
A semantics-based approach to design of query
languages for partial informat ion

MS-CIS-94-38
LOGIC & COMPUTATION 84

Leonid Libkin

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

August 1994

A semantics-based approach to design of query
languages for partial information

Leonid Libkin*

Before September 1, 1994:

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19104-6389, USA
email: libkin@saul.cis.upenn.edu

After September 1, 1994:

AT&T Bell Laboratories
600 Mountain Avenue

Murray Hill, N J 07974, USA

email: libkin@research.att .com

Abstract

Most of work on partial information in databases asks which operations of standard lan-
guages, like relational algebra, can still be performed correctly in the presence of nulls. In
this paper a different point of view is advocated. We believe that the semantics of partiality
must be clearly understood and it should give us new design principles for languages for
databases with partial information.

There are different sources of partial information, such as missing information and con-
flicts that occur when different databases are merged. In this paper, we develop a common
semantic framework for them which can be applied in a context more general than the flat
relational model. This ordered semantics, which is based on ideas used in the semantics of
programming languages, cleanly intergrates all kinds of partial information and serves as a
tool to establish connections between them.

Analyzing properties of semantic domains of types suitable for representing partial in-
formation, we come up with operations that are naturally associated with those types, and
we organize programming syntax around these operations. We show how the languages that
we obtain can be used to ask typical queries about incomplete information in relational
databases, and how they can express some previously proposed languages. Finally, we dis-
cuss a few related topics such as mixing traditional constraints with partial information and
extending semantics and languages to accommodate bags and recursive types.

Keywords: Partial information in databases, semantics, types, query languages, disjunctive
information, constraints.

"Supported in part by NSF Grant IRI-90-04137 and AT&T Doctoral Fellowship.

Contents

1 Partial Information in Databases 1
1.1 Classical approach - null values . 2
1.2 Semantics of partiality . 3

1.2.1 Order and partiality . 3
1.2.2 Constraints on null values . 3

1.3 Semantics of collections . 4
1.3.1 Open and closed worlds . 4
1.3.2 Disjunctive information . 5

1.4 Toward a general theory . 6

2 Semantics of Partial Information 7
2.1 Partial information and orderings on objects . 7
2.2 Orderings on collections : . 8
2.3 Semantics of collections . 12
2.4 Properties of semantic domains of types . 16

3 Languages for partial information 17
3.1 The Tannen-Cardelli thesis . 17
3.2 Language for sets and its sublanguages . 19
3.3 Language for sets and or-sets . 24

4 New directions 27
4.1 Traditional constraints and partial information . 27
4.2 Recursive types and values . 28
4.3 Bags and partial information . 30
4.4 Language implementation . 30

1 Partial Informat ion in Databases

Many aspects of database systems whose importance is evident in a variety of applications are yet
to be adequately represented in practical database management systems. In many cases the reason
for this is the lack of underlying theory. One of such problems is handling partial information in
databases. While no one doubts that it must be dealt with, simply because in most applications we
can not assume that the information stored in a database is perfect, the field has not been satisfactorily
explored. Most results about partial information in databases are negative in their nature. They show
what can not be done - efficiently or at all - if standard tools are used in the presence of partial
information.

The niain goal of this paper is t o make a step toward a general theory of partial information. Partiality
of information can be viewed as giving additional meaning t o values that can be stored. Alternatively,
one can regard i t as constraining those values. Note, however, that such constraints are imposed on
values that can be stored, and not on the whole database. Our goal is t o represent these constraints
in an adequately chosen mathematical framework, so that they can be reasoned about. Having found
such a framework, we must demonstrate its usefulness. In this paper we concentrate on developing
languages for partial information.

The main thesis of this paper is that , rather than showing what can not be done with standard tools,
one should concentrate on designing new tools specifically for handling partial information. This thesis

cursive types and values in the presence of incompleteness of information; and extending our approach
to bags (multisets).

2 Semantics of Partial Information

The purpose of this section is to study the semantics of partial data. The unifying theme for various
kinds of partial information is using ordered sets as their semantics, where the meaning of the order
is "being more informative". Once orderings on values come into play, there is a need in new basic
models for incomplete databases. We first describe an approach suggested in [BJ091] and further
developed in [JLP92, Lib91, LL901 that, in a very general way, treats database objects as elements of
certain ordered sets. Then we adapt this approach to the typed setting. For that we need to choose
orderings on various kinds of collections. To do so, we formalize elementary updates on collections
which improve our knowledge about the real world situation represented by that data, that is, add
information. Then we characterize transitive closures of those updates, thus obtaining the orderings.
We carry out this program for OWA and CWA sets and or-sets. We use the orderings to define the
semantics of collections of partial objects. It will be shown that the semantics and the orderings agree
naturally. We study important properties of semantic domains of partial data which will later be used
to organize programming syntax.

2.1 Partial information and orderings on objects

It was discovered in [BJ091] that a representation of the underlying principles of relational database
theory can be found in the theory of domains which has been developed as the basis of the denotational
semantics of programming languages. A database is a collection of descriptions, and the meaning [dl
of a description d is the set of all possible objects described by it. Therefore, we can order descriptions
by saying that a description dl is better than a description d2 if it describes fewer objects, i.e. if
it is a more precise description. For example, let dl and d2 be the records in a relational database:
dl = [Dept: CIS, Office: 1761, and d2 = [Name: John, Dept: CIS, Office: 1761. If name, department
and office are the only attributes, then the meaning of dl is the set of all possible records that refer
to CIS people in office 176, in particular, d2. Therefore, d2 is better than dl because [dl2 [dll.

If all descriptions of objects come from the same domain A which is partially ordered by 5 , then

we define [dl def {dl E D I d' 2 d} = Td. Then dl 5 d2 iff id2] c [dl]. Sometimes it is helpful to
restrict domains A to those in which every element x E A is bounded above by a maximal element
x, 2 x. The collection of maximal elements is denoted by Amax, and the new semantic function then
is [x] ~ ~ , = [x] n Amax. This semantic function was used in [AKGSl, Gra91, IL841.

Consistency in posets is another useful notion. Two elements x, y E A are called consistent if
there exists z E A such that x, y 5 z. In the case of records this means joinable as in [Zan84]
(i.e. they do not contradict each other): for example, [Name: John,Dept: ni, Office: 1761 and
[Name: John, Dept: CIS, Office: nil are consistent as both of them are below d2.

Note that if both dl and d2 in our example above are stored in a relational database, then dl can be
removed as it does not add any information. Generally, in the usual set interpretation of databases,
if x 5 y, then x can be removed. Removing redundant elements leaves us with a collection of

I Name I Salary I Room I Telephone I 1 Name I Salary I Room I Telephone 1
John
Ann

Figure 1: Relations with nulls

Mary I ni 1 351 1 x-1595

can be subdivided into two.

15K
17K

I I I

Mary I un 1 351 1 x-1595

1. In order to understand partial information in databases, we have to know exactly what it means.
That is, we have to have a semantics for partial information. We develop a formalism, whose
roots can be found in [Bis81, BJ091, Gra91, IL84, JLP92, Lib91, Vas791, and whose main idea
is that partiality is represented via orderings on objects.

2. We are not interested in semantics per se; the semantics that we define will help us find the right
programming constructs for query languages for partial information. Our approach is based
on [Car88, BBN91, BBW92, BLS+94], and its gist is that operations naturally associated with
datatypes should be used as the basis for the language design. The word "naturally" has a
precise mathematical meaning, and it has to do with the properties of semantic domains of the
datatypes used. Thus, we can formulate our second main principle, which says that semantics
suggests programming constructs.

075
ni

In the rest of this section we give a brief survey of the field of partial information in databases - to
the extent we shall need it t o motivate and substantiate our study.

1.1 Classical approach - null values

ni
ni

Soon after Codd introduced his relational model, people realized that in real applications not all values
may be present. For example, in the first relation in figure 1 that might be a part of a university or a
corporation database, some values are missing and the symbol ni (no information) is used. Note that
there could be several different reasons for using ni. This is reflected in the second relation in figure 1
where three kinds of nulls are used (cf. [LL86, RKS89, Zan841). ne means nonexistent; that is, John
does not have a phone. un means existing unknown; Mary is on payroll but the precise figure of her
salary is unknown. And ni still means no information. For other kinds of nulls see [GZ88, LL931.

One of the most important achievements of the early work on partial information was an observation
made in [Cod79]. Since every null value can be potentially replaced by a non-null value, each relation
with nulls is represented by a set of relations without partial information. Moreover, this set could
be considered as the semantics of the given incomplete relation. This idea was central to the seminal
study [IL84] in which querying databases with nulls using standard languages like relational algebra
was examined. The family of all complete relations that a relation R with nulls can represent was
called a representation of R; we prefer the term semantics of R and denote it by [R]. If q is a relational
algebra query, we can ask q on [R], obtaining q([R]) = {q(T) (T E [RIJ}. If we could find an relation
R' such that [R'] = q([R]), then we would be able to call R' the answer to q on R, that is, q(R).
However, for most classes of queries this is impossible. In fact, even milder definition of q(R) leads to
similar negative results.

John
Ann

15K
17K

075
un

ne
ni

Very little is known about null values in complex objects or nested relations, that is, relations whose
attributes can be relation-valued themselves. An attempt to extend the results of [IL84] was made
in [RKS89], but later an error was found [LL91]. It was then shown [LL93] that some of the results
can be recovered if equality of representations of incomplete complex objects is replaced by the Hoare
equivalence, which will be defined later. However, this is still not satisfactory because only highly
restricted subclass of complex objects was considered (so called partitioned normal form objects,
cf. [AB86]). Furthermore, [LL93] used the standard present ation of languages for complex objects,
like in [TF86, SS86, Co1901, and consequently inherited all of its problems and drawbacks. In particular,
the description of the notion of null-extended join operator is almost one-page long, and many other
operations are rather hard to grasp. The algebra for complex objects proposed in [Lib911 does not
have adequate power to work with set-valued attributes. Thus, the problem of incorporating partial
information into datamodels more complex than the standard (flat) relational model remains open.

1.2 Semantics of partiality

1.2.1 O r d e r a n d partiali ty

The key idea of our approach to semantics of partial information is that partiality is represented via
orderings on objects. For the first time this idea appeared probably in [Vas79], and two years later it
was further explored in [Bis81]. As a simple example, consider values that may occur in a database.
Then ni is more partial, or less informative, than any nonpartial value v such as 15K or 'Mary'.
Therefore, we impose an order according to which ni < v for any nonpartial value v.

Most databases are obtained from base values by applying record and set constructors, so we need to
extend the orderings respectively. For records the most natural way to do it is componentwise. For
records with fields labeled by 11, . . . , En, we define

1 : 1 , . . . 1 : v 5 1 : v . . . 1 : v] iff V i = 1,. . . , n : vi 5 vi

For sets there are various ways to extend a partial order, and typically the following one, perceived as
a generalized subset ordering, X 5 Y iff Vx E X 3y E Y : x 5 y, was considered.

The idea of representing partiality via orders is central to our study. At this point, we would like to
note that it can also be viewed as imposing certain constraints on values that can be stored, rather
than the whole database, as is the case with most standard constraints. That is, ni and 123 are
not just symbols; there is a certain semantic relationship between them, that is often not taken into
account in the theory of partial information.

1.2.2 Const ra in t s o n null values

The idea of using three-valued logic [Cod751 to query databases with nulls was shown to lead to wrong
results [Gra77]. Instead, in [Gra77, Bis811 and a number of other papers it was suggested that one
use Skolem variables to represent different occurrences of nulls. To represent various interconnections
between those nulls, it was suggested to use constraints on the Skolem variables. For example, in the
simplest case, called Codd tables, all Skolem variables are distinct. Inequality tables allow conditions

Name I Salary I Room

I Name I Salary (Room I
R :

Mary
Name I Salary I Room

Figure 2: Illustration to CWA and OWA

like x # y or z # 4 where x and y are variables. In conditioned tables, in addition to such constrains,
a variable may occur more than once, and each tuple may have a constraint associated only with it.

In [AKGSl] complexity of querying relational databases with incomplete information and constraints
on nulls is studied thoroughly. A typical problem considered in [AKGSl] is the following. Given a query
q, a relation R with nulls and a set of constraints C , and a relation without incomplete information
T, is it possible that one can find a relation T' in [R] such that T' satisfies all the constraints in C
and q(T') = T. It was shown in [AKGSl] that for many classes of constrained tables problems of this
kind are very hard (i.e. NP, coNP or II;-complete), but in some restricted cases they are polynomial.

1.3 Semantics of collections

Assume we are given a collection of database objects with partial information. What is the semantics
of such collection? It turns out that this question can not be answered unless we make certain
assumptions about what kinds of collections can be supported. In what follows, we discuss three
which are of particular importance for this paper: sets under closed and open world assumptions and
disjunctive sets (or-sets). In section 4 we shall also consider bags.

1.3.1 O p e n a n d closed worlds

It was observed in [Rei78] that certain assumptions on the nature of partiality are to be made if we
want to provide a notion of correctness of query evaluation algorithms. To explain these assumptions,
consider relation R in figure 2. Once all or some information about missing values (ni's) is known, we
have a relation that represents better knowledge than R. However, there may be different assumptions
about the values that are allowed in the new relation.

One possible interpretation, called the closed world assumption or CWA, states that we can only
im~rove our knowledge about records that are alreadv stored but can not invent new ones. For "
example, it is legal to add any record which improves upon the first record in R. It is
also possible t o add a record [Mary (17K 1 561 1 which is better knowledge than that represented by

Figure 3: Example of or-sets arising in merging databases

I Name 1 SS# I Age I

Mary 987654321 32
(Name I SS# I Age I

merge

the second record in R. However, it is not possible to add a record I Ann I ni 1 561 1 as it does not
improve any of the records already in the database. That is, the database is closed for adding new
records.

D2:

Contrary to that, the open world assumption or OWA allows adding records to database as well as
improving already existing records. Under the open world assumption, adding any record considered
above to the database is perfectly legal. That is, the database is open for adding new records.

To summarize, Figure 2 shows how to replace missing values according to both assumptions. This
interpretation of OWA and CWA is similar to the one typically used in databases with incomplete
informations (cf. [IL84, Var861) but slightly different from [Rei78] who used a logical setting. However,
later we shall show that analogs of most of the results from [Rei78] hold in our setting as well.

Name

John
Ann

1.3.2 Disjunctive information

The idea of using disjunctive information as a means to express partiality was already present
in [Lip79, Lip811. But it was not until almost ten years later that the first attempt was
made to introduce disjunctions explicitly into the standard relational model. Consider the

SS#
123456789
564738291

following example. Suppose we have two databases, Dl and D2 shown in figure 3. As-
sume that we merge Dl and D2. It is clear that records (Mary 1 987654321 1 32 1 and

I Ann 1 564738291 1 25 1 should be in the resulting database. But what is the value of the Age field

-
Age
27
25

I I I I - -
for John? Since SS# identifies people uniquely, we have conflicting information coming from two
databases, and this conflict must be recorded in the newly created database until one finds out if John
is 24 or 27 years of age. Therefore, both ages - 24 and 27 - are stored in the new database. However,
the semantics of the Age attribute (which is now set-valued) is different from the usual interpretation
of sets in databases. Rather than suggesting that John is both 24 and 27 years old, it says that John
is 24 or 27.

Since such disjunctive sets, also called or-sets, have semantics that differs from the ordinary sets, we
shall use a special notation () for them. That is, in the result of merging Dl and D2, the value of the
Age attribute for John is (24,27), see figure 3. While structurally just a set, it denotes an integer,
which is either 24 or 27. That is, there are two different views of or-sets: structural, that concerns
representation, and conceptual, that concerns meaning. This idea was present in the initial papers on
or-sets [INVgla, INVglb] and later was formalized and worked out in [LW93].

1.4 Toward a general theory

There are a number of models for partial information in the database literature. Sonie of them are
quite ad-hoc, based on specific needs arising in particular applications. We have seen two sources
of partiality: null values and disjunctive information. (There are others; see, for example, [BDW91,
Lib94al.) There are no solid theoretical foundations for any of these, nor are there any results that
show how they are connected. Moreover, most models of partiality are developed only for the flat
relational model, and virtually nothing is known for more complicated database models. This situation
in the field of partial information was summarized in a recent survey [KangO]:

". . . for the representation and querying of incomplete information databases, there are
many partial solutions but no satisfactory full answer. It seems that the further away we
move from the relational data model, the fewer analytical and algebraic tools are available."

Thus, to address the problem of partial information in databases and to move closer to satisfactory
solutions that work for a large class of data models, one has to come up with new analytical tools and
show their applicability not only in the study of the extended data models but also in the development
of new query languages for databases with partial information. Making progress in this direction is
the major motivation for this work. In this paper we develop a new approach to partial information
that integrates all kinds of partiality within the same semantic framework. In addition to giving us
necessary analytical and algebraic tools to study various kinds of partial information, this framework
also naturally suggests operations that should be included into the language that works with partial
information. Techniques that are developed for analyzing the structure of partial information can be
applied to the study of the languages that deal with it.

Organization. In Section 2 we explore the first main principle of our approach saying that partiality
is represented via orders on objects. First we briefly describe the main ideas of the approach of [BJ091,
Lib911 that treats database objects as elements of certain partially ordered spaces of descriptions. Then
we apply it in a typed setting, obtaining orderings for various kinds of collection type constructors.
Thus, for the first tinie choosing orderings is tied with semantics of collections. Then we explain
the difference between structural and conceptual representation of disjunctive information from the
semantic point of view, and list some of the properties of semantic domains of collections which will
be used for the language design.

In Section 3 we develop the second idea which says that semantics suggests programming constructs.
We start by explaining the approach to the language design based on [Car88, BBN91, BBW92,
BLS+94] that suggests building languages for data around datatypes involved. Specifically, for each
datatype constructor one needs introduction and elimination operations, and those can be obtained if
one looks at the operations naturally - in the categorical sense - associated with the semantics of the
datatypes. We show how to apply this approach to languages with partial information, and disjunctive
information in particular. As two examples of applicability of obtained languages, we show that the
algebra of [Zan84] can be viewed as a sublanguage of our language for sets, and we show how this
language can be used to query equational tables, in which equality constraints are imposed on null
values.

Finally, in Section 4, we discuss topics that should be further explored, but with some initial results
already obtained. These include mixing traditional database constraints with partial information; re-

Figure 4: Order on null values

incomparable elements. Such collections are called antichains. That is, a subset X of an ordered set
A is an antichain if x y for any x, y E A.

The main idea of [BJ091] was that database objects are represented as antichains in domains, which
are special kinds of posets used in semantics of programming languages. This was later refined in
[Lib94b] by requiring that database objects be antichains of compact elements; we shall return to
this distinction later when we discuss recursive types. The approach has proved very fruitful. The
concept of scheme was introduced in such a generalized setting, relational algebra operators were
reconstructed, and functional and multivalued dependencies were defined and shown to possess the
expected properties, see [B J091, JLP92, Lib911 .

However, this approach is too general, and we would like to adapt it to a typed setting. Complex
objects. or nested relations, are constructed from values of base types (such as integers, strings etc.)
by applying the record and the set type constructor. That is, their types are given by the following
grammar:

t ..- ..- b 1 [11 : t , . . . , In : t] 1 {t}

where b ranges over a collection of base types, [Il : t l , . . . , E n : tl] is the record type whose instances are
records with fields 1;s such that the value of the 1; field has type t;, and {t} is the set type constructor
whose values are (for now) finite sets of values of type t.

Therefore, to obtain orderings for complex objects, we need to order base objects, records and sets.
Orderings on base values are determined by null values that a given datatype allows. For example, in
the case of three nulls ne, ni and un allowed for the type of naturals, the ordering is shown in figure
4. As was mentioned already, records are ordered componentwise. However, there is no "universal"
way of ordering sets. The purpose of the next section is to identify some ways of doing it and associate
them with various kinds of collections.

2.2 Orderings on collections

Our general problem is the following. Given a poset (A, <) and the family of all collections (sets,
or-sets etc.) over A, how do we order those? As usual, our interpretation of the partial order is
"being more informative". What does it mean to say that one collection of partial descriptions is
more informative than another? As two examples of families of collections over A that we would like
to order, we consider &,(A), the family of finite antichains of A, and $,,(A), the family of finite
subsets of A.

A similar problem arises in the semantics of programming languages, most notably in the semantics

of concurrency, cf. [Gun92]. Three orderings, called the Hoare, the Smyth and the Plotkin ordering
have been proposed ([Gun92, Smy78, Plo761):

(Hoare) X L ~ B ~ V X E X ~ ~ E Y : x < y

(Plot kin) X ~b Y u X &b Y and X C# Y

All of them have been used for databases with partial information: the Hoare ordering in [Bis81, IL84,
Libgl], the Smyth ordering in [B J091,Oho90], the Plotkin ordering in [PS93]. However, none of these
papers addressed the question whether the chosen ordering is appropriate for the intended semantics
of collections. Choosing the right orderings is the main purpose of this subsection. Our main claims
are summarized in the table below.

Kind of collection

Sets under CWA

The technique we use to justify these claims is the following. We define "elementary updates" that
add information. For example, for CWA databases such updates should add information to individual
records. For OWA we may have additional updates that add records to a database. For or-sets,
reducing the number of possibilities adds information as an or-sets denotes one of its elements. We
fornialize those updates and then look at their transitive closure. That is, a collection C1 is more
informative than Cz if C1 can be reached from Ca by a sequence of elementary updates that add
information. There are two ways to perform updates that add information, because redundancies
represented by comparable elements could be removed. That is, one way is to keep all elements, even
those that are comparable, and the other way is to remove redundancies, that is, to make sure that
the result of each elementary update is an antichain again. These two ways lead to some orderings on
either antichains of ordered sets or arbitrary subsets thereof. We shall consider both and show that
they coincide.

Ordering

Plotkin (c ~)
Sets under OWA

Or-sets

Ordering CWA databases. In a closed world database, it is possible to update individual records
but it is impossible to add new records. To understand what the elementary updates are, recall the
example in figure 2. We view R1 as more informative than R under the CWA. There could be more
than one person in 076. That is, an incomplete record can be updated in various ways that give rise
t o a number of new records, and this is consistent with the closed world assumption, and this is how
the first two records in R1 are obtained. The third record in R1 is obtained from the second record
in R by adding the salary value. Thus, we see that the way the closed world databases are made
more informative is by getting more information about individual records. The first picture in figure
5 illustrates those updates. We simply remove an element (record) from a database and replace it by
a number of more informative elements (records).

Hoare (c~)
Smvth (c#)

There are two ways to formalize those updates, depending on whether arbitrary sets or only antichains
are allowed. Let X A be a finite subset of the poset A. Let x E X and X' 2 A be a finite nonempty

Figure 5: Updates for CWA and OWA

subset of A such that x < x' for all x' E X'. Then we allow the following update:

x F ~ (x - X) U X '

For antichains, we need to impose two additional restrictions. First, X ' must be an antichain, and
second, the result must be an antichain. To ensure the second requirement is satisfied, we keep only
maximal elements. That is, in the case of antichains the legitimate updates are

X Ea max((X - x) u X')

We now say that X gCWA Y if X , Y C A and Y can be obtained from X by a sequence of updates
zA, that is, CCWA is the transitive closure of on $, , (A) . Similarly, X E:WA Y if X , Y are finite
antichains of A and Y can be obtained from X by a sequence of updates za, that is, L:WA is the
transitive closure of 'Ea on &,(A). To justify the claim that the closed world databases must be
ordered by the Plotkin ordering, we prove the following.

T h e o r e m 1 a) Let X , Y E $,,(A). Then X LCWA Y iff X ~b Y .
b) Let X , Y E &,(A). Then X EzWA Y iff X ~b Y.

Corollary 1 Let X and Y be finite antichains in A such that X ~b Y. Then it is possible to find
CWA CWA a sequence of antichains X I , . . . , X n such that XI , . . . , X n G X U Y and X -, X1 - . .

CWA X, Ma Y.

Order ing OWA databases. In an open world database, it is possible to update individual records
and add new records. As in the case of the CWA databases, consider a simple example of relations R
and Rz in figure 2. Some of the records in R2, that we view as a more informative one, are obtained
by modifying records of R. However, one record, 1 Ann 1 I (325 1 can not be obtained by modifying
any record in R. The reason it was put there is that the database is open for new records. Under this
interpretation, we view adding records as an update that adds information. In the above example,
adding that record improves our knowledge about what can be a university or a company database
of employees. This is illustrated by the second picture in figure 5. Not only do we allow replacing a
record by a number of more informative records, but we also allow adding new records.

Similarly t o the CWA case, there are two ways to formalize these updates, depending on whether
arbitrary sets or only antichains are allowed. Let X c A be a finite nonempty subset of the poset A.
Let x E X and X ' c A be a finite subset of A such that x 5 x' for all x' E X'. Let X" be an arbitrary
finite subset of A. Then we allow the following updates:

and

For antichains, we impose an additional restriction that the result always be an antichain. We do it
by keeping only maximal elements in the results. Therefore, in the case of antichains the legitimate
updates are

X O S a max((X - x) u X') and X O Z max(X u X")

We say that X L O W A Y if X, Y A and Y can be obtained from X by a sequence of updates m, that
is, L O W A is the transitive closure of on Pfi,(A). Similarly, X LZWA Y if X , Y are finite antichains
of A and Y can be obtained from X by a sequence of updates E,, that is, LZWA is the transitive
closure of z, on &,(A). To justify the claim that the OWA databases must be ordered by the
Hoare ordering, we prove

T h e o r e m 2 a) Let X , Y E $,,(A). Then X L O W A Y ifS X C~ Y .

b) Let X , Y E &,(A). Then X C:WA Y ifS X L~ Y .

Corollary 2 Let X and Y be finite antichains in A such that X E~ Y . Then it is possible to find
OWA OWA a sequence of antichains XI, . . . ,X, such that XI , . . . ,X, c X U Y and X =a X1 -, . . . -,

OWA X , -, Y .

Order ing or-sets. We now define update rules for or-sets. We start with a simple example.

Name I Salary I Room
Name (Salary 1 Room

or - set

Mary 17K I

There are two reasons why we view X2 as a more informative or-set than XI. First, additional
information about Ann was obtained. It is now known that her salary is 13K. Second, one of the
records was removed. Note that removing an element from an or-set makes it more informative.
Indeed, while (1,2,3) is an integer which is either 1 or 2 or 3, (1,2) is an integer which is 1 or 2, so
we have additional information that it can not be 3.

Therefore, we consider two types of updates on or-sets: improving information about individual records
and removing elements:

X A (X - x) U X' if x E X and x 5 x' for all x' E X' and X' # 0

To redefine these updates for antichains, we must decide how redundancies in or-sets are removed. We
suggest that only minimal elements be kept in the results. To see why, consider the following or-set
with two comaarable records:

,I Name I Room 1,
[i John i 076 i \
\I John / un //

This or-set denotes a person whose name is John and who is either in room 076 or in an unknown
room. The semantics of this is exactly as having one record for John in an unknown room. (This will
be made precise in the next section.) Hence, we retain the minimal elements. Then the updates for
antichains become

X 6 min((X - x) U XI) if x E X and x 5 x' for all x' E X' and X ' # 0

Define Lor and c.6 as the transitive closure of A and 6, respectively. To justify the last claim
that the or-sets must be ordered by the Smyth ordering, we prove the following.

Theorem 3 a) Let X , Y E $,,(A), X , Y # 0. Then X 5"' Y iff X C H Y.
b) Le tX,Y€Afin(A) , X , Y # @ . ThenXgodY i f f ~ ~ f l ~ .

Corollary 3 Let X and Y be finite antichains in A such that X E# Y. Then it is possible to find
01 a sequence of antichains X I , . . . ,X, such that XI, . . . ,X, C X U Y and X A, XI 6, . . . -,

X, A, Y.

2.3 Semantics of collections

We will need some notation. Recall that the family of finite antichains of a poset A is denoted by
&,(A). By p b (~) we mean the poset (Afin(A), Cb), and by P ~ (A) we denote (&,(A), ~ n) . These
two constructions are the bases for the Hoare and the Smyth powerdomains used in semantics of
concurrency, see [Gun92]. Note that P b (~) is a join-semilattice, where the join operation is given
by X ub Y = max(X U Y), and ?#(A) is a meet-semilattice, where the meet operation is given by
X Y = min(X U Y).

Recall that the semantics of a database object d, which is an element of an ordered set A, is defined as
the set of all elements of A that it can possibly denote, that is, [d l = Td = {d' E A 1 d' > d } . Following
this definition and the results of the previous section, we can define the semantics of sets under OWA
and CWA. Assume that elements of sets are taken from a partially ordered set A. Then we define
the semantic functions [.]I:ey, [.IoWA, [[-]ICWA where index "set" stands for the set semantics (as
opposed to the antichain semantics for which we do not use an index), as follows:

In what follows, we shall mostly consider the open world assumption. Hence, if no superscript is used,
it is assumed that we deal with the OWA. That is, [XI = [x]IoWA and [XIset = I [X] , " ~ ~ .

A number of useful properties of these functions are summarized in the following proposition.

Proposition 1 1. If X , Y Ch A, then [Y],"~Y C [x],"~? iflX L O W A Y iflX E~ Y.

2. If X , Y E &,(A), then [Y] G [XI ifl X 5:WA Y ifl X C~ Y.

3. If X Xfi, A, then [XI = [max X] and [x],"~Y = [max x JJ , "~~ .
CWA i#X rCWA Y i f l ~ ~b Y. 4. If X, Y Gfin A, then [y],"ep C [XIset -

5. If X Cfin A, then = [maxX U min x],"~? and [x]ICWA = [maxX U min x j C W A .

Closed world databases were initially defined in the logical setting. In particular, [Rei78] defined a
CWA answer to a query as a certain set of tuples without incomplete information. In our terminology,
this corresponds to finding an answer to a query with respect to the []:= semantic function. It
was proved in [Rei78] that the CWA query evaluation distributes over union and intersection, and
that whenever a database is consistent with the negations of the facts stored in it, the OWA and the
CWA query evaluation algorithms produce the same result. It was also proved that the minimal CWA
answers contain exactly one tuple.

The following proposition shows that analogs of these results hold in our setting. Note that to say
that a database X is consistent with negation of any fact stored in i t , is the same as to say that any
y $! X is consistent with some x E X . In other words, if every z E A lies under some z, E AmaX,
then X L~ Amax. Finally, a domain of n-ary relations with one kind of nulls is the product of n copies
of an infinite flat domain. In view of this, the proposition below says that the results of [Rei78] are
preserved, at least in the spirit.

Proposition 2 Let A be a poset such that each element is under an element of Amax. Then
1) If A is a product of n copies of infinite flat domains and Y E [XI n X2]k':, then Y = Yl n Y2
where Yl E [x~]:': and Y2 E [X2]::,".
2) For any poset A, [XI U XZ]::; = {YI U Y2 I YI E [XI]~:;,Y~ E [Xz];:,"}.
3) If X C~ Amax, then [x]::," = [X] z g .
4) If X is bounded above in A, then a minimal nonempty Y E [x]::: is a singleton.

Or-sets can be treated at both structural and conceptual levels. At the structural level we just define
[X]"' = {Y E Pfin(A) I X CU Y) (or using &,(A) if we need an antichain semantics.) The following
proposition is the counterpart of proposition 1 for or-sets.

Proposition 3 1. If X , Y (Ifi, A, then [Y]Or C [[XIor iff X Lor Y iff X ~ f l Y .

2. If X , Y E &,(A), then ([Y]Or C [IX]"' iff X 5- ifl X ~ f l Y.

3. If X Ch A, then [XI0' = [minx]"'.

Note that propositions 1 and 3 justify using maximal elements to remove redundancies from sets under
OWA and using minimal elements to remove redundancies from or-sets. For sets under CWA, it is
necessary t o retain both minimal and maximal elements; the elements which are strictly in between
can be removed as the fifth item in proposition 1 suggests.

Semantics of types and typed objects. The semantic functions above could also be used to
define the semantic domains of types. For siniplicity, assume that we have the following type system:

t ::= b (t x t I { t) I (t)

and that we are dealing with the open world assumption. Notice that we use pairs instead of records.
Pairs are sufficent to simulate records and are easier to work with as notation does not become too com-
plicated. We now define the structural semantics [I, that corresponds to the structural interpretation
of or-sets.

Suppose that for each base type b its semantic domain [b], is given. We define the semantic domains
of all types inductively. Suppose we want to deal with antichains. Then

The structural semantics of objects is defined inductively.

For each base type b and an element x of this type, [x] , = Tx = {x' E [b] , I x' 2 x) .

If x = (x 1 , x 2) , then [x] , = [X I] , x [x2ls.

If X is of type { t) , then [X I , = [x]IoWA.
If X is of type (t), then [X I , = [XIor .

Note that the last clauses in the definitions of type and object semantics say that we have defined the
structural semantics of or-sets. That is, we viewed or-sets as collections and not as single elements
they could represent. Our next goal is to define the conceptual semantics [I c of or-sets.

First, for base types both semantics coincide, i.e. [b], = [b],. For other type constructors []I, is defined
as follows. Note that there are two possibilities for the semantics of the set type constructor, but the
definition of the semantics of objects will work with both of them.

The last clause corresponds to the fact that conceptually an or-set is just one of its elements. Semantics
of each object is now going to be a finitely generated filter F = T { fl , . . . , f,) = f fl U . . . U f f,. Again,
we define it inductively.

a For each base type b and an element x of this type, [x], = f x = {x' E [b], I x' > x).

a If x = (xl , 2 2)) then [x], = [XI], x [x2]lc.

a Let X = {xl, . . .,x,) be a set of type {t). Then [XI, = {Y) Vi = 1,. . ., n : Y n [xi], # 0).
Here Y is taken from Pfi,([t],) or Afin([t],) depending on the definition of the semantics of types.

a Let X = (21,. . . , x,) be an or-set of type (t). Then [X] , = [xl]lc U . . . U [x,],.

Before we prove that this semantic function possesses the desired properties, let us make a few ob-
servation. First, the definition of the semantics of or-sets coincides with the intended semantics of
or-sets: an or-set denotes one of its elements. Second, to understand the semantics of pairs and
sets, consider two simple examples. Let xl = (1,2), x2 = (3,4). Assume that there is no order-
ing involved. The semantics of xl is then a set {1,2) and the semantics of x2 is {3,4). There-
fore, [(xl, x2)], = {(1,3), (1,4), (2,3), (2,4)). Now consider (xl, x2). It is a pair whose first com-
ponent is 1 or 2 and whose second component is 3 or 4. Hence, it is one of the following pairs:
(1,3), (1,4), (2,3), (2,4). And this is exactly what the semantic function I[], tells us. For semantics of
sets, consider X = {xl, x2) = {(1,2), (3,4)). It is is a set that has a t least two elements: one is 1 or
2, and the other is 3 or 4. Hence, it must contain one of the following sets (since we believe in OWA):
{1,3), {1,4), {2,4), {3,4). Now look at [XI,. A set Y belongs to [X], if Y n [(I, 2)], = Y n {1,2} # 0
and Y n [(3,4)]lc = Y n {3,4) # 0 which happens if and only if Y contains one of the four sets above.
This justifies our definition of the conceptual semantics of sets.

Now we can prove the following.

Theorem 4 For every object x of type t, [XI, is a finitely generated filter in [t],. Furthermore, if x
and y are of type t and x 5 y in [t],, then [y], G [x],.

Corollary 4 If x and y are objects of the same type, then [x], = [y], implies [x], = [y],.

The converse is not true: ((1,2), (3)) and ((I) , (2), (3)) are structurally different objects of type ((int)),

but U((1,2), (3))Bc = [((I) , (2)) (3))Ic = {1,2,3).

Relationship between CWA sets, OWA sets and or-sets. There is a naturally arising question:
do we really need all three kinds of collections - OWA sets, CWA sets and or-sets? Can not we just
represent some of them using the others? The answer to this question is that we do need all three kinds
of collections and no such representations exist. First, let us see what could be a representation of,
say, OWA sets with or-sets. It could be a procedure that, given a poset A and X E &,(A), calculates
Y E &,(A) such that Z E [XI iff Z E [Y]lor. The following proposition tells us that it is impossible
to do so.

Proposition 4 For every poset A which is not a chain and has at least two elements, there exists
X E &,(A) such that for no Y E &,(A) the following holds: 1) [XI = [YIor; 2) [XIor = [Y]; 3)
[XI = l[Y],"y'; 4) XI,"^^' = [Y]; 5) [X]lO' = [y]l,"ey'; 6) [XI,"Y = uynor.

2.4 Properties of semantic domains of types

We did not define the semantics of types and objects for nothing. Our goal is to use the semantics as
a guideline for the language design. In this subsection we establish a number of useful properties of
semantic domains of types which be used extensively in the next section.

Recall that the structural semantics of types { t } and (t) was defined as 'Pb([t]) and 'Pn([t]) respectively.
Let 7 : A i 'Pb(A) or P#(A) be the singleton function: ~ (x) = {x). Then both 'Pb(-) and ?I(.) have
nice characterizations as follows.

Proposition 5 Let A be a poset. Then ('Pb(A), ub, 8) ((pii(A), nu, 8)) is the free join-semilattice with
bottom (free meet-semilattice with top) generated by A. That is, for every join-semilattice with bottom
(S, V, I) (meet-semilattice with top (S , A , T)) and every monotone map f : A + S , there exists a
unique semilattice homomorphism f f : ' P b (~) + S (f+ : 'P#(A) + S) that mates the first (second)
diagram below commute.

So far the only semantic distinction between or-sets and sets showed up in different orderings for
those and in different interpretations for conceptual semantics. We have not yet seen any results
suggesting how these may interact. This is important for a language design, so that we would be
able to distinguish between sets and or-sets. A natural way to study the connection between sets
and or-sets is t o look at the semantic domains of iterated types, that is, { (t)) and ({ t)) , and see how
they are related. In other words, one has to find out what the relationship between 'Pb(P#(A)) and
'P#('Pb(A)) is. Here we have the following useful fact.

Theorem 5 (see also [Lib92, LW931) Given a finite set of finite sets X = {XI,. . . , X,} where Xi =
{xi , . . . , xii) , let Fx be the set of functions f : (1, ..., n) + N such that for any i : 1 5 f (i) 5 k; . If
all Xi's are subsets of A, define two maps a, and pa as follows:

a,(X) = min (max{xZf(,.) I i = 1, . . . , n))
f EFx-

pa(X) = rnax,,(min{~;(~, I i = 1, . . . , n})
f EFx-

Then for any poset A, a, restricted to 'Pb('P#(A)) and pa restricted to 'Pfl('Pb(A)) are mutually inverse
isomorphisms between 'Pb('P#(A)) and 'P#('Pb(A)).

Now, let us see what a, does if there is no order involved. In this case an input to a, can be considered
as a set of or-sets:

x = {(xi , . . . , xkl), . . . , (x?, . . .) x;J}

Assume all xis are distinct. Then a,(X) is the or-set of sets

That is, all possible choices encoded by or-sets are explicitly listed. We shall use a, as a programming
primitive extensively in the next section.

The iterated construction pbn(A) = pb(Pn(A)) E pU(pb(A)) possesses the following important prop-
erty. Both join and meet operations can be defined on P b (P # (~)) and supply it with the lattice
structure: X ub y = m a x H (~ u y) where maxn is taking maximal elements with respect to ~ n , and
X fl y = maxn {X nu Y I X E X, Y E y). Moreover, the following holds.

Theorem 6 For an arbitrary poset A, pb#(A) is the free distributive lattice with top and bottom
generated by A.

This result is quite robust and holds when some changes are made in the definitions of pb (.) and P#(.).
In particular, if Pb (A) and pZ0 are defined as pb and P h x c e p t that the empty antichain is not

@
allowed and pb' and P'bO are respective compositions of 'Pb and P' @, then the following holds.

@ # @

Corollary 5 For an arbitrary poset A, Pb"A) and PHb (A) are isomorphic. Moreover, PbH (A) is
@

the free distributive lattice generated by A.
@ # @

This fact is the key of the normalization process suggested in [LW93] as a means of incorporating
conceptual semantics into the language. We shall come to it again later.

3 Languages for partial informat ion

3.1 The Tannen-Cardelli thesis

In this subsection we give an overview of two principles of language design, which, when combined,
provide a uniform way of organizing programming syntax around datatypes involved.

Suppose we want to design a language that works with objects given by some type system, like the
one we had for complex objects. How do we choose primitives of such a language? The idea of
Cardelli (see [Car88]) is that one should use introduction and elimination operations associated with
type constructors as primitives of a programming language. The introduction operations are needed to
construct objects of a given type whereas the elimination operations are used for doing computations
over them. For example, record formation is the introduction operation for records, and projections
are the elimination operations.

Figure 6: Operations naturally associated with collection types

How does one find those introductions and elimination operations? Databases work with various
kinds of collections. One approach (due to Tannen [BBW92, BTS911) to finding the introduction and
elimination operations for those collections is to look for operations naturally associated with them.
To do so, one often characterizes the semantic domains of collection types via universality properties,
which tell us what the introduction and the elimination operations are.

Assume that we have a collection type constructor (like sets, bags, lists etc.) that we denote by C(.).
Then, for any type t , C(t) is the type of collections of elements of type t (e.g. sets or bags of type
t). By universality property we mean that the following is true about [C(t)], the semantic domain of
type C(t). It is possible to find a set R of operations on [C(t)] and a map 7 : [t] -+ [C(t)] such that
for any other R-algebra (X,R) and a map f : it] -+ X there exists a unique R-homomorphism f +
such that the first diagram in figure 6 commutes. If we are successful in identifying 7 and 0 , then we
can make them the introduction operations. The reason is that now any object of type C(t) can be
constructed from objects of type t by first embedding them into type C(t) by means of 7, and then
constructing more complex objects using the operations from R. The elimination operation is given
by the universality property. That is, the general elimination operation is a higher-order operation
that takes f as an input and returns f +.

Combining these two ideas by Cardelli and Tannen gives us languages for many kinds of collections.
Consider sets, assuming that the semantic domain of {t) is the finite powerset of elements o f t , that is,
$,,([t]). For any set X , its finite powerset P,,(X) is the free semilattice generated by X . That is, the
operations of R are 0 and U and 7 is the singleton formation: ~ (x) = {x). Moreover, these operations
can be applied for arbitrary types. That is, 7 is the polymorphic singleton; its type is t -+ {t) for
any t. Similarly, U is the polymorphic union of type {t) x {t) + {t). Any set of type {t) can be
cosntructed from elements of type t using (?I, U and 7: {xl,. . . , x,) = q(xl) U . . . U q(x,).

The operation that takes f into f f is the following

This operation f + , often called structural recursion [BBNSl, BBW921, depends on e and u which are
interpretations of the operations of R on its range. Notice that if e and u do not supply the range
of f + with the structure of a semilattice, then f + may not be well-defined. For example, if e is 0,
f is the constant function that always returns 1, and u is +, then retaining duplicates may easily
lead to a wrong cardinality function: 1 = f + [O , +]({I)) = f S I O , +]({l, 1)) = 2. To overcome this

problem, one should require that e be interpreted as 0 and u as U. Generally, the simplest way to
ensure well-definedness is to require that (X, R) be ([C(s)], G) for some type s. Thus, we obtain the
second diagram in figure 6.

The unique completing homomorphism is called ext(f), the extension of f . Its semantics in the case
of sets is ext(f){xl,. . . ,x,) = f (xl) U . . . U f (x,). This justifies the name because ext(f) "extends"
f to sets. It is a polymorphic higher-order operation that takes f of type t + {s) and returns
ext(f) : { t) + {s). This function is well-defined. Using ext together with 7, 0, U, projections and
record formation, conditional and the equality test gives us precisely the nested relational algebra
[BBW92] but the presentation is nicer than the standard ones, such as in [SS86, TF861. Instead of
ext one can use two functions: map(f) : {t) + {s) provided f is of type t + s (this function maps f
over its input: map(f)({xl, . . . , x,)) = { f (xl), . . . , f (x,))) and p : {{t)) + {t) that flattens a set of
sets: p({X1,. . . , X,)) = X1 U . . . U X,. Diagrams in figure in 6 represent a well-known mathematical
construction, which is going from an adjunction to the Kleisli category of its monad, and the fact that
ext and map and p are interchangeable follows from the general properties of the categorical notion
of a monad, see [BW90].

This approach to the language design was shown to be extremely useful in the past few years, see
[LW94a, LW94b, Suc941. Here we apply it to partial information; the reader has probably already
noticed the similarity between diagrams in figure 6 and proposition 5, which will give us the operations
of the language.

3.2 Language for sets and its sublanguages

Consider sets under the OWA. Since the semantic domain of type {t) is pb([t]), proposition 5 gives
us the universality property and consequently introduction and elimination operations. Introduction
operations are q(x) = {x) and X U ~ Y = m a x (X ~ Y) , while the restricted form of elimination operation
ext, is given by exta(f)({xl,. . .,x,)) = f(x1) ub.. . ub f(x,) = max(f(x1) U . . . U f(z,)). We prefer
using the map-p presentation. The semantics of those operations is given by p,({XI,. . . ,X,)) =
max(Xl u . . . u X,) and mapa(f)({xl, . . . , 2,)) = max({ f (xl) , . . . , f (x,))). The index "a" stands for
antichains.

If no order (partiality) is involved, then the semantics of {t) is P,,([[t]) which is the free join-semilattice
with bottom generated by [t]. Hence, the operations given by this universality property are the same
as those for the language for OWA sets, except that max is not taken. For instance, U is used instead
of ub. The resulting language, NRC is precisely the nested relational algebra as has been mentioned
(see [BBW92]).

Figure 7 contains expressions of two languages: NRC (nested relational language) of [BBW92] and
nTRCa (NRC on antichains). Both languages share the general operators (the only excpetion is NRC's
equality test instead of comparability test of NRC,). In the figure, we annotate expressions with their
most general types. Since those types can be inferred, in what follows we shall omit them. NRC
has all operations from the group of operations not dealing with partial information, and NRC, has
operations from the "set operations for partial information" group. Let us briefly recall the semantics
of the operators that have not been explained already. 5, is the comparability test at type s; that is,
<, (x, y) evaluates to true if x, y are of type s and x 5 y in [s],. In other words,

General operators and pairs

g : u + s f : s + t c:bool f : s + t g : s + t f : u + s g : u + t
f o g : u - t if c then f else g : s -t t (f , g) : u + s x t

n;'t : s x t + s n;jt : s x t --t t !t : t -+ unit

Kc : unit + Type(c) idt : t + t 5,: s x s + boo1

Set operators for partial information (given by pb)

: s x { t) + { s x t) qt : t ' { t) U! : { t) X { t) -t { t)

f : s + t
,uk : { { t)) -t { t) emptyt : unit + { t) map,(f) : { s) -+ { t)

Set operators without partial information (given by P,,)

: s x { t) ' { s x t) qt : t + { t) U t : { t) X { t) ' { t)

f : s - + t
,ut : { { t)) + { t) emptyt : unit -+ { t) map(f) : { s) + { t)

Figure 7: Expressions of NRC and NW,

(x, Y) l s x t (x', y)'* x 5 s .' and Y l t Y'.

a x y e x 5: y (i.e. Qo E x 30' E y : o 5, 0').

p2 is the pair-with operation: p2(x, (51,. . . ,x,}) = {(x, xl), . . ., (x, 2,)). unit is a special base type
that has only one element. Its presence here is dictated by the fact that NRC is an algebra of functions.
That is, to make a constant like 0 into a function, we make it a function of type unit -+ {t) that
always returns 0. Composition of functions is denoted by o, pairing of functions is denoted by (f ,g)
and TI and n2 are first and second projections.

Note that the languages are parameterized by an unspecified family of base types. That is, we view
NRC and NRC, as analog of relational algebra or calculus, which is the starting point for most
languages for flat relations. Should one need additional types and operations on them (like real
numbers and real arithmetic), they can be added easily. But the most important step in language
design is to choose the operations that manipulate data, and this is what the operations of NRC and
NRCa are.

Now we are going to establish some properties of the languages. First, we do not need 5, as a primitive
at all types because it can be defined.

Proposition 6 Assume that < b is given for any base type b. Then 5, is definable in NW, without
using 5, as a primitive. Furthermore, under the assumption that 5 b can be tested in O(1) time, the
time complexity of verifying x 5, y is O(n2), where n is the total size of x and y.

Using this, we can show that NRC is sufficient to simulate NW,.

Theorem 7 NRC, is a sublanguage of NW augmented with 5 b for all base types.

However, there is one subtle point. Assume that we have two sets X1 and X2 of type {t) such that
maxXl = maxX2. That is, X1 and X2 represent the same object in [{t)],. Let f : {t) i t' be
a function definable in NRC. Is it true that f(X1) and f (X2) represent the same object in [t'],?
Unfortunately, the answer to this question is negative. To see why, consider x and y of type t such
that x St y and x # y. Assume that g : t + t' is such that g(x) and g(y) are not comparable by I t , .

Then map(g)({y)) = {g(y)) and map(g)({x, Y}) = {g(x), g(y)). Even though max{y} = max{x, Y},
we have max(map(g)({y})) # max(map(g)({x, y})). The reason why this happens is that g is not a
monotone function. Requiring monotonicity is sufficient to repair this problem. Define the following
translation function (-)" on objects that forces objects in the set-theoretic semantics into the objects
in the antichain semantics:

a For x of base type b, xO = x.

a For x = (21, xz), xO = (xT,xz).

a For X = {xl, . . .,x,), X 0 = max{xy,. . . , x i > .

We say that a function f : s i t definable in NW agrees with the antichain semantics if so = yo
implies f (x)O = f (y)". We say that it is monotone iff x 5, y implies f (x) St f (y).

Proposi t ion 7 A monotone function f definable in N7U: agrees with the antichain semantics. If f
is not monotone, then map(f) does not agree with the antichain semantics.

Therefore, we would like to identify the subclass of monotone functions definable in NRC. Unfortu-
nately, it is not possible to do it algorithmically. Not being able to decide monotonicity is another
reason why we prefer to view NX, as a sublanguage of NRC in which the antichain semantics can
be modeled, rather than a separate language.

T h e o r e m 8 It is undecidable whether a function f definable in NRC is monotone.

There are some intersting anomalies of the antichain semantics. The most surprising of all is that
[q], = [powersetjs or, in other words, N7U:,(powerset) = NRC,. Indeed, since for any Y E Pfin(X)
we have Y C X and hence Y C~ X , then under the antichain semantics [Pfin(X)]s = [rnaxPfin(X)~, =
[{X}], = [q(X)],. There are two lessons we learn from this interesting collapse. First, as we have
said already, it is better to view NRC, as a sublanguage of JVRC rather than a separate language.
Second, powerset is not a good candidate to enrich expressiveness of the language. (Of course, the
result of [SP94] which states that even very simple algorithms expressed with powerset need at least
exponential space to be evaluated is a much stronger argument against powerset).

The next question we are going to address is that of conservativity of NRC over JVTX,. Given a family
of primitives @interpreted for both set theoretic and antichain semantics, we say that NRC(Sb ,g l is
conservative over NRC,($) if for any function f definable in NRC(Sb ,g and satisfying the condition
that f (x) = f(x)O for any x = xO, such f is definable in NW,(g. We do not know if NRC(Sb) is
conservative over NRC,. However, we can show that it is conservative when augmented with aggregate
functions. Instead of choosing a restricted set of aggregates, we use a general template suggested by
[LW94a, LW94bl. This is the higher-order function C (f) that takes a function f : t -+ N and returns
C (f) : {t} + N given by C(f)({xl, . . . , x,)) = f (xl) + . . . + f(x,). Other operations on the type of
naturals include multiplication and modified subtraction (monus) I. The key idea in the proof of the
proposition below is that using these additional functions we can encode objects using only natural
numbers, cf. [LW94c].

Proposi t ion 8 NRC(N, C , 0 , A, S b) is conservative over NRC,(N, C, .,A).

Example: Zaniolo's language

In one of the first languages for partial information [Zan84] there is only one kind of nulls - ni. The
ordering on records is defined component-wise and it is lifted to relations by using the Hoare ordering.
Zaniolo's language was initially designed for flat relations only but here we show how to extend it to
the nested relations.

The main notion in the language is that of x-relation which is an equivalence class with respect to the
Hoare ordering. That is, R1 and R2 are equivalent if R1 L~ Rg and R2 L~ R1. In our terminology this
means that IR1 = J,R2, where J,x = {y I y 5 x). Therefore, we can pick a canonical representative of

We use parenthesis to list types and operations added to the language.

each equivalence class: the canonical representative of the equivalence class of R is max R. Clearly,
L R1 = L R2 implies max Rl = max R2.

The next notion used for defining the operations in the language is that of generalized membership:
r i R iff r 5 r' for some r' E R. In other words, r i R iff r E LR or {r} L~ R. Using this notion, Zaniolo
defined the following main operations:

RlAR2 = max{r I r i Rl and r iR2)

R 1 - ~ 2 = max{r I r i R l and l (r i R 2) }

Now we can see how operations are translated into the standard order-theoretic language we advocate
in this paper:

Rli'lR2 = maxLR1 n LR2 = max{rl Ar2 I r l E R1,r2 E R2) = R1 nb R2

R11R2 = max{t I t i R 1 and 7(tiR2)) = R1 - JRz

Thus, Zaniolo7s union, intersection and difference are order-theoretic analogs of the usual set-theoretic
union, intersection and difference. Next we notice that these operations are definable in NRG, and
hence in NRC augmented with orderings at base types. We have seen already that rnax is definable,
so we only need the following lemma which is proved by an easy induction and definitions of ub and
nb.

Lemma 1 If the least upper bound Vb : b x b + b and the greatest lower bound Ab : b x b -. b are
given for any base type b, then the least upper bound V, : s x s -+ s and the greatest lower bound
A, : s x s -. s are definable in NRG, for every type s.

The last operation of Zaniolo's language is the join (we omit projection and selection as these are
standard and of course definable in NRG,). The join with respect to a set X of attributes was defined
as

R1 Wx R2 := max{tl V t2 I tl iR1, t 2 i R 2 , tl and t2 are total on X)

Without the condition that tl and t2 must be total on X that translates into max{tl V t2 I tl E Rl , t2 E
R2) and hence is definable in NRG, by taking cartesian product of R1 and R2 and mapping V over
it. In the case of flat relations, it is also possible to check if the value of a projection is ni since ni
is available as a constant of base types now. Hence, the totality condition can be checked, and since
selection is definable, so is Wx. Summing up, we have

Theorem 9 The language of Zaniolo is a sublanguage of ,4hZC,, and hence NRG.

Notice that in the case of model with one null ni we do not have to require orderings on base types
as these are definable using just equality test.

3.3 Language for sets and or-sets

Proposition 5 gives us the properties of semantic domains of or-set types which are necessary t o find
the programming primitives. Notice that if no ordering is involved, then structurally or-sets and sets
are indistinguishable. Hence, in this case all or-set operations are the same as in the case of sets, and
we only add prefix or and change types {t) to (t). In the case of ordered semantics, it is only the
ordering and removal of redundancies that are different. Hence, we shall have analogs of all operations
of the set language but the semantics is different: or-map,(f) ((xl , . . . , x,)) = min((f (xl), . . . , f (x,))),
or-p,((X1,. . . , X,)) = min(X1 U . . . U X,) and X nu Y = min(X LJ Y).

So far there is no interaction of sets and or-sets present in the language. Since any operator providing
such interaction must have source and target types involving both sets and or-sets, theorem 5 suggests
what this operator could be. Its type is {(t)) + ({t)). For the ordered case, it is a, of theorem 5.
For unordered case, it is the following operator a :

(or, compactly, a (X) = ({x>(~) I i = 1 , . . . , n} I f E FX) using the notation of theorem 5).

Since or-sets are ordered by the Smyth ordering and redundancies are removed by taking minimal
elements, we augment the definitions of orderings on complex objects and forcing sets into antichains
from the previous section as follows:

x _<(,) y u x <! y (i.e. Vo' E y 30 E x : o 5, 0') (xl,. . . , xn)O = min(xy,. . . , x i)

Definition. The language or-NRC is defined as NRC augmented by the or-set constructs without
ordering from figure 8 and a , see [LW93]. The language or-NRC, is defined as NRC, augmented by
the or-set constructs for ordered domains from figure 8 and a,.

Some useful properties of or-NRC and or-NRC, are summarized in the theorem below.

Theorem 10 1. If sb is given at any base type b, then <, is definable in or-NRC, without using
5, as a primitive.

2. Under the assumption that 5 b can be tested in O(1) time, the time complexity of verifying x 5, y
is O(n2), where n is the total size of x and y.

3. o r - N Z , is a sublanguage of o r - m (< b)

4. For any two objects x, y of type s, x <, y iffxO 5, yo.

5. For any operator g, of or-NRC, and the corresponding operator g of or-NX!C the following holds:
g,(x) = g(x)O whenever x is a legitimate input to g , (that is, x = xO).

6. Any monotone function f definable in or-NRC agrees with the antichain semantics. Iff is not
monotone, then map(f) and or-map(f) do not agree with the antichain semantics.

7. A is undecidable whether a function f definable in or-NRC is monotone.

Or-Set operartions without ordering

or-paSJ : s x (t) + (s x t) or-$: t + (t) or-ut : (t) x (t) + (t)

f : s + t

o r : ((t)) + (t) or-emptyt : unit --+ (t) or-map f : (s) + (t)

Or-Set operations for ordered domains (given by pH)

or-pzsJ : s x (t) + (s x t) or-$: t + (t) n! : (t) x (t) + (t)

f : s + t

o r : ((t)) + (t) or-emptyt : unit -+ (t) or-map, f : (s) i (t)

Interaction of sets and or-sets without ordering

at { (t)) j (i t))

Interaction of sets and or-sets for ordered domains

at, : {(t>> + ({ t>)

Figure 8: Expressions of or-NRC and or-NX,

Not let us look at the conceptual semantics [Ic of the or-set operators of or-NRC and or-NRC,.

T h e o r e m 11 The following equations hold:

Moreover, for or-NRC the same equations hold if finite powerset is used instead of pb(.) to give
semantics of {t}.

The intuition behind the first three equations is that or+, or-p2 and a do not change the meaning.
Indeed, consider x = ((1,2), (2,3)). The meaning of x is an or-set which is either (1,2) or (2,3). Hence,
x is an integer which is either 1 or 2 or 3. But this is the same as the meaning of (1,2,3) = or-p(z).
For a, the meaning of 31 = {(I, 2), (3)) is a set whose first element is 1 or 2 and whose second element
is 3. That is, y is either {1,2) or {2,3), and its meaning is the same as that of ({1,2}, {2,3)) = cr(y).

It was shown in [LW93] that if or-p, a and or-pa are repeatedly applied to subobjects of an object
x while possible, then a) the process will eventually terminate and b) the result of this process does
not depend on the sequence in which those operations were applied t o subobjects of x. The result
uniquely determined by such a process is called a normal form and denoted by normalize(x). It can
be seen that if x has or-sets in it, then the type of normalize(x) is (t) where t does not have any or-set
brackets. The intuitive meaning of normalize(x) is listing all possibilities encoded by x. Of course this
should not change the meaning. Now, with the help of theorem 11 we can formulate this precisely.

Corollary 6 normalize(^)]^ = [x]lc.

This corollary is formulated for the set theoretic seniantics, because existence and well-definedness of
normalize was proved only for the set semantics in [LW93]. Extending this result in various ways,
including antichain semantics, is the subject of a separate paper.

Concluding this section, we give a simple example of applicability of or-n/RC to classical problems
of incomplete information in relational databases by showing how to use it to solve the membership
problem for equational tables.

Example: Member sh ip problem for equational tables in or-NRC

Recall that equational tables are relations where variables can be used as well as nonpartial values,
and each variable may occur more than once. The membership problem is to determine, given an

equational table and a relation without variables, if the relation is a possible world for the table. That
is, if it is possible to instantiate variables to values such that the table will be instantiated into the
given relation. It is known that this problem is NP-complete, so we can not hope to give a solution
that does not use the expensive a.

For simplicity of exposition, assume that we have a base type b having both variables $1,. . . and values
vl, . . . and that it is possible to distinguish between variables and values. A relation R is an object of
type {b x b) such that no variable occurs in it. A table T is also an object of type {b x b) but now
variables may occur. It is possible to find the set of all variables that occur in T using the fact that
select is defiable in NRC (cf. [BBW92]):

VA RT := select(is-variable) o map(rl)(T) U select(is-variable) o map(nz)(T)

All values that occur in R can be found as

In or-NRC it is possible to define powerset,, : {t) i ({t}) which lists all subsets of a given set. This
is done by first taking a set {xl,. . . , x,) and producing a new object {({zl), {I), . . . , ({z,}, 0))
and then applying a to it and mapping p over the result. So, the next step is t o compute
powerset,,(cartprod(VA~~ x VAL^)) and select those sets in it in which every variable from VART
occurs exactly once. We denote this resulting object of type ({b x b}) by ASSIGN. Each element of
ASSIGN can be viewed as an assignment of values to variables, so it can be applied t o T in the following
sense. For every x in ASSIGN (which is a set of pairs variable-value), we can write a function that
substitutes each variable in T by the corresponding value, and then map this function over ASSIGN.
The reader is invited to see how such a function can be written in or-NRC.

The resulting object is now X of type ({b x b)) which is the or-set of all possible relations that can be
obtained from T by using valuation maps whose values are in VAL^. Therefore, R is a possible world
for T if and only if R is a member of X. To verify this, we write or-map(Xx.eq(x, R))(X) and then
check if true is in the result. This gives us the membership test.

It is interesting to note that the membership problem for Codd tables, while being of polynomial time
complexity, requires solving the bipartite matching problem which can be reformulated as a problem of
finding a system of distinct representatives, see [AKGSl]. Therefore, the power of NRC is too limited
to solve the membership problem even for Codd tables, because the bipartite matching problem can
not be solved in it [Lib94b]. However, with the power of a, the language can solve a much more
complicated membership for equational tables.

4 New directions

4.1 Traditional constraints and partial information

In this paper we developed type systems and languages for databases with partial informa-
tion. The next important step will be to accommodate traditional database constraints into
the model. Relatively little is known about constraints in relational databases with nulls (see
[AM86, Gra91, PDGV89, Tha91, Tha891) and virtually nothing is known about constraints for other

kinds of partial information. To the best of our knowledge, no work has been done on understanding
how the ordering interacts with constraints.

There are several possible approaches to the study of interaction of traditional constraints with partial
information. Since we advocate the order- t heoretic models of databases and consider rat her compli-
cated type systems, we believe one should try to apply the approach that formalizes constraints
independently of the particular kind of data structures involved. For example, one may use the lat-
tice theoretic approach to dependencies and normalization developed in [DLM92, Day921 or define
dependencies as certain classes of first order formulae as in [Fag82].

Another useful idea is to introduce analogs of some constrains for databases with partial information
in a "disjunctive" manner [AM86, Tha891. Following [Tha89], we consider keys. In a usual relational
database, a set K of attributes is a key if nK(tl) # nK(t2) for any two distinct tuples tl and t2.
Suppose we have a relational database in which only one kind of nulls, ni, is allowed, and the order
is given by ni 5 v for any v. Then a family K = {Iil,. . . , K,) of sets of attributes is called a key set
[That391 if for any two distinct tuples tl and t2, there exists a li; E ti such that t l and t2 are defined
on K; (that is, none of the I<;-values is ni) and nK,(tl) # nx,(t2). For relations without null values
this simply means that (J ti is a key. A key set if minimal if all K;s are singletons. The disjunctive
nature of such constraints matches the usual key constrains in the closed world semantics.

Proposi t ion 9 For any relation R with ni null values and a set K of attributes, K = {{k) I k E K)
is a minimal key set iff ~ ~ ~ ~ ~ ~ (~ , ~ t) (t) = n ~ ~ d ~ f (t , ~ t) (t ') implies t = t', where def(t, t') is the set of
attributes on which both t and t' are defined. Furthermore, this implies that for any T E [R]:'," with
card T 5 card R, K is a key of T.

The converse to the last statement is not true. Consider R = {(ni, I), (2 , l)) . Then for any T as in
the statement of the proposition, the first attribute is a key, but it is not a key set for R.

We believe that this idea of making one constraint into a family while maintaihing a close connection
with the intended semantics can be quite productive. The concept of a key set can be reformulated
as Vt, t' V I i E K : (K C def(t, t') + rK(t) = nK(tl)) + t = t'. This in turn implies that U K is a key
for any T E [[R]:: and shows that keys can be further generalized to functional dependencies and
probably a to greater class of dependencies given in a first order language with equality.

4.2 Recursive types and values

The discussion in this subsection assumes some knowledge of the formal semantics of programming
languages. The complex object data model, which was the main object of study in this paper, usually
serves as the underlying model for object-oriented databases. But object-oriented databases include
more than that. In particular, they often deal with recursive values. In many models recursive values
are represented by oids; in practice, these are implemented as pointers. However, the formal semantics
of recursive types and values, and in particular recursive types and values in the presence of partial
information, must be worked out.

Since semantics of recursive types is usually obtained as a limit construction, this suggests using
domains instead of arbitrary posets. Assume that we add a recursive type constructor t o the type

system:
t := x I b I unit 1 t x t I { t) I px.t

where x ranges over type variables, and px.t is the recursive type constructor (x must be free in t) .
Since semantics of recursive types is usually obtained as a solution to an equation, which in turn is a
(co)limit in some category, we have to switch to categories of domains from categories of posets. A
domain is a poset in which every directed set has a least upper bound and compact elements form a
basis. A compact element is characterized by the property that c 5 U X implies c 5 x for some x E X.
Compact elements form a basis of D if for every x E D, K , = {c I c 5 x , c compact) is directed and
x = UK,.

It was suggested in [Gun851 that one formulate a number of requirements on the category of domains
in which the semantics of types is to be found. In [Gun851 such requirements were formulated for type
systems suitable for traditional functional languages, but those do not use the set type constructor.
Following [Gun85], let us try to formulate a number of requirements on the category of domains C in
which a semantics of recursive complex object types can be found. First of all, its objects must be
closed under x (product type) and pb(.) which is ld l ('Pb(~.)) , the ideal completion of p b (~ .) . Second,
it must contain the domains of base types (which are usually flat domains or those similar t o posets in
figure 4). Third, equations of form D = F(D), where F is a functor composed from the constant base
type functors, products and g ~ ~ (-) , must have a solution in C. This guarantees that the semantics of
recursive types can still be found in C.

Of course a number of categories satisfy these requirements, but most of them contain too many
domains that never arise as domains of types. If we interpret compact elements as objects that can
actually be stored in a database, then having an object x that can be stored and an object y that is less
informative than x , we should be able to store y as well, provided or-sets are not used. That is, there
is one additional condition saying that the compact elements must form an ideal, i.e. J,KD = K D .
Now we call a category of domains that satisfy all these conditions a database category.

Proposition 10 The following are examples of database categories:
1) C1, the category of domains i n which there is no infinite chain under any compact element.
2) C2, the category of domains in which the number of elements under any compact element is finite.
3) Subcategories of C1 and C2 i n which all ideals are distributive lattices and/or maps are required to
preserve compactness.
4) The category of dl-domains and stable maps (see [Gun921 for the definition).

So, we have a number of categories in which semantics of recursive complex object types can be found.
But this is not the end of the story, because there are two major issues that must be addressed. First,
these conditions are no longer satisfied if we add the or-set type constructor. Second, all recursive
database objects have finite representation and could be stored in a database. But we can easily see
that they are not necessarily compact elements in the domains of their types. For example, consider
px.string x x . Its elements are infinite sequences of strings, and compact elements are those in which
almost all entries are IStTi,,. We can think of this type as, for example, type person = [Name:string,
spouse.-person]. Its elements certainly have finite representation, but are not compact elements of
the domain of person. Therefore, we need to identify elements of the domains which have a finite
representation. This identification must be done order-theoretically. Therefore, a proper definition of
elements having a finite representation and identification of elements of solutions of recursive domain
equations having finite representations remain open problems. We believe that progress towards

solving these problems will suggests the right operations to be used for programming with recursive
complex objects.

4.3 Bags and partial information

So far we have tacitly assumed that we deal with sets and duplicates are always removed. However,
most practical database management systems use bags as the underlying datamodel. There has been
some interest in languages for bags recently [GM93, LW94a7 LW94bl. A standard bag language, called
BQL or BALG, was obtained. It is supposed to play the same role for bags as (nested) relational
algebra plays for set (or complex objects). One can also transfer the results on orderings from sets
to bags. To define elementary updates, we should keep in mind that having a bag rather than a set
means that each element of a bag represents an object and if there are many occurrences of some
element, then at the moment certain objects are indistinguishable.

In view of this, we define updates on bags as follows. First, if b is an element of bag B, and b 5 b',
OWA

then B (and -+) (B - (IbD) H (lblD. Here - is bag difference, kl is additive union and (ID
are bag brackets. In the case of OWA we also add B O Z A B kl (IbD. Transitive closures of these
relations are denoted by dCWA and doWA . It was shown by the author how to describe dCWA and doWA
algorithmically. For a finite bag B and an injective map q5 : B -t N, also called labeling, by 4(B) we
denote the set {(b, #(b)) I b E B). In other words, 4 assigns a unique label to each element of a bag.
If B is a finite bag of elements of a poset, then the ordering on pairs (b, n) where b E B and n E N is
the following: (b, n) < (b', n') iff b 2 b' and n = n'.

Proposition 11 (see also [LW94b]) The binary relations dCWA and doWA on bags are partial orders.
Given two bags B1 and B2, B1 dCWA B2 (B1 doWA B2) ifS there exist labelings 4 and ?I, on B1 and B2
respectively such that q5(B1) 5b $(Bz) (respectively #(B1) L~ $(Bz)).

That is, the correspondence between OWA and the Hoare ordering and CWA and the Plotkin ordering
continues t o hold.

We saw that that gB and [T ~ are definable in our basic set language NRC. However, for bags the
situation is different. It was shown in [Lib94b] that neither aCWA nor goWA is definable in the basic
bag language BQL. Hence, any implementation of a bag language that supports incomplete information
must provide orderings at all types, as these can not be lifted from base types if powerful primitives
like fixpoints are not used.

4.4 Language implementation

The core language for sets and or-sets has been implemented as a library of modules in Standard
ML, see [GL94]. It was useful in several application such as querying incomplete design databases,
or querying independent databases to obtain approximate answers. We believe that in the future
implementations several changes must be made. For example, an algebraic syntax of or-NRC, which
is reflected by the syntax of OR-SML, should be changed to a more user friendly syntax, such as com-
prehensions [BLSf 941. This poses a few problems, such as incorporating normalization of disjunctive

objects into t h e comprehension syntax. I t is also important t ha t a user be able to add any collection
of null values to any preexisting type and define orderings on them. Currently this is possible only
with user-defined new types. Finally, i t would be interesting t o see if using partial information leads
t o any new optimizations.

Acknowledgements. This paper is based on t he results from my handwri t ten notes from 1992-
1994 and a few results from two conference papers [LW93, LW94bl. While working on those notes
and papers, I had a n opportunity t o discuss t he results with a number of people, and t he feedback I
received from them was very helpful. I would like t o thank Peter Buneman, Carl Gunter , Elsa Gunter ,
Achim Jung, Paris Kanellakis, Val Tannen, Victor Vianu and Limsoon Wong.

References

[AB86] S. Abiteboul and N. Bidoit. Non-first normal form relations: An algebra allowing data restructuring.
Journal of Computer and System Sciences, 33(3):361-371, 1986.

[AKG91] S. Abiteboul, P. Kanellakis, and G. Grahne. On the representation and querying of sets of possible
worlds. Theoretical Computer Science, 78:159-187, 1991.

[AM861 P. Atzeni and N. Morfuni. Functional dependencies and constraints on null values in database
relations. Information and Control, 70(1):1-31, July 1986.

[BBW92] V. Breazu-Tannen, P. Buneman, and L. Wong. Naturally embedded query languages. In J . Biskup
and R. Hull, editors, LNCS 646: Proceedings of4th International Conference on Database Theory,
Berlin, Germany, October, 1992, pages 140-154. Springer-Verlag, October 1992.

[BDW91] P. Buneman, S. Davidson, and A. Watters. A semantics for complex objects and approxin~ate
answers. Journal of Computer and System Sciences, 43(1):170-218, August 1991.

[Bis81] J . Biskup. A formal approach to null values in database relations. In Advances in Data Base Theory:
Volume 1. Plenum Press, New York, 1981.

P. Buneman, L. Libkin, D. Suciu, V. Tannen, and L. Wong. Comprehension syntax. SIGMOD
Record, 23(1):87-96, March 1994.

P. Buneman, A. Jung and A. Ohori. Using powerdomains to generalize relational databases. Theo-
retical Computer Science, 91:23-55, 1991.

V. Breazu-Tannen, P. Buneman, and S. Naqvi. Structural recursion as a query language. In Proceed-
ings of 3rd International Workshop on Database Programming Languages, Naphiion, Greece, pages
9-19. Morgan Kaufmann, August 1991.

V. Breazu-Tannen and R. Subrahmanyam. Logical and computational aspects of programming
with Sets/Bags/Lists. In LNCS 510: Proceedings of 18th International Colloquium on Automata,
Languages, and Programming, Madrid, Spain, July 1991, pages 60-75. Springer Verlag, 1991.

M. Barr and C. Wells. Category Theory for Computing Science. Series in Computer Science. Prentice
Hall International, New York, 1990.

L . Cardelli. Types for data-oriented languages. In J . W. Schmidt, S. Ceri, and M. Missikoff, editors,
LNCS 303: Advances in Database Technology - International Conference on Extending Database
Technology, Venice, Italy, March 1988. Springer-Verlag, 1988.

E. F. Codd. Understanding relations. Bulletin of ACM SIGMOD, pages 23-28, 1975.

E. F. Codd. Extending the database relational model to capture more meaning. ACM Transactions
on Database Systems, 4(4):397-434, December 1979.

[Co190] L. S. Colby. A recursive algebra for nested relations. Information Systems, 15(5) :567-582, 1990.

A. Day, The lattice theory of functional dependencies and normal decompositions. Intern. J. of
Algebra and Computation, 2:409-431, 1992.

J. Demetrovics, L. Libkin and I. Muchnik. Functional dependencies in relational databases : a lattice
point of view. Discrete Applied Mathematics, 40:155-185, 1992.

R. Fagin. Horn clauses and database dependencies. Journal of ACM, 29:952-985, 1982.

E. Gunter and L. Libkin, OR-SML: A functional database programming language for disjunctive
information and its applications. In Proceedings of DEXA-94, to appear.

S. Grumbach and T. Milo. Towards tractable algebras for bags. Proceedings of the 12th Conference
on Principles of Database Systems, Washington DC, 1993, pages 49-58.

J . Grant. Null values in relational databases. Information Processing Letters, 6:156-157, 1977.

G. Grahne. The Problem ojIncomplete Information in Relational Databases. Springer-Verlag, Berlin,
1991.

C. Gunter. Comparing categories of domains. In "Mathematical Foundations of Programming
Semantics (A. Melton ed), Springer Lecture Notes in Computer Science, vol. 239, Springer, Berlin,
1985, pages 101-121.

C. Gunter. Semantics of Programming Languages: Structures and Techniques. Foundations of
Computing. MIT Press, 1992.

G. Gottlob and R. Zicari. Closed world databases opened through null values. In Proceedings of
Very Large Databases, pages 50-61, Cambridge, Massachusetts, 1988.

T. Imielinski and W. Lipski. Incomplete information in relational databases. Journal of the ACM,
31:761-791, October 1984.

T . Imielinski, S. Naqvi, and K. Vadaparty. Incomplete objects - a data model for design and plan-
ning applications. In J. Clifford and R. King, editors, Proceedings of ACM-SIGMOD International
Conference on Management of Data, Denver, Colorado, May 1991, pages 288-297. ACM Press,
1991.

T. Imielinski, S. Naqvi, and K. Vadaparty. Querying design and planning databases. In C. Delobel,
M. Kifer, and Y. Masunaga, editors, LNCS 566: Deductive and Obiect Oriented Databases, pages
524-545, Berlin, 1991. Springer-Verlag.

A. Jung, L. Libkin, and H. Puhlmann. Decomposition of domains. In LNCS 598: Proceedings of
1991 Conference on Mathematical Foundations of Programming Semantics, pages 235-258, Berlin,
1992. Springer-Verlag.

P. Kanellakis. Elements of relational database theory. In Handbook of Theoretical Computer Science,
Volume B, pages 1075-1156. North Holland, 1990.

L. Libkin. A relational algebra for complex objects based on partial information. In J. Demetrovics
and B. Thalheim, editors, LNCS 495: Proceedings of Symposium on Mathematical Fundamentals of
Database Systems, Rostock, 1991, pages 36-41. Springer-Verlag, 1991.

L. Libkin. An elementary proof that upper and lower powerdomain constructions commute. Bulletin
of the EATCS, 48:175-177, 1992.

L. Libkin. Approximation in databases. Technical Report MS-CIS-94-21/L&C 79, University of
Pennsylvania, May 1994.

L. Libkin. Aspects of Partial Information in Databases. PhD thesis, Department of Computer and
Information Science, University of Pennsylvania, 1994.

W. Lipski. On semantic issues connected with incomplete information databases. ACM Transactions
on Database Systems, 4(3):262-296, September 1979.

[Lip811 W. Lipski. On databases with incomplete information. Journal of ACM, 28:41-70, 1981.

[LL86] N. Lerat and W. Lipski. Nonapplicable nulls. Theoretical Computer Science, 46:67-82, 1986.

[LLSO] M. Levene and G. Loizou. The nested relation type model: An application of domain theory to
databases. The Computer Journal, 33:19-30, 1990.

[LL91] M. Levene and G. Loizou. Correction to "null values in nested relational databases" by M. A. Roth,
H. F. Korth, and A. Silberschatz. Acta Informatica, 28:603-605, 1991.

[LL93] M. Levene and G. Loizou. A fully precise null extended nested relational algebra. Fundamenta
Informaticae, 19:303-343, 1993.

[LW93] L. Libkin and L. Wong. Semantic representations and query languages for or-sets. In Proceedzngs
of 12th ACM Symposium on Principles of Database Systems, pages 37-48, Washington, D. C., May
1993.

[LW94a] L. Libkin and L. Wong. New techniques for studying set languages, bag languages, and aggregate
functions. In Proceedings of 13th ACM Symposium on Principles of Database Systems, pages 155-
166, Minneapolis, Minnesota, May 1994.

[LW94b] L. Libkin and L. Wong. Some properties of query languages for bags. In C. Beeri, A. Ohori, and D.
Shasha, editors, Proceedings of 4th International Workshop on Database Programming Languages,
New York, August 1993, pages 97-114. Springer-Verlag, January 1994.

[LW94c] L. Libkin and L. Wong. Conservativity of nested relational calculi with internal generic functions.
Information Processing Letters, 49:273-280, 1994.

[Oh0901 A. Ohori. Semantics of types for database objects. Theoretical Computer Science, 76(1):53-91, 1990.

[PDGV89] J . Paredaens, P. De Bra, M. Gyssens and D. Van Gucht, "The Structure of the Relational Data
Model", Springer, Berlin, 1989.

[Plo76] G. D. Plotkin. A powerdomain construction. SIAM Journal of Computing, 5, September 1976.

[PS93] A. Poulovassilis and C. Small. A domain theoretic approach to integrating functional and logical
database languages. In Proceedings of VLBD, pages 416-428, 1993.

[Rei78] R. Reiter. On closed world databases. In H. Gallaire and J . Minker, editors, Logic and Databases.
Plenum Press, 1978.

[RKS89] M. A. Roth, H. F . Korth, and A. Silberschatz. Null values in nested relational databases. Acta
Informatica, 26(7):615-642, 1989.

[Smy78] M. B. Smyth. Power domains. Journal of Computer and System Sciences, 16(1):23-36, 1978.

[SP94] D. Suciu and J . Paredaens. Any algorithm in the complex object algebra needs exponential space
to compute transitive closure. In Proceedings of 13th ACM Symposium on Principles of Database
Systems, pages 201-209, Minneapolis, Minnesota, May 1994.

[SS86] H.-J. Schek and M. H. Scholl. The relational model with relation-valued attributes. Information
Systems, 11(2):137-147, 1986.

[Suc94] D. Suciu. Fixpoints and bounded fixpoints for complex objects. In C. Beeri, A. Ohori, and D.
Shasha, editors, Proceedings of 4th International Workshop on Database Programming Languages,
New York, August 1993, pages 263-281. Springer-Verlag, January 1994.

[Tha89] B. Thalheim. On semantic issues connected with keys in relational databases permitting null values.
J. Inf. Process. and Cybernet., 25(1/2):11-20, 1989.

[Thagl] B. Thalheim. "Dependencies in Relational Databases", Teubner-Texte zur Mathematik, Band 126,
Stuttgart-Leipzig, 1991.

[TF86] S. J . Thomas and P. C. Fischer. Nested relational structures. In P. C. Kanellakis and I?. P.
Preparata, editors, Advances in Computing Research: The Theory of Databases, pages 269-307,
London, England, 1986. JAI Press.

[Var86] M. Y. Vardi. On the integrity of databases with incomplete information. In Proceedings of 5th ACM
Symposium on Principles of Database Systems, pages 252-266, 1986.

[Vas79] Y. Vassiliou. Null values in database management - a denotational semantics approach. In Proceed-
ings of SIGMOD, 1979.

[Zan84] C. Zaniolo. Database relation with null values. Journal of Computer and System Sciences, 28(1):142-
166, 1984.

