is not very convenient to use. The following properties give ways of
conveniently using the theorem. Let dij be the distance between agent ai and
agent aj .

Property A If dij � Rai + Raj , then it is not necessary for agent ai to

consider actions executed by agent aj.

Property B Let f be an action executed by agent aj with visual angle size

hw; hi. If dij � Rai + Raj hw; hi, then it is not necessary for agent ai to put f

into its activity window.

4 Experiments

A 2D simulation of a multi-agent object search system is implemented to test
the in
uence of the activity window on the performance of the multi-agent ob-
ject search system and to examine various factors that should be considered in
deciding the content of the activity window. The system is implemented in C
on IBM RISC System/6000. The search environment is a 2D square with size

175� 175 as shown in Figure 2(a). There is an obstacle in the environment. We
assume that each camera agent has only one �xed camera angle size 40o. We
also assume that the detection functions for each agent are the same. Figure
2(b) shows the detection function. It is obvious that the radius for any agent is
50. The time needed to select an action by an agent is determined by the size
of the search region, the number of the candidate actions to be considered, and
the speed of the machine used to run the code. The time needed to update the
environment if an agent wants to incorporate an action's e�ects into its knowl-
edge (that is, to put an action into its activity window) is determined by the size
of the environment and the speed of the machine used to run the code. In our
experimental setting, the average time needed to select an action is 21" seconds,
the average time needed to update the environment is 7" seconds.

(0,0)

(175,175)(0,175)

(175,0)

(100,150)

(100,100) (110,100)

(110,150)

0 5 15

b(c,f)

50

0.9

distance

(a) (b)

Fig. 2. (a) The 2D environment with size 175 � 175. There is an obstacle bounded
by 100 � x � 110 and 100 � y � 150 within the environment. (b) The value of the
detection function.

The �rst set of experiments tests the in
uence of the action execution time
on the performance of the team when (i) each agent considers all the activities
of other agents and (ii) when each agent ignores any activities of other agents.
Figure 3(a) gives the scenario of the experiments. The initial outside probability
p(cout) is 0:05; the initial probability p(c) for any element c within the shaded
area (bounded by 10 � x � 165 and 45 � y � 55) is 0:000179; the initial
probability p(c) for any element c other than the shaded area is 0:000026. There
are two agents within the environment. Their positions are (90; 15) and (91; 15)
respectively. From Figure 3(b), we can see that for action execution times of 1"
and 1:5", the strategy of paying attention to the other agent's activities does not
perform as well as the strategy of ignoring the activities of the other agent. This
situation changes gradually as the actions become more and more expensive, or
in other words, as the action execution time becomes longer and longer compared
to the action selection and the environment updating time. This illustrates that
an agent should consider paying attention to the activities of other agents only
when its action execution cost is high.

The second set of experiments test the criteria proposed in Section 3.2. The
search environment and the initial target distribution are the same as before. But

(0,0)

(175,175)

Two Agents

(0,175)

(175,0)

(100,100) (110,100)

(110,150)
(100,150)

10
165

45

55

(90,15) (91,15)
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 50 100 150 200 250 300 350 400 450 500

P
ro

b
a
b

il
it

y
:

P
[F

]

Total Time: T

Comm. 1
No comm. 1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 50 100 150 200 250 300 350 400 450 500

P
ro

b
a
b

il
it

y
:

P
[F

]

Total Time: T

Comm. 10
No comm. 10

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 100 200 300 400 500 600 700 800 900

P
ro

b
a
b

il
it

y
:

P
[F

]

Total Time: T

Comm. 15
No comm. 15

(a) (b) (c) (d)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 500 1000 1500 2000 2500 3000 3500

P
ro

b
a
b

il
it

y
:

P
[F

]

Total Time: T

Comm. 100
No comm. 100

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18

0 1000 2000 3000 4000 5000

P
ro

b
a
b

il
it

y
:

P
[F

]

Total Time: T

Comm. 150
No comm. 150

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 5000 10000 15000 20000 25000
P

r
o

b
a
b

il
it

y
:

P
[
F

]

Total Time: T

Comm. 1000
No comm. 1000

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 50000 100000 150000 200000 250000

P
r
o

b
a
b

il
it

y
:

P
[
F

]

Total Time: T

Comm. 10000
No comm. 10000

(e) (f) (g) (h)

Fig. 3. (a) The experimental scenario. (b)(c)(d)(e)(f)(g)(h)The probability of detecting
the target P [F] versus the time constraint T for di�erent execution times of the two
agents, where execution times are: (b) 1", 1:5"; (c) 10", 10:5"; (d) 15", 15:5"; (e)
100", 100:5"; (f) 150", 150:5"; (g) 1000", 1000:5"; (h) 10000", 10000:5". In the �gure,
\Comm." refers to the strategy where each agent attends to the other agent's activities
and \No Comm." refers to the strategy where each agent ignores the activities of other
agents.

the positions of the two agents are changed to (35; 15) and (135; 15), respectively.
The action execution time is 15" for the agent at (35; 15), and 15:5" for the agent
at (135; 15). Since the distance between the two agents is equal to the sum of
the in
uence radius of the two agents, the conditions in Property A hold. Thus,
there is no bene�t for one agent to keep track of what the other is learning. In
this set of experiments, the actions and their sequence is exactly the same for
the two strategies (communication and no communication). However, the start
execution time for the actions with the same index in the two sequences are
di�erent, because in the communication strategy more time must be spent to
update the environment. Figure 4(b) gives the delay in the execution starting
time as a function of the action index of the team for the strategy of attending to
the communications. Figure 4(c) compares the performance of the two strategies.
The result is the same as one would predict from the theory in Section 3.2: in
this case ignoring the communication between agents is better than attending
to it.

The third set of experiments test the bene�ts of selectively controlling the
content of the activity window based on the results in Section 3.2. There are 5
agents in the environment (Figure 5(a)). Two of them are on the left with posi-
tions (45; 15) and (46; 15) and action execution times 7:1" and 7:4", respectively.

(0,0)

(175,175)(0,175)

Agent

(175,0)

(100,100) (110,100)

(110,150)
(100,150)

10
165

45

55

(35,15) (135,15)

Agent

0

10

20

30

40

50

60

70

0 2 4 6 8 10

L
a
te

n
c
y

Action Index

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150 200 250 300 350 400

P
ro

b
a
b

il
it

y
:

P
[F

]

Total Time: T

Communicate
No Communication

(a) (b) (c)

Fig. 4. Testing the activity window criteria. (a) The environment. (b) The delay in
action execution time when each agent attends to the activity of the other agent. (c)
Comparison of the performance when each agent attends to the other agent's activities
and the performance when they ignore each other.

Three agents are on the right with positions (155; 15), (156; 15), and (157; 15),
and action execution times 7:5", 7:6", and 7:7", respectively. Based on Section
3.2, it is bene�cial for agents on the left to attend to each other and for agents
on the right to attend to each other, but it is not useful for any agent on the
left (right) to listen to any agent on the right (left). The experimental results
are shown in Figure 5(b). We can see that the strategy of selectively controlling
the content of the activity window based on Section 3.2 is much better than the
strategy in which each agent keeps track of all the activities of the team.

Agents
(0,0)

(175,175)(0,175)

(175,0)

(100,100) (110,100)

(110,150)
(100,150)

10
165

45

55

Agents
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 50 100 150 200 250 300 350 400 450

P
ro

b
a
b

il
it

y
:

P
[F

]

Total Time: T

window-comm
all-comm

(a) (b)

Fig. 5. (a) The search environment. (b) Comparison of performance when the content
of the activity window is selectively controlled based on Section 3.2 (window-comm) and
the performance when each agent attends to all the activities of the team (all-comm).

5 Conclusion

This paper addresses the issue of attending to knowledge acquired by the activ-
ities of fellow agents in a multi-agent domain | how much and to what extent
should an agent care about what teammates are doing. The concept of activity

window is proposed to represent the view of an agent on the activities and ef-
fects of its teammates. We study several factors that may in
uence performance
when selecting the content of an agent's activity window in the context of an
object search team, and we propose several criteria in this regard. Experimental
results are presented which support our criteria and show the in
uence of the
content of an agent's activity window on the team performance. We believe that
some of the analysis presented in this paper can be applied to other multi-agent
domains.

References

1. B. Hayes-Roth, L. Brownston, and R. Gen. Multiagent collabration in directed
improvisation. In Proceedings of the International Conference on Multi-Agent Sys-
tems (ICMAS-95), 1995.

2. T. Hogg and B. Huberman. Controlling chaos in distributed systems. IEEE Trans-
actions on Systems, Man, and Cybernetics, 21(6), 1991.

3. J. Kephart, T. Hogg, and B. Huberman. Dynamics of computational ecosystems:
implications for DAI. Distributed Arti�cial Intelligence, Volume 2, Research Notes
in Arti�cial Intelligence, Pitman, 1989.

