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Abstract. We describe the design and implementation of a system for
tracing computations in a lazy functional language. The basis of our
tracing method is a program transformation carried out by the com-
piler: transformed programs compute the same values as the original,
but embedded in functional data structures that also include redez trails
showing how the values were obtained. A special-purpose display pro-
gram enables detailed but selective exploration of the redex trails, with
cross-links to the source program.
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1 Introduction

1.1 Why trace functional computations?

Functional programming languages have many advantages over the conventional
alternative of procedural languages. For example, program construction is more
rapid, more modular and less error-prone. Programs themselves are more concise.

Yet functional programming systems are not very widely used. There are
various reasons for this, but one that crops up time and again is the lack of tracing
facilities. Yes, there is less scope for making mistakes in a functional language;
but programmers do still make them! And when their programs go wrong they
need to trace the cause. Unfortunately, implementors of functional languages
are hard-pressed to provide equivalents of the ‘debugging tools’ routinely used
to investigate faults in procedural programs. Tracing evaluation by normal order
graph reduction is more subtle than following a sequence of commands already
explicit at source level.

There have been various attempts to tackle the problem of tracing lazy func-
tional programs. We discuss some of them in §6. But so far as we know there is
as yet no really effective solution — a state of affairs we’d like to change.



1.2 How? Some design goals and assumptions

Functional language We concentrate on the tracing problem for purely func-
tional languages such as Haskell. Despite the absence of side-effects, lazy eval-
uation and higher-order functions in languages like Haskell make the problem
difficult: there is a big gap between high-level declarative programs and the
low-level sequences of events in their computations.

Graph reduction We assume an implementation based on graph-reduction. In
essence, the objective of computation is to evaluate an expression represented by
a graph. This is achieved by repeatedly replacing one subgraph by another, where
the reduction rules used to define replacements are derived from the equations
given in the program. At each reduction step, a redex matching the left hand
side of an equation is replaced by a the corresponding instance of the right hand
side. Computation by graph reduction is made efficient by compilation to code
for a G-machine, or similar.

Backward traces We need to provide backward traces from results or from
run-time errors, because the most pressing need for traces arises in the context
of an unexpected output or failure.

Redex trails We use the idea of a redex trail to provide the overall framework
for answering the question ‘How has this value/failure come about?’. At each
reduction, parts of the redex no longer attached to the main graph are normally
discarded. If we instead make a link from each newly created node of the graph
to its parent redex, the computation builds its own trail as reduction proceeds.

Non-invasive traces The transformation to introduce redex trails should not
change the course of the underlying computation in any way. For example, un-
evaluated expressions should remain unevaluated.

Complete traces Until we have a very strong reason to discard parts of the
information in redex trails, and a clear argument which parts should go, we want
to construct traces in full. There must be a representation of every reduction step
for definitions and expressions of every kind.

Selective display A full trace of even a modest computation contains a great
deal of information — too much for the programmer to absorb in its entirety.
Programmers need fine control over what trace information is actually displayed
to them, down to the level of interactive link-by-link examination of the trails
leading from a run-time fault or selected fragment of output.

Traces linked to source However good the tracing system, source programs
are likely to remain the primary reference for programmers. Not only should
expressions in traces be displayed just as they might be written in a source
program; trace text should be also be linked directly to source text.



A portable implementation Although a prototype tracer must have some
specific host implementation (ours will be the Haskell compiler nhec [R6j95]),
we aim to produce a portable tracing scheme that could be adopted in other
implementations of a functional language. For this reason, we shall prefer to use
source-to-source transformation rather than to modify the run-time system.

An efficient implementation Finally, the implementation must be efficient
— or at least, not so inefficient that using the tracer is infeasible or unattractive.
If execution slows by no more than a factor of ten, we can hope that the value
of tracing information will make the speed tolerable; but factors of a hundred or
a thousand are unlikely to be acceptable. Also, memory requirements must be
such that the tracer can be used on an ordinary workstation.

1.3 Details that follow

§2 explains what we mean by a redex trail, and shows how trails can be repre-
sented as functional data structures. §3 gives rules for transforming a program
so that all values it computes are wrapped in a construction including a redex
trail; it also explains briefly how we implement these rules in the nhc compiler.
84 explains the design of the interactive display program we use to examine
redex trails. §5 evaluates aspects of the trace system we have built, including
some performance figures. §6 discusses related work on other tracing systems for
functional programs. §7 concludes and also gives some of our plans for future
work.

2 The design of a trace structure

To appreciate what we mean by a redex trail consider the following example of
a simple program testing the validity of a date.

31
28

daysIn Jan
daysIn Feb

daysIn Dec = 31

valid (Date d m) = daysIn m >= 4
date = Date 31 Feb

main = valid date

yivalid|Date 31 Feb ——
e T e e T




The diagram shows the complete redex trail from the value False of the main
expression. The immediate parent redex (whose reduction caused the creation
of this instance of False) was 28 >= 31. The parent redex of this application of
>= was valid (Date 31 Feb), but the parent redex of the left operand 28 was
daysIn Feb and that of the right operand 31 was date. And so on. There is a
link from every part of every expression to its parent redex.

The idea is to construct such a trace giving comprehensive information about
a functional computation. The trace should be built as the computation pro-
ceeds. Once the computation is over the trace is just a static data structure.

Such redex trails can be represented as functional data structures of type:

data Trace = Ap Trace [Trace] | Nm Trace Name | Root

An application is represented by Ap t., [tf, tz,, ..., tz,1, where t,), is
the trace for the application itself, ¢ is the trace of the function part of the
application, and t,, ... t,, are the traces of the arguments. A name (a function,
variable, constructor or literal) is represented by Nm t,,, name where t,,, is
the trace of the name and name is a textual representation of the name. The
application and name nodes should also have source code references, but since
we are only interested in the structure of the trace at this stage, we have omitted
them here. Root is the null trace attached to top-level names.

3 Creating traces

In this section we define transformations to derive a self-tracing version of any
given program. We will introduce a number of combinators that actually perform
the trace creation, but first we will describe how the types of a program will
change under transformation.

3.1 Type transformation rules

Every value in the program will be wrapped in the R datatype, defined as:
data R a = R a Trace

The intuition is that every value in the original program should have a wrapped
value in the transformed program containing the original value and a trace for
that value.

Figure 1 gives the rules determining how types are transformed. Motivation
and examples follow.

Traces for structured data values For a structured data value, we want a
trace not only for the outermost construction but also for all components. The
D scheme is responsible for transforming datatypes into this form. We don’t give
the definition of the D scheme, but here is an example of the transformation of
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T|It1 — t2]] = Trace — R[[tl]] — R[[tQ]]
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Fig. 1. Type rules for transformed expressions.

a simple tree datatype:

D[data Tree a = Node (Tree a) Int (Tree a) | Leaf a]
=
data Tree a
=
data Tree a

Node R[Tree a] R[Int] R[Tree a]] | Leaf R[a]

Node (R (Tree a)) (R Int) (R (Tree a)) | Leaf (R a)

Traces for values of function type Perhaps a value of function type a — 3
can be treated as a structured value with constructor — and components « and
B? Then the type &« — [ would be transformed into R (R[a]—=R[A])- Is this
adequate? No! A function of type @« — [ has a guarantee to fulfill: given an
argument of type « it must return a value of type 3. But transformed functions
have a further obligation; they must also return a trace for that value of type
B. A function of type R[a]—=R[B]cannot fulfill that obligation, since when the
function is applied it does not know the current trace (or evaluation context) so
it cannot build a full trace for the return value. Transformed functions need the
trace of the application site as an extra argument. As an example, here is how
the type of the standard map function is transformed:

R[ (a—=b) = [a] = [b] ]

=

R (Trace — RJa— b]— R[ [a] = [b] ])
=
R (Trace — R (Trace -+ Ra— Rb) — R (Trace — R [a] — R [b]))

Tracing partial applications will only be possible if a transformed function
returns an R-value for each argument it is applied to. Note that this requirement
is indeed fulfilled.

3.2 Creating traces for expressions

The trace for an expression depends on the evaluation contexrt in which it is
computed. The evaluation context of an expression is simply the trace of the



redex in which the expression occurs. Given an evaluation context ¢, we will now
define the transformation scheme for expressions, £[e];.

Tracing identifiers Identifiers can be either let-bound or A-bound. Identifiers
in patterns are A-bound, and they already have traces, so the transformation of
such identifiers is the identity transformation. Definitions of let-bound identi-
fiers are transformed to expect a trace as argument; given a trace they produce
a Nm node for this particular instance of the identifier.

Elidenty]: = ident
Elidentret]¢ = ident ¢

Fig. 2. Transforming identifiers.

Tracing constructed values Figure 3 shows the transformation rules for con-
structed values. The trace for a constructed value with no components is just the
Nm node of the constructor. If the constructed value has components, its trace is
an Ap node containing traces for the constructor and for each component.

E[conid e1 e2 ... en]t = con, t Nconid] conid E[e1]: E[ex]t - .. E[en]s

cong t nm conid = R conid (Nm t nm)
con, t nm conid €1@(R _ t.;) e2@(R _ tey,) ..., @R _ te,) =
R (conid e; ey ... e;) (Ap t [Nm t mm, te;, tess --.» te,])

Fig. 3. Transforming constructed values.

Tracing function applications Figure 4 shows the rule for transforming func-
tion applications to make them create traces as well as results. The auxiliary
function wvap,, builds the trace node and then applies the function to one of the
arguments, leaving it to another auxiliary function ap,, to apply it to the rest of
the arguments. (Functions need to take arguments one at a time, so that partial
applications have traces).

Case expressions are transformed in much the same way as function appli-
cations, with case as the function name and the scrutinised expression as the
argument.



gﬂf e e ... en]],g = Vapn tg[[f]]t g[[(ﬁ]]t 5[[62]]t N 8[[en]]t

vap, t (R £ tf) e1@(R _ te;) e2@(R _ tey) ... es@R - t¢,) =
apn—1 t1 (f t1 e1) ex ... e,
where t; = Ap t [ty, te;, teys ...s te,]

apr, t (R £ tf) e1@(R _ te;) e20(R _ te,) ... €,@(R _ te,) =
apn—1 t (f t e1) e2 ... e,
app t e = e

Fig. 4. Transforming function applications.

As a simple example application of these rules, consider the transformation
of the expression f True (g z) in the evaluation context ¢. Assume that fand g
are let-bound functions and z is a A-bound variable.

E[f True (g x)]:

=

vaps t E[f]: E[True]: E[g x]:

=

vaps t (£ t) (cong t "True" True) (vap; t (g t) x)

Tracing let-expressions The transformation rule for 1let-expressions is shown
in Figure 5. It uses the F scheme (defined in §3.3) to transform the local defini-
tions.

E[let {di; d2; ...; dn} in e]y = let {F[di]; Fld2]; ...; Fldn]} in Ele]:

Fig. 5. Transforming let-expressions.

Tracing other types of expressions Case expressions are transformed in
much the same way as function applications, with case as the function name
and the scrutinised expression as the argument. This is useful when browsing the
trace: one can see in the source code which branch was used in a case expression.

Lambda expressions are treated as functions with the function name \. This
works surprisingly well, since source links from the trace make it easy to examine
the full lambda abstraction, if necessary.



High level syntactic constructs such as list comprehensions and sequence
generators are currently traced as if replaced by their standard translations using
list-processing functions.

3.3 Transforming function definitions to create traces

Figure 6 shows the transformation scheme F for function definitions. A traced
function accepts a trace as its argument (see Figure 2) and returns an R-value
containing a translated version of the function and a trace for the function iden-
tifier. The translated function takes one argument (and application-site trace)
at a time, and for each one produces a new R-value, representing the partially
applied function. We use an auxiliary function fun,, to build the trace node for
the identifier and to accept arguments one at a time. The translated function
f itself is not called until enough arguments are available for a full (saturated)
application.

The P transformation scheme transforms patterns. Currently we only have
limited support for using guards. The computation of guards of a function are
traced, but as soon as one of them is true and the corresponding function body
is evaluated, the traces of the guards are discarded.

FIf p1 --- pn = €] = f=fun, f' N[f] where f' t P[p1] ... Plp-] = E[e]:

Pl = _
Plident] = ident
Plconid p1 ... pn] =R (conid P[pi] ... Plpx]) -

fun, f fs t =
R (\t1 e1—
R (A\t2 es—

R (M\t, en—=ft, er...epn)
tnfl)
tl)
[Nm t fs]

Fig. 6. Transformation scheme for function definitions.

We illustrate the F scheme with an example, in which two simple functions
are transformed.
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vapz t ((+) t)
(vaps t (g t) x x (con0 t "True" True)) x
g = funs g7 ugu
where g’ t x y (R True ) = vaps t ((¥) t) x vy
g’ t xy (R False ) = conp t "1" 1

3.4 Two problems and their remedies

Over-saturated applications Trace-construction as we have described it so
far works well for both partially and fully saturated applications. But it fails to
build correct traces for function applications that over-saturate functions (i.e.
the function in the application is given more arguments than are shown in the
function’s definition). In the following example, £ 2 3 is an over-saturated ap-
plication, since f is given two arguments, although by definition f has arity 1.

let f x=gx
g Xy = x+y

in f 2 3

Unfortunately, traces for calls made from within an over-saturated function
are lost. The reason can be seen in the definition of ap,,. If an application of arity
m over-saturates a function of arity n, the functional argument f to ap,,—, will
represent the result of a saturated call complete with a trace t¢, which ap ignores!

Including the trace for the function part in every call to an ap would be
excessive. Suppose we are tracing the function call f 1 2 & the result would be
a trace with separate nodes for each of f1 2 3, (f1) 2 3,and ((f1) 2) 3.

We only want to include the trace of the function part if it is the result of
a call to a fully saturated function. But how do we know that? Examining the
definition of fun,, we see that an unsaturated function is applied to its own trace.
When ap,, applies a function, it can check if the trace in the result is the same
as the one passed to the function as first argument. If the traces are the same,
the application is partial; otherwise it is saturated.

It is not enough to test if the trace objects denote equal values, we must
check that the trace objects really are one and the same. This sounds simple,
but it is not possible in a pure functional language to test equality of objects,
one can only test equality of values. We overcome the problem by introducing
an impure primitive for pointer equality which we call sameAs — it is the only
impure function we need at run-time. The modified version of ap,, is presented
in Figure 7.

Unevaluated applications When the computation has finished, exploration
of the final trace can start, either from a faulting expression or some part of



apr, t (R £ tf) e1@(R _ te;) e20(R _ te,) ... €,@(R _ t¢,) =
if t ‘sameAs‘ t; then

apn—1 t (f t e1) ex ... e,

else
let t' = Ap t [ty, teys tegs .o te,]
in app—1 t' (ft e) er ... e,

app t e = e

Fig. 7. The modified version of apy.

the output. But what if we are interested in some saturated but unevaluated
function application?

There is a conflict here between needing extra evaluation to obtain a trace,
and wishing to avoid the extra evaluation to preserve the usual behaviour. If we
evaluate the application to obtain the trace, the computation may diverge, giving
us different behaviour for traced computated than for non-traced computations,
which is clearly not acceptable.

We had a similar problem with partially applied functions, which we solved
by forcing functions to return a new function and a trace for each argument. But
when the function is fully saturated, the result may or may not be evaluated.

We solve this problem by introducing a new constructor Sat in the Trace
datatype. A Sat node is introduced when a function application becomes fully
saturated, and contains two parts: the trace of the fully saturated function call,
and the trace of the result of the function call, which may be unevaluated. When
the display program encounters a Sat node in the trace, it checks whether the
result is evaluated. If so, the trace of that result is used; if not, the saturated
function call and its trace is used instead. Note that Sat can be seen as an
exceptional forward pointer in the trace, and that it is only useful as long as the
result part is unevaluated. The revised definition of fun,, is given in Figure 8.

fun, ffs t =
R (A\t1 e1—
R (\t2 ea—

RO\tp,e,—let Rrt =ft,e ...e, in R r (Sat t, t'))
tn—l)
t1)
Nm t fs]

Fig. 8. The new definition of fun, used in the function definition transformation.



File Edit View Helpl

Disconnectl

Trace browser

Lf|l,f

¢ disp (('a’:

(map disp) (((a": [N .M :N

wi(map disp).. ((£2 (not. tautclause)) . £3) . split. £2) |
insert 'a’ []
filterset'[] (not . tautclause) (£3 : I3

insert 'a’ [|
clause (Dis (Dis (Sym 'a’) (Sym 'a’)) (Sym 'a’))

parse’ ys((Lex’=") : (Ast(Sym’a)): [

4 wdisin’ (Sym ’a;)"("Sym 'a’)
N ] ~

d

Program output \\ Source code

(=

-- separate positive and negative literals, eliminating duplicates

clause :: Formula -» Clause

clause p = clause’ p ([] . [])

clause’ :: Formula -» Clause -»> Clause

clause’ (Dis p q) x = clause’ p (clause’ g x) J
clause’ (Sym =) {c,a) = {insert s c , a)

clause’ (Mot (Sym s)) (c,a) {c , insert s a)

—-- the main pipeline from propositional formulae to printed clawses
clauses :: String -» String

clauses = concat . Qap disp . unicl . split . disin . negin . elim . parse

-- push disjunctions heneath conjunctions
disin :: Formula -> Formula

disin (Con p q) Con {disin p) (disin q)
disin (Dis p q) disin’ (disin p} (disin g)
disin p = p

|~ T

Fig. 9. A session snapshot of the interactive trace display program.

4 Displaying trace information

In this section we describe the interactive display component of our tracer. In-
formation is presented to the user in three panels: (1) redex trails; (2) program
sources; (3) program output® (see Figure 9 for an example). Though the user
is free to browse any of these panels by scrolling, links to and from the redex
trails provide the most important form of access. The programmer has access
by mouse-click from any identifier in the trace display to both the correspond-
ing definition and the relevant applied occurrence of the identifier in the source
program.

! The current tracer restricts I/O in the traced program to a single textual input and
a single textual output.



The number of nodes in a full trace exceeds the number of reductions in
the traced computation, so typical traces are large structures containing a great
deal of information. How much of this information can sensibly be presented is
limited by both the capacity of the user and the capacity of the screen used for
display.

4.1 How the user controls the display

At the start of a tracing session the redex-trail panel may contain an undefined
function application detected and reported as a run-time error. If there was no
such error the panel is initially empty; by selecting some fragment of text from
the output panel, the user requests an initial display of the parent redex for that
text.

The user now acts as a source of demand, controlling the extent of ‘display by
need’. Clicking over an already-displayed subexpression in a trace node requests
the display of its parent redex. Moving the mouse to a different part of the display
not only changes the currently selected expression; it also causes highlighting of
three classes of related expressions. If E is the currently selected expression:

— all shared occurrences of E currently on display are highlighted in the same
colour as E itself;

— all expressions with the same parent redex as E are highlighted in a different
colour;

— if the parent redex of E is already on display, it is highlighted using a third
colour.

4.2 Making the most of screen space

Screen-space is an all-too-scarce resource when displaying a complex structure.
We have used a combination of techniques to reduce the amount of display space
needed to show part of a trace.

Displaying expressions on one line Even a single expression may be large,
yet the user must be able to view the relationships between several of them. We
therefore confine each expression to a single line of the display. To make this
possible:

— for all expressions, details below a specified depth in the parse-tree are sup-
pressed by default — clicking on a place-holder for any unprinted subexpres-
sion requests more detail if needed;

— when tracing to discover the cause of a fault, subexpressions that are never
evaluated can be suppressed with a distinguished marker — their details can-
not be relevant;

— to make space for extra detail in one part of an expression the user can click
on other parts to collapse them to place-holders;

— when all else fails, horizontal scrolling is available!



Display by need revisited We have already described how parent redexes
are displayed only as and when the user demands them. Continuing the analogy
with a lazy evaluator:

— it is important to have shared references to a common parent redex rather
than displaying it several times — hence the colour-coded information about
shared, or already-displayed, parent redexes as the mouse-cursor traverses
the display;

— also, re-clicking on a subexpression with a currently displayed parent re-
dex removes the parent (and any displayed parents of its subexpressions,
recursively) from the display.

— when all else fails, vertical scrolling is available!

5 Evaluation

Although our tracing system is still being refined, in this section we offer some
observations and measurements by way of a preliminary evaluation. We address
the following questions:

What class of functional programs can the tracing system deal with?

— How much extra time and space does its use require?

— To what extent is the tracing scheme portable to other implementations, or
even to other functional languages?

— How well does the tracer achieve its purpose as a useful tool for understand-

ing (possibly faulty) functional computations?

5.1 Class of traceable programs

Our current implementation of the tracer is by extension of the nhc13 compiler.
Programs to be traced can make use of a very large subset of Haskell 1.3, includ-
ing type and constructor classes. We have traced a variety of programs, not all
of them written by ourselves. The largest programs extend to several modules
and some 2000 lines, yet few changes were needed to the original sources.

The most significant of the necessary changes restrict the I/O components
of programs to a single output only. We are unsure as yet how best to trace I/O
more comprehensively.

Some other things are not yet handled as we eventually intend. For example,
comprehensions are currently traced as if replaced by their standard translations
into compound applications of list-processing functions; we’d prefer something
closer to the source program. Guard expressions are faithfully evaluated, but
unless a fault occurs during a guard computation the redex trail for the Boolean
value is not currently incorporated in the final trace; we’d like to make this
information available to the programmer. We see no fundamental difficulties
here; it’s just a matter of a bit more work attending to details.



Table 1. The compile-time costs of generating redex trails. Only the cichelli program
has more than one module.

compilation time (s)|size of object code (kb)
normal tracing|normal tracing
cichelli| 18.79 50.58| 51.21 170.25
clausify| 8.32 20.06| 39.26 104.17
primes 6.51 14.39| 13.15 37.33

Table 2. The run-time costs of generating redex-trails. Garbage-collection time is not
included because it varies with heap size.

reduction time (s)|max live heap (b)|number of|
normal| tracing|normal| tracing|reductions
cichelli| 1.05 21.47| 34k 13M| 354636
clausify| 2.05 73.32 7k 28 M| 1405539
primes 5.09 33.50] 60k 54 M| 520073

5.2 Time and space costs

Using the tracer incurs extra costs both at compile-time and at run-time. We give
here some figures for the construction of complete redex trails. We take three
example programs: cichelli uses a brute-force search to construct a perfect
hash function for a set of 16 keywords; clausify simplifies a given proposition
to clausal form; primes generates the first 2,500 primes using a wheel-sieve. All
three programs are included in the NoFib benchmark suite [Par93].

Table 1 shows the added costs apparent at compile-time. Much the same
results are obtained for all three examples: both compile-time and the size of
resulting object-code increase by a factor of two or three when we apply the
program transformation to build redex trails.

Table 2 illustrates the run-time costs of generating redex trails; figures for the
traced computations include the costs of evaluating both the result and the trace
in full. Recording the details of the parent redex for every subexpression in every
instance of every function body is not cheap! A trace-constructing computation
takes 6-36 times longer than a normal one. The trace structure itself occupies
from 20-100 bytes per application: so to construct traces with a million recorded
reductions we need plenty of memory on our workstations! The wide variations
in the performance figures for the different programs are accounted for by factors
such as the arity of functions involved.

A final aspect of performance is less easily measured. The interactive trace-
display program must respond rapidly to the user’s requests. For all the examples
we have tried to date, response-time has never been a problem.



5.3 Portability

Our current tracing system is implemented in a version of RGjemo’s nhc compiler
[R6j95]. The transformation to introduce trace values is performed on an inter-
mediate representation of programs internal to nhc, and nhc’s run-time system
has been modified to support traced computations.

However, our tracing scheme is not closely tied to this one compiler. The
results of the program transformation could be expressed in source form and
supplied to a different Haskell compiler. Only one special primitive is needed at
run-time: sameAs tests whether two traces are the same in a referentially opaque
sense as explained in section §3.4. There are just two other additions to the
run-time system: one retains access to output; the other provides a link to the
display program.

We see no reason why our tracing scheme could not be applied to other lazy
functional languages.

5.4 Will it solve ‘The Tracing Problem’?

This is both the most important and the most difficult question to answer satis-
factorily. A tracer might cope efficiently with a full range of programs and port
easily to new compilers, yet fail the acid test: do programmers use it in practice
to solve their problems?

At this stage, apart from our own experience trying out the tracer, we have
only the results from an extended student exercise with an earlier prototype.
Providing direct links between the trace and the source program turns out to
be even more important than we expected; as do the links to textual input and
output. But from these early trials we are quietly optimistic.

Currently we cannot handle non-terminating programs, unless a black hole
[Jon92] is detected. A possible solution to this problem is to let the user interrupt
the computation (e.g. by pressing control-C), and start browsing from the trace
of the interrupted application, which must form a part of the cycle that caused
the program to loop.

We would welcome enquiries from readers who teach functional programming
and would be interested in ‘class-testing’ a suitable version of the tracer.

6 Related work

Some previous systems for tracing functional programs systems have been based
on monitoring the series of events in a computation [KHC91], perhaps with the
ability to examine events immediately preceding or following a suspected fault
[TA90]. This approach is viable for a strict functional language with eager eval-
uation but breaks down for non-strict languages with a lazy evaluation strategy.
In a Haskell computation closures for function applications can lie dormant for
many reductions. If no equation matches when a closure comes to be evaluated
it may be irrelevant to ask ‘What happened just before this?’ because preceding



events may have nothing to do with the faulty closure. Simple traces of event
sequences have been tried for lazy languages, but found wanting.

Our tracing based on redez trails has in common with Nilsson and Fritzson’s
system [NF94] the construction of a computational history tracing the origin
of expressions back through ancestral redexes. However, the structure of their
computational history is rather different. A node in their trace tree contains
a saturated function application, along with its result and a list of histories
for the function applications evaluated in the body of the saturated function.
They also suggest using the algorithmic debugging technique [Sha82], which is a
method of navigating in the trace by answering questions about the equivalence
of (possibly complex) expressions. Naish and Barbour [NB95] use a source-to-
source transformation to produce a computational history (which they call an
evaluation tree) similar to Nilsson’s and Fritzson’s for a simple lazy functional
language. Nilsson and Sparud [Spa96,NS97] further explores the creation and
browsing of such evaluation trees, and address the problem of high memory
consumption by constructing the history incrementally.

Hazan and Morgan [HM93] suggests a tracing technique that could be seen as
a simplified abstraction of ours. Their distinguished paths are like our redex trails
but contain only function names from fully saturated applications. For example,
if main needs the value of £ 1, and f needs the value of head [] the consequent
run-time fault will be assigned the distinguished path main — f — head.

7 Conclusions and Future Work

So what have we achieved? We have developed a new scheme for constructing
a complete trace of a lazy functional computation, based on redex trails. We
have expressed this scheme in rules for program transformation, and we have
implemented it in a Haskell compiler: the trace is itself represented as a functional
data structure and the compiler transforms programs so that they build traces
of their own execution. We have also developed a display program that allows
the interactive exploration of redex trails, fully linked to the source program.

Previous attempts at similar schemes have often put severe limits on the
language used to express traced programs, or on the amount of detail recorded
in traces. We aim to build fully-detailed traces for full Haskell computations.
Though our present tracer handles most of Haskell, we are keen to lift some of
the current restrictions on I/O; special forms such as comprehensions and guards
also need more attention as explained in §5.

The usefulness of such a tracer for functional programmers at large criti-
cally depends on its performance and capacity. Our ultimate goal is a tracer
that can be applied to large computations — such as a functional language com-
piler. Though applications to date have been modest, as illustrated in §5 they
do include fully-traced computations of over a million reductions, derived from
multi-module programs several pages in length.

However, the speed penalty of tracing is still too high. We hope to reduce
it so that in the worst case slow-down is no more than a factor of ten. There is



certainly scope for speeding up the trace-constructing machinery — for example,
by moving key auxiliary functions into the run-time system.

Space costs are even more critical. The important observation here is that
even the most enquiring programmer cannot really want to follow a trail through
hundreds of thousands of expressions! Rather they will be interested in just a few
selected paths, though there is no way of knowing in advance just which paths
these will be. We have just begun work on trace-pruning techniques that should
substantially reduce the cost of building and storing traces, by confining them
to partial redex trails. For example, we can bound the length of ancestral paths,
truncating longer trails at each garbage collection: even bounding the length to
zero there is often a useful trail from an error, since trails are still constructed
between collections. Another approach is to discard details of computation inside
specified modules: some early results here are very promising — for the primes
computation, the peak amount of memory needed shrinks by a factor of 50 when
we eliminate traces inside the prelude. We also have another line of attack on the
space problem: we plan to write trace structures to file in a compressed binary
format [WR97]. Storing traces in files also has the advantage that the trace of
a lengthy run can be re-examined many times without re-incurring the cost of
the trace-building computation.

Building a fast and space-efficient tracing system is only one side of the
problem. Once the above refinements are made, we are keen to put the tracer
to the test in the hands of other users. We’d like to run a series of controlled
experiments measuring the speed and accuracy with which users of the tracer
can find faults in programs. Only by such experiments and the outcomes of wider
use can we hope to confirm that constructing and examining redex trails can be
an effective part of functional programming,.
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