
Tracing Lazy Functional ComputationsUsing Redex TrailsJan Sparud and Colin RuncimanDepartment of Computer Science, University of York,Heslington, York, YO1 5DD, UK(e-mail: fsparud,coling@cs.york.ac.uk)Abstract. We describe the design and implementation of a system fortracing computations in a lazy functional language. The basis of ourtracing method is a program transformation carried out by the com-piler: transformed programs compute the same values as the original,but embedded in functional data structures that also include redex trailsshowing how the values were obtained. A special-purpose display pro-gram enables detailed but selective exploration of the redex trails, withcross-links to the source program.Keywords: debugging, graph reduction, Haskell, program transformation.1 Introduction1.1 Why trace functional computations?Functional programming languages have many advantages over the conventionalalternative of procedural languages. For example, program construction is morerapid, more modular and less error-prone. Programs themselves are more concise.Yet functional programming systems are not very widely used. There arevarious reasons for this, but one that crops up time and again is the lack of tracingfacilities. Yes, there is less scope for making mistakes in a functional language;but programmers do still make them! And when their programs go wrong theyneed to trace the cause. Unfortunately, implementors of functional languagesare hard-pressed to provide equivalents of the `debugging tools' routinely usedto investigate faults in procedural programs. Tracing evaluation by normal ordergraph reduction is more subtle than following a sequence of commands alreadyexplicit at source level.There have been various attempts to tackle the problem of tracing lazy func-tional programs. We discuss some of them in x6. But so far as we know there isas yet no really e�ective solution | a state of a�airs we'd like to change.

1.2 How? Some design goals and assumptionsFunctional language We concentrate on the tracing problem for purely func-tional languages such as Haskell. Despite the absence of side-e�ects, lazy eval-uation and higher-order functions in languages like Haskell make the problemdi�cult: there is a big gap between high-level declarative programs and thelow-level sequences of events in their computations.Graph reduction We assume an implementation based on graph-reduction. Inessence, the objective of computation is to evaluate an expression represented bya graph. This is achieved by repeatedly replacing one subgraph by another, wherethe reduction rules used to de�ne replacements are derived from the equationsgiven in the program. At each reduction step, a redex matching the left handside of an equation is replaced by a the corresponding instance of the right handside. Computation by graph reduction is made e�cient by compilation to codefor a G-machine, or similar.Backward traces We need to provide backward traces from results or fromrun-time errors, because the most pressing need for traces arises in the contextof an unexpected output or failure.Redex trails We use the idea of a redex trail to provide the overall frameworkfor answering the question `How has this value/failure come about?'. At eachreduction, parts of the redex no longer attached to the main graph are normallydiscarded. If we instead make a link from each newly created node of the graphto its parent redex, the computation builds its own trail as reduction proceeds.Non-invasive traces The transformation to introduce redex trails should notchange the course of the underlying computation in any way. For example, un-evaluated expressions should remain unevaluated.Complete traces Until we have a very strong reason to discard parts of theinformation in redex trails, and a clear argument which parts should go, we wantto construct traces in full. There must be a representation of every reduction stepfor de�nitions and expressions of every kind.Selective display A full trace of even a modest computation contains a greatdeal of information | too much for the programmer to absorb in its entirety.Programmers need �ne control over what trace information is actually displayedto them, down to the level of interactive link-by-link examination of the trailsleading from a run-time fault or selected fragment of output.Traces linked to source However good the tracing system, source programsare likely to remain the primary reference for programmers. Not only shouldexpressions in traces be displayed just as they might be written in a sourceprogram; trace text should be also be linked directly to source text.

A portable implementation Although a prototype tracer must have somespeci�c host implementation (ours will be the Haskell compiler nhc [R�oj95]),we aim to produce a portable tracing scheme that could be adopted in otherimplementations of a functional language. For this reason, we shall prefer to usesource-to-source transformation rather than to modify the run-time system.An e�cient implementation Finally, the implementation must be e�cient| or at least, not so ine�cient that using the tracer is infeasible or unattractive.If execution slows by no more than a factor of ten, we can hope that the valueof tracing information will make the speed tolerable; but factors of a hundred ora thousand are unlikely to be acceptable. Also, memory requirements must besuch that the tracer can be used on an ordinary workstation.1.3 Details that followx2 explains what we mean by a redex trail, and shows how trails can be repre-sented as functional data structures. x3 gives rules for transforming a programso that all values it computes are wrapped in a construction including a redextrail; it also explains brie
y how we implement these rules in the nhc compiler.x4 explains the design of the interactive display program we use to examineredex trails. x5 evaluates aspects of the trace system we have built, includingsome performance �gures. x6 discusses related work on other tracing systems forfunctional programs. x7 concludes and also gives some of our plans for futurework.2 The design of a trace structureTo appreciate what we mean by a redex trail consider the following example ofa simple program testing the validity of a date.daysIn Jan = 31daysIn Feb = 28: : :daysIn Dec = 31valid (Date d m) = daysIn m >= ddate = Date 31 Febmain = valid date
False 28 31>= dateDate 31 Feb

Feb
valid
daysIn

main

The diagram shows the complete redex trail from the value False of the mainexpression. The immediate parent redex (whose reduction caused the creationof this instance of False) was 28 >= 31. The parent redex of this application of>= was valid (Date 31 Feb), but the parent redex of the left operand 28 wasdaysIn Feb and that of the right operand 31 was date. And so on. There is alink from every part of every expression to its parent redex.The idea is to construct such a trace giving comprehensive information abouta functional computation. The trace should be built as the computation pro-ceeds. Once the computation is over the trace is just a static data structure.Such redex trails can be represented as functional data structures of type:data Trace = Ap Trace [Trace] | Nm Trace Name | RootAn application is represented by Ap tap [tf, tx1, : : :, txn], where tap isthe trace for the application itself, tf is the trace of the function part of theapplication, and tx1 : : : txn are the traces of the arguments. A name (a function,variable, constructor or literal) is represented by Nm tnm name where tnm isthe trace of the name and name is a textual representation of the name. Theapplication and name nodes should also have source code references, but sincewe are only interested in the structure of the trace at this stage, we have omittedthem here. Root is the null trace attached to top-level names.3 Creating tracesIn this section we de�ne transformations to derive a self-tracing version of anygiven program.We will introduce a number of combinators that actually performthe trace creation, but �rst we will describe how the types of a program willchange under transformation.3.1 Type transformation rulesEvery value in the program will be wrapped in the R datatype, de�ned as:data R a = R a TraceThe intuition is that every value in the original program should have a wrappedvalue in the transformed program containing the original value and a trace forthat value.Figure 1 gives the rules determining how types are transformed. Motivationand examples follow.Traces for structured data values For a structured data value, we want atrace not only for the outermost construction but also for all components. TheD scheme is responsible for transforming datatypes into this form. We don't givethe de�nition of the D scheme, but here is an example of the transformation of

R[[t]]) R (T [[t]])T [[tcon t1 . . . tn]]) tcon T [[t1]] . . . T [[tn]] (n � 0, tcon 6= '!')T [[t1 ! t2]]) Trace ! R[[t1]] ! R[[t2]]T [[�]]) � Fig. 1. Type rules for transformed expressions.a simple tree datatype:D[[data Tree a = Node (Tree a) Int (Tree a) | Leaf a]])data Tree a = Node R[[Tree a]] R[[Int]] R[[Tree a]] | Leaf R[[a]])data Tree a = Node (R (Tree a)) (R Int) (R (Tree a)) | Leaf (R a)Traces for values of function type Perhaps a value of function type �! �can be treated as a structured value with constructor! and components � and�? Then the type � ! � would be transformed into R (R[[�]]!R[[�]]). Is thisadequate? No! A function of type � ! � has a guarantee to ful�ll: given anargument of type � it must return a value of type �. But transformed functionshave a further obligation; they must also return a trace for that value of type�. A function of type R[[�]]!R[[�]]cannot ful�ll that obligation, since when thefunction is applied it does not know the current trace (or evaluation context) soit cannot build a full trace for the return value. Transformed functions need thetrace of the application site as an extra argument. As an example, here is howthe type of the standard map function is transformed:R[[(a! b) ! [a] ! [b]]])R (Trace ! R[[a! b]]! R[[[a] ! [b]]]))R (Trace ! R (Trace ! R a! R b) ! R (Trace ! R [a] ! R [b]))Tracing partial applications will only be possible if a transformed functionreturns an R-value for each argument it is applied to. Note that this requirementis indeed ful�lled.3.2 Creating traces for expressionsThe trace for an expression depends on the evaluation context in which it iscomputed. The evaluation context of an expression is simply the trace of the

redex in which the expression occurs. Given an evaluation context t, we will nowde�ne the transformation scheme for expressions, E [[e]]t.Tracing identi�ers Identi�ers can be either let-bound or �-bound. Identi�ersin patterns are �-bound, and they already have traces, so the transformation ofsuch identi�ers is the identity transformation. De�nitions of let-bound identi-�ers are transformed to expect a trace as argument; given a trace they producea Nm node for this particular instance of the identi�er.E [[ident�]]t) identE [[identlet]]t) ident t Fig. 2. Transforming identi�ers.Tracing constructed values Figure 3 shows the transformation rules for con-structed values. The trace for a constructed value with no components is just theNm node of the constructor. If the constructed value has components, its trace isan Ap node containing traces for the constructor and for each component.E [[conid e1 e2 : : : en]]t) conn t N [[conid]] conid E [[e1]]t E [[e2]]t : : : E [[en]]tcon0 t nm conid = R conid (Nm t nm)conn t nm conid e1@(R te1) e2@(R te2) ...en@(R ten) =R (conid e1 e2 : : : en) (Ap t [Nm t nm, te1, te2, : : :, ten])Fig. 3. Transforming constructed values.Tracing function applications Figure 4 shows the rule for transforming func-tion applications to make them create traces as well as results. The auxiliaryfunction vapn builds the trace node and then applies the function to one of thearguments, leaving it to another auxiliary function apn to apply it to the rest ofthe arguments. (Functions need to take arguments one at a time, so that partialapplications have traces).Case expressions are transformed in much the same way as function appli-cations, with case as the function name and the scrutinised expression as theargument.

E [[f e1 e2 : : : en]]t) vapn t E [[f]]t E [[e1]]t E [[e2]]t : : : E [[en]]tvapn t (R f tf) e1@(R te1) e2@(R te2) : : : en@(R ten) =apn�1 t1 (f t1 e1) e2 : : : enwhere t1 = Ap t [tf, te1, te2, : : :, ten]apn t (R f tf) e1@(R te1) e2@(R te2) : : : en@(R ten) =apn�1 t (f t e1) e2 : : : enap0 t e = e Fig. 4. Transforming function applications.As a simple example application of these rules, consider the transformationof the expression f True (g x) in the evaluation context t. Assume that f and gare let-bound functions and x is a �-bound variable.E [[f True (g x)]]t)vap2 t E [[f]]t E [[True]]t E [[g x]]t)vap2 t (f t) (con0 t "True" True) (vap1 t (g t) x)Tracing let-expressions The transformation rule for let-expressions is shownin Figure 5. It uses the F scheme (de�ned in x3.3) to transform the local de�ni-tions.E [[let fd1; d2; : : :; dng in e]]t) let fF [[d1]]; F [[d2]]; : : :; F [[dn]]g in E [[e]]tFig. 5. Transforming let-expressions.Tracing other types of expressions Case expressions are transformed inmuch the same way as function applications, with case as the function nameand the scrutinised expression as the argument. This is useful when browsing thetrace: one can see in the source code which branch was used in a case expression.Lambda expressions are treated as functions with the function name \. Thisworks surprisingly well, since source links from the trace make it easy to examinethe full lambda abstraction, if necessary.

High level syntactic constructs such as list comprehensions and sequencegenerators are currently traced as if replaced by their standard translations usinglist-processing functions.3.3 Transforming function de�nitions to create tracesFigure 6 shows the transformation scheme F for function de�nitions. A tracedfunction accepts a trace as its argument (see Figure 2) and returns an R-valuecontaining a translated version of the function and a trace for the function iden-ti�er. The translated function takes one argument (and application-site trace)at a time, and for each one produces a new R-value, representing the partiallyapplied function. We use an auxiliary function funn to build the trace node forthe identi�er and to accept arguments one at a time. The translated functionf itself is not called until enough arguments are available for a full (saturated)application.The P transformation scheme transforms patterns. Currently we only havelimited support for using guards. The computation of guards of a function aretraced, but as soon as one of them is true and the corresponding function bodyis evaluated, the traces of the guards are discarded.F [[f p1 : : : pn = e]]) f = funn f 0 N [[f]] where f 0 t P[[p1]] : : : P[[pn]] = E [[e]]tP[[]])P[[ident]]) identP[[conid p1 : : : pn]]) R (conid P[[p1]] : : : P[[pn]])funn f fs t =R (�t1 e1!R (�t2 e2!: : :R (�tn en! f tn e1 : : : en)tn�1): : :t1)[Nm t fs]Fig. 6. Transformation scheme for function de�nitions.We illustrate the F scheme with an example, in which two simple functionsare transformed.

f x = g x x True + xg x y True = x*yg x y False = 1)f = fun1 f' "f"where f' t x = vap2 t ((+) t)(vap3 t (g t) x x (con0 t "True" True)) xg = fun3 g' "g"where g' t x y (R True) = vap2 t ((*) t) x yg' t x y (R False) = con0 t "1" 13.4 Two problems and their remediesOver-saturated applications Trace-construction as we have described it sofar works well for both partially and fully saturated applications. But it fails tobuild correct traces for function applications that over-saturate functions (i.e.the function in the application is given more arguments than are shown in thefunction's de�nition). In the following example, f 2 3 is an over-saturated ap-plication, since f is given two arguments, although by de�nition f has arity 1.let f x = g xg x y = x+yin f 2 3Unfortunately, traces for calls made from within an over-saturated functionare lost. The reason can be seen in the de�nition of apn. If an application of aritym over-saturates a function of arity n, the functional argument f to apm�n willrepresent the result of a saturated call complete with a trace tf , which ap ignores!Including the trace for the function part in every call to an ap would beexcessive. Suppose we are tracing the function call f 1 2 3: the result would bea trace with separate nodes for each of f 1 2 3, (f 1) 2 3, and ((f 1) 2) 3.We only want to include the trace of the function part if it is the result ofa call to a fully saturated function. But how do we know that? Examining thede�nition of funn we see that an unsaturated function is applied to its own trace.When apn applies a function, it can check if the trace in the result is the sameas the one passed to the function as �rst argument. If the traces are the same,the application is partial; otherwise it is saturated.It is not enough to test if the trace objects denote equal values, we mustcheck that the trace objects really are one and the same. This sounds simple,but it is not possible in a pure functional language to test equality of objects,one can only test equality of values. We overcome the problem by introducingan impure primitive for pointer equality which we call sameAs | it is the onlyimpure function we need at run-time. The modi�ed version of apn is presentedin Figure 7.Unevaluated applications When the computation has �nished, explorationof the �nal trace can start, either from a faulting expression or some part of

apn t (R f tf) e1@(R te1) e2@(R te2) : : : en@(R ten) =if t `sameAs` tf thenapn�1 t (f t e1) e2 : : : enelselet t0 = Ap t [tf, te1, te2, : : :, ten]in apn�1 t0 (f t0 e1) e2 : : : enap0 t e = e Fig. 7. The modi�ed version of apn.the output. But what if we are interested in some saturated but unevaluatedfunction application?There is a con
ict here between needing extra evaluation to obtain a trace,and wishing to avoid the extra evaluation to preserve the usual behaviour. If weevaluate the application to obtain the trace, the computation may diverge, givingus di�erent behaviour for traced computated than for non-traced computations,which is clearly not acceptable.We had a similar problem with partially applied functions, which we solvedby forcing functions to return a new function and a trace for each argument. Butwhen the function is fully saturated, the result may or may not be evaluated.We solve this problem by introducing a new constructor Sat in the Tracedatatype. A Sat node is introduced when a function application becomes fullysaturated, and contains two parts: the trace of the fully saturated function call,and the trace of the result of the function call, which may be unevaluated. Whenthe display program encounters a Sat node in the trace, it checks whether theresult is evaluated. If so, the trace of that result is used; if not, the saturatedfunction call and its trace is used instead. Note that Sat can be seen as anexceptional forward pointer in the trace, and that it is only useful as long as theresult part is unevaluated. The revised de�nition of funn is given in Figure 8.funn f fs t =R (�t1 e1!R (�t2 e2!: : :R (�tn en! let R r t0 = f tn e1 : : : en in R r (Sat tn t0))tn�1): : :t1)[Nm t fs]Fig. 8. The new de�nition of funn used in the function de�nition transformation.

Fig. 9. A session snapshot of the interactive trace display program.4 Displaying trace informationIn this section we describe the interactive display component of our tracer. In-formation is presented to the user in three panels: (1) redex trails; (2) programsources; (3) program output1 (see Figure 9 for an example). Though the useris free to browse any of these panels by scrolling, links to and from the redextrails provide the most important form of access. The programmer has accessby mouse-click from any identi�er in the trace display to both the correspond-ing de�nition and the relevant applied occurrence of the identi�er in the sourceprogram.1 The current tracer restricts I/O in the traced program to a single textual input anda single textual output.

The number of nodes in a full trace exceeds the number of reductions inthe traced computation, so typical traces are large structures containing a greatdeal of information. How much of this information can sensibly be presented islimited by both the capacity of the user and the capacity of the screen used fordisplay.4.1 How the user controls the displayAt the start of a tracing session the redex-trail panel may contain an unde�nedfunction application detected and reported as a run-time error. If there was nosuch error the panel is initially empty; by selecting some fragment of text fromthe output panel, the user requests an initial display of the parent redex for thattext.The user now acts as a source of demand, controlling the extent of `display byneed'. Clicking over an already-displayed subexpression in a trace node requeststhe display of its parent redex. Moving the mouse to a di�erent part of the displaynot only changes the currently selected expression; it also causes highlighting ofthree classes of related expressions. If E is the currently selected expression:{ all shared occurrences of E currently on display are highlighted in the samecolour as E itself;{ all expressions with the same parent redex as E are highlighted in a di�erentcolour;{ if the parent redex of E is already on display, it is highlighted using a thirdcolour.4.2 Making the most of screen spaceScreen-space is an all-too-scarce resource when displaying a complex structure.We have used a combination of techniques to reduce the amount of display spaceneeded to show part of a trace.Displaying expressions on one line Even a single expression may be large,yet the user must be able to view the relationships between several of them. Wetherefore con�ne each expression to a single line of the display. To make thispossible:{ for all expressions, details below a speci�ed depth in the parse-tree are sup-pressed by default { clicking on a place-holder for any unprinted subexpres-sion requests more detail if needed;{ when tracing to discover the cause of a fault, subexpressions that are neverevaluated can be suppressed with a distinguished marker { their details can-not be relevant;{ to make space for extra detail in one part of an expression the user can clickon other parts to collapse them to place-holders;{ when all else fails, horizontal scrolling is available!

Display by need revisited We have already described how parent redexesare displayed only as and when the user demands them. Continuing the analogywith a lazy evaluator:{ it is important to have shared references to a common parent redex ratherthan displaying it several times | hence the colour-coded information aboutshared, or already-displayed, parent redexes as the mouse-cursor traversesthe display;{ also, re-clicking on a subexpression with a currently displayed parent re-dex removes the parent (and any displayed parents of its subexpressions,recursively) from the display.{ when all else fails, vertical scrolling is available!5 EvaluationAlthough our tracing system is still being re�ned, in this section we o�er someobservations and measurements by way of a preliminary evaluation. We addressthe following questions:{ What class of functional programs can the tracing system deal with?{ How much extra time and space does its use require?{ To what extent is the tracing scheme portable to other implementations, oreven to other functional languages?{ How well does the tracer achieve its purpose as a useful tool for understand-ing (possibly faulty) functional computations?5.1 Class of traceable programsOur current implementation of the tracer is by extension of the nhc13 compiler.Programs to be traced can make use of a very large subset of Haskell 1.3, includ-ing type and constructor classes. We have traced a variety of programs, not allof them written by ourselves. The largest programs extend to several modulesand some 2000 lines, yet few changes were needed to the original sources.The most signi�cant of the necessary changes restrict the I/O componentsof programs to a single output only. We are unsure as yet how best to trace I/Omore comprehensively.Some other things are not yet handled as we eventually intend. For example,comprehensions are currently traced as if replaced by their standard translationsinto compound applications of list-processing functions; we'd prefer somethingcloser to the source program. Guard expressions are faithfully evaluated, butunless a fault occurs during a guard computation the redex trail for the Booleanvalue is not currently incorporated in the �nal trace; we'd like to make thisinformation available to the programmer. We see no fundamental di�cultieshere; it's just a matter of a bit more work attending to details.

Table 1. The compile-time costs of generating redex trails. Only the cichelli programhas more than one module.compilation time (s) size of object code (kb)normal tracing normal tracingcichelli 18.79 50.58 51.21 170.25clausify 8.32 20.06 39.26 104.17primes 6.51 14.39 13.15 37.33Table 2. The run-time costs of generating redex-trails. Garbage-collection time is notincluded because it varies with heap size.reduction time (s) max live heap (b) number ofnormal tracing normal tracing reductionscichelli 1.05 21.47 34 k 13M 354 636clausify 2.05 73.32 7 k 28M 1 405 539primes 5.09 33.50 60 k 54M 520 0735.2 Time and space costsUsing the tracer incurs extra costs both at compile-time and at run-time. We givehere some �gures for the construction of complete redex trails. We take threeexample programs: cichelli uses a brute-force search to construct a perfecthash function for a set of 16 keywords; clausify simpli�es a given propositionto clausal form; primes generates the �rst 2,500 primes using a wheel-sieve. Allthree programs are included in the NoFib benchmark suite [Par93].Table 1 shows the added costs apparent at compile-time. Much the sameresults are obtained for all three examples: both compile-time and the size ofresulting object-code increase by a factor of two or three when we apply theprogram transformation to build redex trails.Table 2 illustrates the run-time costs of generating redex trails; �gures for thetraced computations include the costs of evaluating both the result and the tracein full. Recording the details of the parent redex for every subexpression in everyinstance of every function body is not cheap! A trace-constructing computationtakes 6{36 times longer than a normal one. The trace structure itself occupiesfrom 20{100 bytes per application: so to construct traces with a million recordedreductions we need plenty of memory on our workstations! The wide variationsin the performance �gures for the di�erent programs are accounted for by factorssuch as the arity of functions involved.A �nal aspect of performance is less easily measured. The interactive trace-display programmust respond rapidly to the user's requests. For all the exampleswe have tried to date, response-time has never been a problem.

5.3 PortabilityOur current tracing system is implemented in a version of R�ojemo's nhc compiler[R�oj95]. The transformation to introduce trace values is performed on an inter-mediate representation of programs internal to nhc, and nhc's run-time systemhas been modi�ed to support traced computations.However, our tracing scheme is not closely tied to this one compiler. Theresults of the program transformation could be expressed in source form andsupplied to a di�erent Haskell compiler. Only one special primitive is needed atrun-time: sameAs tests whether two traces are the same in a referentially opaquesense as explained in section x3.4. There are just two other additions to therun-time system: one retains access to output; the other provides a link to thedisplay program.We see no reason why our tracing scheme could not be applied to other lazyfunctional languages.5.4 Will it solve `The Tracing Problem'?This is both the most important and the most di�cult question to answer satis-factorily. A tracer might cope e�ciently with a full range of programs and porteasily to new compilers, yet fail the acid test: do programmers use it in practiceto solve their problems?At this stage, apart from our own experience trying out the tracer, we haveonly the results from an extended student exercise with an earlier prototype.Providing direct links between the trace and the source program turns out tobe even more important than we expected; as do the links to textual input andoutput. But from these early trials we are quietly optimistic.Currently we cannot handle non-terminating programs, unless a black hole[Jon92] is detected. A possible solution to this problem is to let the user interruptthe computation (e.g. by pressing control-C), and start browsing from the traceof the interrupted application, which must form a part of the cycle that causedthe program to loop.We would welcome enquiries from readers who teach functional programmingand would be interested in `class-testing' a suitable version of the tracer.6 Related workSome previous systems for tracing functional programs systems have been basedon monitoring the series of events in a computation [KHC91], perhaps with theability to examine events immediately preceding or following a suspected fault[TA90]. This approach is viable for a strict functional language with eager eval-uation but breaks down for non-strict languages with a lazy evaluation strategy.In a Haskell computation closures for function applications can lie dormant formany reductions. If no equation matches when a closure comes to be evaluatedit may be irrelevant to ask `What happened just before this?' because preceding

events may have nothing to do with the faulty closure. Simple traces of eventsequences have been tried for lazy languages, but found wanting.Our tracing based on redex trails has in common with Nilsson and Fritzson'ssystem [NF94] the construction of a computational history tracing the originof expressions back through ancestral redexes. However, the structure of theircomputational history is rather di�erent. A node in their trace tree containsa saturated function application, along with its result and a list of historiesfor the function applications evaluated in the body of the saturated function.They also suggest using the algorithmic debugging technique [Sha82], which is amethod of navigating in the trace by answering questions about the equivalenceof (possibly complex) expressions. Naish and Barbour [NB95] use a source-to-source transformation to produce a computational history (which they call anevaluation tree) similar to Nilsson's and Fritzson's for a simple lazy functionallanguage. Nilsson and Sparud [Spa96,NS97] further explores the creation andbrowsing of such evaluation trees, and address the problem of high memoryconsumption by constructing the history incrementally.Hazan and Morgan [HM93] suggests a tracing technique that could be seen asa simpli�ed abstraction of ours. Their distinguished paths are like our redex trailsbut contain only function names from fully saturated applications. For example,if main needs the value of f 1, and f needs the value of head [] the consequentrun-time fault will be assigned the distinguished path main ! f ! head.7 Conclusions and Future WorkSo what have we achieved? We have developed a new scheme for constructinga complete trace of a lazy functional computation, based on redex trails. Wehave expressed this scheme in rules for program transformation, and we haveimplemented it in a Haskell compiler: the trace is itself represented as a functionaldata structure and the compiler transforms programs so that they build tracesof their own execution. We have also developed a display program that allowsthe interactive exploration of redex trails, fully linked to the source program.Previous attempts at similar schemes have often put severe limits on thelanguage used to express traced programs, or on the amount of detail recordedin traces. We aim to build fully-detailed traces for full Haskell computations.Though our present tracer handles most of Haskell, we are keen to lift some ofthe current restrictions on I/O; special forms such as comprehensions and guardsalso need more attention as explained in x5.The usefulness of such a tracer for functional programmers at large criti-cally depends on its performance and capacity. Our ultimate goal is a tracerthat can be applied to large computations { such as a functional language com-piler. Though applications to date have been modest, as illustrated in x5 theydo include fully-traced computations of over a million reductions, derived frommulti-module programs several pages in length.However, the speed penalty of tracing is still too high. We hope to reduceit so that in the worst case slow-down is no more than a factor of ten. There is

certainly scope for speeding up the trace-constructing machinery | for example,by moving key auxiliary functions into the run-time system.Space costs are even more critical. The important observation here is thateven the most enquiring programmer cannot really want to follow a trail throughhundreds of thousands of expressions! Rather they will be interested in just a fewselected paths, though there is no way of knowing in advance just which pathsthese will be. We have just begun work on trace-pruning techniques that shouldsubstantially reduce the cost of building and storing traces, by con�ning themto partial redex trails. For example, we can bound the length of ancestral paths,truncating longer trails at each garbage collection: even bounding the length tozero there is often a useful trail from an error, since trails are still constructedbetween collections. Another approach is to discard details of computation insidespeci�ed modules: some early results here are very promising | for the primescomputation, the peak amount of memory needed shrinks by a factor of 50 whenwe eliminate traces inside the prelude. We also have another line of attack on thespace problem: we plan to write trace structures to �le in a compressed binaryformat [WR97]. Storing traces in �les also has the advantage that the trace ofa lengthy run can be re-examined many times without re-incurring the cost ofthe trace-building computation.Building a fast and space-e�cient tracing system is only one side of theproblem. Once the above re�nements are made, we are keen to put the tracerto the test in the hands of other users. We'd like to run a series of controlledexperiments measuring the speed and accuracy with which users of the tracercan �nd faults in programs. Only by such experiments and the outcomes of wideruse can we hope to con�rm that constructing and examining redex trails can bean e�ective part of functional programming.AcknowledgementsNiklas R�ojemo built the nhc compiler that we have adapted for our experimentsin tracing. Anonymous PLILP referees provided helpful comments, questionsand suggestions. Our work is funded by the Engineering and Physical SciencesResearch Council.References[HM93] Jonathan E. Hazan and Richard G. Morgan. The location of errors in func-tional programs. In Peter Fritzson, editor, Automated and Algorithmic De-bugging, volume 749 of Lecture Notes in Computer Science, pages 135{152,Link�oping, Sweden, May 1993.[Jon92] Richard Jones. Tail recursion without space leaks. Journal of FunctionalProgramming, 2(1):73{79, January 1992.[KHC91] A. Kishon, P. Hudak, and C. Consel. Monitoring semantics: a formal frame-work for specifying, implementing and reasoning about execution monitors.In ACM Conference on Programming Language Design and Implementation(PLDI'91), pages 338{52, June 1991.

[NB95] Lee Naish and Tim Barbour. Towards a portable lazy functional declara-tive debugger. Technical Report 95/27, Department of Computer Science,University of Melbourne, Australia, 1995.[NF94] H. Nilsson and P. Fritzson. Algorithmic debugging for lazy functional lan-guages. Journal of Functional Programming, 4(3), 1994.[NS97] Henrik Nilsson and Jan Sparud. The evaluation dependence tree as a basisfor lazy functional debugging. Journal of Automated Software Engineering,4(2):152{205, April 1997.[Par93] W. Partain. The no�b benchmark suite of Haskell programs. In J. Launch-bury and P. Sansom, editors, Proc. 1992 Glasgow Workshop on FunctionalProgramming, pages 195{202. Springer Verlag, Workshops in Computing,1993.[R�oj95] N. R�ojemo. Highlights from nhc { a space e�cient haskell compiler. InProc. 7th Intl. Conf. on Functional Programming Languages and ComputerArchitecture (FPCA'95), pages 282{292, La Jolla, June 1995. ACM Press.[Sha82] Ehud Y. Shapiro. Algorithmic Program Debugging. MIT Press, May 1982.[Spa96] Jan Sparud. A transformational approach to debugging lazy functional pro-grams. Licentiate Thesis, Department of Computing Science, Chalmers Uni-versity of Technology, S-412 96, G�oteborg, Sweden, February 1996.[TA90] A. P. Tolmach and A. W. Appel. Debugging Standard ML without reverseengineering. In Proc. ACM conf. on Lisp and functional programming. ACMPress, 1990.[WR97] M. Wallace and C. Runciman. Heap compression and binary I/O in Haskell.In Proc. 2nd ACM SIGPLAN Workshop on Haskell, Amsterdam, June 1997.

