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Abstract. We show how the generation of a random integer ¥ modulo
¢ and the subsequent computation of k™' mod ¢ during the signature
phase of the NIST digital signature algorithm (DSA) can be replaced by
the simultaneous generation of a pair (k,k~" mod ¢). The k generated
by our method behaves as an unpredictable integer modulo ¢ that can-
not, as far as we know, be efficiently distinguished from a truly randomly
generated one. Our approach is useful for memory-bound implementa-
tions of DSA, because it avoids modular inversion of large integers. It
is different from the inversion-free but non-standard method from [10],
thus avoiding possible patent issues and incompatibility with standard
DSA signature verification implementations. Another application of our
method is in the ‘blinding’ operation that was proposed by Ron Rivest
to foil Paul Kocher’s timing attack on RSA, or in any other situation
where one needs a random number and its modular inverse.

1 Introduction

Each user of the NIST digital signature algorithm (DSA) has a public key
(P,4,9,v) and a corresponding secret key z. Here p is a (512 + 7 - 64)-bit prime
for some i € {0,1,...,8}, g € (Z/pZ)"* is an element of order ¢ for a 160-bit
prime divisor gof p—1, and y € (Z/pZ)* and z € {1,2,...,q— 1} are such that
y = g% (cf. [11]). Powers of g are represented in the usual way by integers in
{1,2,...,p—-1}.

The signature of a message m consists of a pair (r,s) such that r = ¢ mod ¢
with t = ¢* € (Z/pZ)" and s = (H(m) + zr)/k mod q for a randomly chosen
k€ {1,2,...,9—1} and a 160-bit hash H(m) € Z of the message m. It is required
that k£ be chosen such that s # 0 mod ¢. Both r and s must be represented by
integers in {1,2,...,9 — 1}. To verify a signature (r,s) for a message m, the
verifier computes u = H(m)/s mod ¢, v = r/s mod ¢, and w = g*y* € (Z/pZ)",
and accepts the signature if 7 = w mod q.

The computationally most intensive part of the signature and verification
phases of DSA are the ‘modular exponentiations’ modulo the fixed modulus p:
one modular exponentiation during the signature generation to compute ¢, and



two during the verification ! to compute w. Furthermore, there are a few modular
multiplications modulo the fixed modulus g, and one inversion modulo ¢ in the
signature and verification phase each.

In this note we restrict ourselves to the computation that has to be carried
out by the signer. We assume that the signer is computationally weak. Our
purpose is to implement the signature phase of DSA in a time and memory
efficient fashion. In particular we consider the computation of k! mod q for a
randomly selected k. Notice that the secret key = can be computed if k is exposed
for any signature, or if the same k is used more than once by the same signer.

In a DSA implementation where modular arithmetic is implemented using
standard arithmetic (i.e., first the product is computed and next its remainder
modulo the modulus), it should be possible to implement the extended Euclidean
algorithm with little extra overhead—either in software or on-chip, and possibly
with inclusion of ‘Lehmer’s trick’ (cf. [5: 4.5.2]—throughout this note we refer
to this method as ‘Lehmer’s inversion’). This would make it possible to compute
k=) mod g at a very small fraction of the cost of a modular exponentiation with
modulus p, using only a few divisions on integers of at most 160 bits.

Many implementations of cryptographic protocols, however, do not use stan-
dard arithmetic but Montgomery arithmetic. If the modulus is fixed, this allows
division-free modular multiplication and exponentiation [9]. Compared to regu-
lar modular arithmetic it is often faster and implementations require less code.
Montgomery arithmetic does, however, not offer a convenient way to directly
implement Lehmer’s inversion. Nevertheless, since

(1.1) k' = k972 mod ¢,

Montgomery arithmetic can, in principle, also be used for the computation of
k~! mod q in cases where, as in DSA, the modulus ¢ is prime. Thus, if only Mont-
gomery arithmetic is available, k~! mod g can be computed at about 1/40th to
1/10th (depending on the relative sizes of p and ¢) of the cost of a modular ex-
ponentiation with modulus p and with hardly any memory overhead. Although
this is reasonably fast, it is considerably slower than Lehmer’s inversion.

A faster solution was proposed in [10]: replace the signature (r,s) by the
triple (r,a,b) with a = (H(m) + 2r) -dmod ¢ and b = k - d mod g for some
randomly chosen d € {1,2,...,¢—1}, thus avoiding computation of any modular
inverses by the signer. The verifier can then compute 1/s mod ¢ as b/a mod q.
So, both in the original DSA and in this variation the verifier has to carry out
one inversion modulo g. Despite its simplicity and elegance this method has
three disadvantages. In the first place, the protocol is slightly different from
the standard DSA protocol, which might cause incompatibilities with verifiers
that follow the standard. In the second place, this method requires twice the
number of random bits required by standard DSA. Whether or not these two

! The two modular exponentiations during the verification can be performed
simultaneously at the cost of about 5/4th of a single modular exponentiation
(cf. [16]).



disadvantages create a problem in practice depends on the intended application
of the implementation. Finally, usage of this method might require a license
because it is, to the best of our knowledge, patented.

The purpose of this note is to provide an alternative method to generate k
and k~* mod ¢. Except for the way k and k~! mod q are generated, our method
follows the standard DSA protocol, does not require division of ‘random’ integers
of about 160 bits, and is suitable for memory-bound-chip implementations. With
the proper parameter selection its speed is competitive with Lehmer’s inversion.
Our method is thus substantially faster than the method based on (1.1), but it
uses slightly more memory. It uses modular multiplication with a fixed modulus
g, for which Montgomery arithmetic can be used.

Although our method was developed specifically for application in DSA, it
can be used in any application where a random number and its modular inverse
are needed. As an alternative example we mention the ‘blinding’ operation for
RSA encryption or signature generation. As shown by Paul Kocher (cf. [7]),
timing information of the ‘secret computation’ y = 2% mod n for several known
z’s (where n is the composite public modulus and d is the secret exponent
corresponding to the public exponent e, i.e., e:d=1 mod @(n)) might reveal d.

To foil this so-called ‘timing attack’, Ron Rivest suggested first to blind z as
2! = zk¢ mod n for a random integer k, next to replace the secret computation
by ¥y = 2'% mod n, and finally to compute y as y’k~* mod n (cf. [4]). The pair
(k, k~* mod n) necessary for the blinding can be obtained using straightforward
application of Lehmer’s inversion, using the proper variation of (1.1) (namely
k—! = k¢~ mod n), or by means of the method presented in this note.

We assume that integer arithmetic modulo some radix R = 2B for some
reasonably large B, can be carried out efficiently. The value R = 232 would
certainly suffice, and B = 16 might also be enough; B = 8 is probably too small.
Our method requires division of integers of at most 160 + B bits by integers of
at most B bits, multiplication of integers of at most 160 bits by integers of at
most B bits, and the extended Euclidean algorithm on integers of at most B
bits. The additional memory required for these three functions should be small
compared to what is needed for Lehmer’s inversion of 160-bit numbers.

In Section 2 we describe our method for the simultaneous computation of k
and k~! mod ¢, in Section 3 we discuss the unpredictability of the resulting k
and &~! mod ¢, and in Section 4 we compare the run times and code sizes of
software implementations of our method and of the methods discussed above.

2 Simultaneous generation of k and k= mod g

Our method to simultaneously generate k and k= mod ¢ is based on the follow-
ing three simple observations:
1. the inverse modulo ¢ of a random number ¢ of at most B bits can easily be
computed;



2. a product modulo ¢ of sufficiently many such t*’s, with each z randomly
selected from {—1,1}, and the inverse modulo g of this product can both
easily be computed; and

3. neither such a product nor its inverse can efficiently be distinguished from
a random number modulo g (cf. Section 3).

This leads to the following algorithm for the simultaneous computation of k£ and
k= mod q.

2.1 Algorithm. Initialize k and k both as 1 (cf. Remark 2.2). Let m > 2b, for
appropriately chosen positive integers b and m (cf. Section 3). Fori =1,2,...,m
in succession perform steps (1) through (4):

1. Select a random integer ¢t € {2,3,...,R — 1} and compute ¢ = —g mod ¢
with g, € {1,2,...,t — 1}, using one 160-bit by B-bit division.

2. Attempt to compute g; ' mod t using the extended Euclidean algorithm on
integers of at most B bits (cf. Remark 2.4); return to Step (1) upon failure
(i.e., if t and g, are not co-prime), proceed to Step (3) otherwise.

3. Compute t~! mod g as (¢ - g; * + 1)/t, using one 160-bit by B-bit multipli-
cation, and one (160 + B)-bit by B-bit division.

4. Let s=0ifi <b,let s =1if b < i < 2b, and let s be randomly selected from
{0,1} if 2b < i < m. Replace k by k- t’ -25 mod ¢ and k by k- t2*~! mod ¢;
this takes two modular multiplications modulo g.

Return k and k = (k™! mod g).

Correctness. Because ¢, = —g mod t we have that ¢ divides g-q; ' +1,ie., that
(g a7+ 1)/t is an integer. This implies that ¢ - ((g-g; ' +1)/t) equals 1 modulo
g, so that ¢~! mod ¢ is computed correctly. The correctness of the remainder
of the algorithm follows immediately from that fact that 1 — 2s equals either 1
or —1.

2.2. Remark. In Montgomery arithmetic modulo ¢ an integer z is represented
by & = z - Ry mod g, for some appropriate power R, of R. Consequently, the
Montgomery product Z of the Montgomery numbers Z = z - R; mod ¢ and § =
y - R, mod ¢ equals z - R, mod ¢ with z = z -y mod ¢. To find Z given & and 7,
it sufﬁces to compute the ordinary product of & and 7, followed by a division
by R, modulo g. The latter division can be done using shifts, which is one of
the reasons that Montgomery arithmetic may be preferable to regular modular
arithmetic modulo g.

If the regular modular multiplication modulo ¢ in the computation of & and
k is replaced by Montgomery multiplication, the results will be k - ;™ mod ¢
and k' - R;™ mod ¢ instead of k and k~! mod g. At least one of these results
will have to be (Montgomery) multiplied by an appropriate power of R, to get a
correct result. This can easily be achieved by initializing k and k as appropriate
powers of R,. Which power depends on the rest on the implementation. For
on-chip implementation the powers of R, mod ¢ can be ‘hard-wired’ during the
personalization of the chip, 2t the time the other fixed DSA-related values, like
q and p, are initialized as well.



Because one of the multipliers (t) in Step (4) is at most B bits long, one
of the two modular multiplications in Step (4) can be replaced by a ‘partial’
Montgomery multiplication: compute the ordinary product, and next divide by
R (instead of R,) modulo g. This is about 160/B times faster than a ‘full’
Montgomery multiplication.

9.3. Remark. In practice the bits s in Step (4) can be randomly selected for all
i, as long as s is at least b times equal to 0 and at least b times equal to 1. See
also Section 3.

9.4. Remark. If ¢ is odd, Step (2) can be carried out using the fast division-
free binary version of the extended Euclidean algorithm (cf. Appendix). Because
for B-bit integers the binary method is considerably faster than the standard
method, we only use odd t’s in our implementation.

3 Security Considerations

Obviously, the k’s as generated by Algorithm (2.1) are not ordinary random
numbers in {1,2,...,¢—1} asis required in DSA. The danger of replacing truly
random values by values that have more ‘structure’ or otherwise certain known
arithmetic properties is well known. This is for instance illustrated by a series of
four papers, alternatingly by Schnorr and de Rooij—with both Schnorr’s original
method to efficiently generate z*’s modulo ¢ for random looking k’s (cf. [13])
and his fix (cf. [14]) broken by de Rooij’s subsequent attacks (cf. [1, 2])-

If b and m are relatively small, it is in principle possible to distinguish k’s
generated by our method from truly randomly generated ones. For instance,
with B = 32, b = 2, and m = 5, one may try and divide k and its inverse by
the product of two B-bit integers, and check if the inverse modulo g of any of
the results is a small (i.e., 3B-bit) number that is the product of three smaller
ones. The efficiency of this ‘attack’ is questionable, however, and even if it were
efficient it would be of limited use because the value for k is not revealed in DSA.
The obvious next question is whether a signature (r, s) computed with a truly
randomly generated k can be distinguished from a signature computed with a k
generated by Algorithm (2.1), and whether this would undermine the security of
the signature. We are not aware of a method to do this in a feasible amount of
time, even for B = 32, b=2, and m = 5. Nevertheless, we encourage (and look
forward to) cryptanalysis of our method, strongly advise against its application
before it has extensively been scrutinized, and encourage prospective users to
consult future cryptology proceedings.

With B = 32 we found that, as long as the total number of random bits used
to generate the t’s is at least 2 160 and b > 2, the k as generated by Algorithm
(2.1), using the random number generator provided in LIP, the author’s package

2 Here we only count the bits for the t’s for which ¢ and g, are co-prime. With
properly selected t’s the survival rate of the t’s can be made very high, so that
only a small number of random bits is wasted.



for long integer arithmetic (cf. [6]), cannot efficiently be distinguished from 160-
bit values directly generated by that same generator, using several standard
statistical tests: Marsaglia's diehard test (cf. [8]), and an efficient fixed size subset
sum test developed by S. Rajagopalan and R. Venkatesan (cf. [12]) based on
Goldreich-Levin hard core bits (cf. [3]) and U. Vazirani’s subset sum test (cf.
(15)).

The selection of the ’s can be done in many ways. Some care should be taken
that they do not have too many factors in common. To increase the probability
that this happens they could for instance be chosen congruent to 1 modulo 30.
This choice also increases the survival rate of the t’s in Step (2) of Algorithm
(2.1).

Even though the executions of Step (4) of Algorithm (2.1) require m — 2b
additional random bits, the approach sketched there is probably better than
assigning half of the t’s to k and the other half to k because it makes it harder to
predict how many ‘small factors’ contributed to % and how many to k™! mod g.
Also the powers of R, might be distributed in some random fashion over k and
k= mod g (cf. Remark 2.2).

4 Comparison with other Methods

Run times. We implemented Algorithm (2.1) using the method from the Ap-
pendix and the long integer package LIP (cf. [6]). Averaging over 100 different
160-bit primes ¢ and 100 k’s per ¢, we found that Algorithm (2.1) with B = 32,
b =2, and m = 5 took 0.8 milliseconds on a Sparc 10/51 workstation. Note that
this choice allows about 160 random bits for the choice of the t's and thus sat-
isfies the requirements mentioned in Section 3. For each of the resulting k’s we
also computed k! mod ¢ using two other methods: Lehmer’s inversion ® took 1
millisecond per k, and the exponentiation method based on (1.1) took 11.7 mil-
liseconds per k. The 0.8 and 11.7 millisecond timings can be improved slightly
using Montgomery arithmetic. Obviously, the run time of Algorithm (2.1) is lin-
ear in m; for the more ‘secure’ choice b = 5, m = 15, for example, we found that
Algorithm (2.1) takes on average 2.3 milliseconds.

From these run times we conclude that for DSA Algorithm (2.1) can be
made competitive with Lehmer’s inversion, but that, if the latter is available,
it hardly makes sense to use Algorithm (2.1). In an environment where this
is not the case and where Montgomery arithmetic is used, however, Algorithm
(2.1) is substantially faster than the ‘standard’ solution based on the use of
(1.1). Because the run time of the latter method is proportional to (logq)® and
the other two are only quadratic in logg (because b and m are proportional
to logg), the advantage of Algorithm (2.1) compared to (1.1) becomes more
apparent for larger g. For instance, for 512-bit primes ¢, Algorithm (2.1) with

® Lehmer’s inversion applied to sufficiently large integers is more efficient than
the method from the Appendix applied to large integers.



b = 6 and m = 16 takes on average 7 milliseconds, Lehmer’s inversion needs 4
milliseconds, and the method based on (1.1) takes 210 milliseconds.

Code sizes. In a scenario as in DSA where regular modular multiplication
and exponentiation or Montgomery multiplication and exponentiation are avail-
able, computing the inverse using the exponentiation method based on (1.1)
requires no additional code. Algorithm (2.1) requires, as mentioned in Section 1,
code for division of (160+ B)-bit integers by B-bit integers (this is most likely al-
ready available if regular modular arithmetic is used for the remainder of DSA),
multiplication of 160-bit integers by B-bit integers (already available either in
regular or Montgomery arithmetic), and the extended Euclidean algorithm on
integers of at most B bits. In LIP this would lead to an overhead of 100 lines of
code for the division and 60 lines for the inversion (or only 60 if regular modular
arithmetic is used). For Lehmer’s inversion one needs full-blown long integer di-
vision, and the inversion code. In LIP this would lead to an overhead of 150 lines
for the division and 200 lines for Lehmer’s inversion (or only 200 lines if regu-
lar arithmetic is used). All these figures are very rough upper bounds as they
include formatting, defines, and many statements to make the code generally
applicable but that are not all needed in any specific application.

Which of the three alternatives is preferable depends on the actual imple-
mentation and other system characteristics, requirements, and specifications. We
have not been able to carry out any comparisons using smartcards.
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Appendix

Because this method does not seem to be generally known, we review an efficient
and division-free method to compute n™! mod p for odd pand n with0 <n <p
and p and n co-prime:

Binary extended Euclidean algorithm. Let ny = n, my = 1, ns = p, and mg = 0.
Throughout the algorithm we have that m; -n = n; mod p, for ¢ = 1,2. First,
as long as n, is even, replace ny by n;/2 and m; by m1/2 mod p (because p is
odd, dividing m; by 2 modulo p can be done either by right-shifting m, if m, is
even, or by right-shifting m, + p if m, is odd). Next, perform steps (1) through
(6), until the algorithm terminates:

1. If ny equals 1, return m; =n~"' mod p and terminate;

2. If n; equals n then n and p are not co-prime: report failure and terminate;

3. If n; < ns swap n; and ny and swap m and mo;

4. Replace n; by ny — ny and replace m; by my —ma (note that the resulting

n; is even);

5. Replace n; by n;/2 and m; by m;/2 mod p;

6. If ny is even return to Step (5), otherwise return to Step (1).
This binary extended Euclidean algorithm is much more efficient than the stan-
dard extended Euclidean algorithm when applied to B-bit integers. As mentioned
in the footnote in Section 4, however, it is less efficient than Lehmer’s inversion
when applied to 160-bit or larger integers. Note that for B-bit integers Lehmer’s
inversion is identical to the standard extended Euclidean algorithm.



