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Abstract: Repositories provide the information system's support to layer soft- 
ware environments. Initially, repository technology has been dominated by object 
representation issues. Teams are not part of the ball game. In this paper, we pro- 
pose the concept of sharing processes which supports distribution and sharing of 
objects and tasks by teams. Sharing processes are formally specified as classes of 
non-deterministic f'mite automata connected to each other by deduction rules. They 
are intended to coordinate object access and communication for task distribution in 
large development projects. In particular, we show how interactions between both 
sharings improve object management. 
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1 Introduction 

In today's software development environments object repositories play a key role. While 
early repositories merely provide the service to manage evolving objects, more recent ap- 
proaches--AD/Cycle, CDDplus/Cohesion and PCTE--deploy repository technology to 
integrate environments layered around an object management system. Maintaining the 
consistency of software and software-related objects emerges as a crucial challenge requir- 
ing contributions from distinct perspectives. 

Each object management system embodies a distinctive meta model of software objects 
and software processes. This meta model, even if not often explicit, describes the struc- 
tures and mechanisms [18] the object repository is designed to support. Traditionally, 
environments are tailored towards information processing [8, 22]. Software and project 
databases account for complex structured systems which exist in several versions. Their 
underlying meta models focus on the products of software processes. Their goal is to cap- 
ture the world of objects. Configurations and versions are necessary concepts since 
they provide a pattern to organize systems and components. 

Yet, software systems are built by human designers. The increasing size and limited time 
of software projects place a growing importance on group processes. The size and 

This work was supported in part by the Deutsche Forschungsgemeinschaft under Grant Ja- 
445/1-2. Work of the first author is funded by the Federal Networks of Excellence 
programme through the Institute of Robotics and Intelligent Systems (IRIS). 



18 

distribution of development teams result in the necessity to support collaboration and 
communication in the worm of agents. Collaboration refers to the access and mainte- 
nance of objects evolving across a network of agents, and communication refers to the 
exchange of messages related to the access and change of objects. 

What then are reasonable meta models which embody group processes and are feasible to 
relate group and information processing? In terms of conceptions, one may distinguish 
connectivity, interoperability and cooperation. Connectivity refers to the facility to ex- 
change data physically, possibly across world-wide networks. The ability to exchange se- 
mantically meaningful information emerges as interoperability. Connectivity and interop- 
erability provide the technological infra-structure for cooperation which is about to en- 
hance individual work by contributing to a common task. Yet, the larger the corporation 
the more coordination of collaboration and communication becomes necessary [8]. 

For the most part, cooperation support in current environments is fixed to one protocol, 
which is hard-coded into the system. Such technological protocols structure group pro- 
cesses by prescribing patterns of consistent communication and collaboration. But, one 
distinctive feature of group processes is that groups establish social protocols and dy- 
namically adjust them. Thus, fixed technological protocols may be overly constraining. 
Unstructured communication and collaboration might work well for small groups, but 
likely cause information overloading and untraceability of development processes in large 
teams. However, merely focusing on "neat" communication and collaboration patterns 
will likely result in approaches neglecting the world of objects. 

This paper presents the concept of a sharing process as a model for integrating object 
and agent worlds. A sharing process describes consistent participation of agents in group 
processes through classes of non-deterministic finite automata related to each other by 
deduction rules. Instances of sharing processes govern the distribution of objects across 
networks of workplaces--called object sharing--as well as the delegation of tasks among 
agents--called task sharing. Different instances may adhere to distinct protocols which are 
formally represented in a knowledge representation language. Since sharing processes are 
part of our meta model, we are in the position to formally: 

�9 represent distinct object sharings and workspace structures, e.g. optimistic and 
pessimistic approaches, and 

�9 establish interactions among different instances of sharings, e.g. the admissibil- 
ity of object modifications with respect to assigned tasks. 

This paper is organized as follows. Section 2 draws the development world and reviews 
proposals to capture the world of objects and agents. Section 3 introduces the concept of a 
sharing process. Subsequent sections present the formal representation of object and task 
management and reasonable interaction among them. A prototype implementation 
ConceptTalk is presented in section 7. 

2 S t a t e - o f - t h e - A r t  

When people think about humans and group processes in software environments, they 
think about shared access to repositories, electronic mail communication for notification 
services, monitoring of task assignments, or collaboration among development processes. 
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Transaction management is the traditional database technology that provides reliable 
shared access to repositories. In the reserve-deposit paradigm, objects are shared in a serial- 
ized way which makes the coordination formally sound but factors out cooperation. 
Nested transactions just refine this idea [2]. They cluster groups of designers with respect 
to common, closely-related objects, or vice versa. Making users aware of important 
changes to their work is outside the scope of the transactional approach. Designer produc- 
tivity is lowered because of limited parallelism and superficial conflict avoidance [4]. 

The copy-merge paradigm [1] allows parallel changes to one object possibly due to 
distinct tasks. Parallel changes may cause conflicts which could be resolved by merging. 
Copying and merging allows closer collaboration, but for the price of additional coordina- 
tion. The repository should monitor object distribution as well as changes. 

In both cases, collaboration can be improved by notification services triggered at the 
time objects are changed by, or transferred between, designers. However, notification ser- 
vices must be structured to avoid information overloading. In [13], content and routing of 
messages are determined by object relationships. Agents are notified about those changes 
affecting their own modules. But the problem is merely viewed from the angle of object 
management. 

Workspace hierarchies have been introduced to structure group processes. Objects and 
changes are allocated to hierarchies of workspaces tailored to the architecture of systems 
[14]. Highly interrelated objects, e.g. due to module relationships, are allocated to sibling 
workspaces. Changes are merged from sibling to parent workspaces which likely require 
the most intensive collaboration because of their tight interrelationships. Structures along 
this line are intended to minimize necessary collaboration and to impose an organizational 
pattern on group processes. Although these structures are motivated by quality assurance 
experiences, they impose a fixed structure on communication and collaboration. Hence, 
system structures pose fixed limitations on group processes, even though there is strong 
evidence that group structures and processes have a major impact on system architectures 
[7]. When upgrading to a new operating system version, for instance, task force groups 
cross fire walls of workspace hierarchies and therefore might face serious problems. Thus, 
limiting communication and collaboration to workspace structures determined by system 
architectures is overly constraining. However, workspace structures are a feasible context 
mechanism to monitor object distribution and evolution, if they could provide more 
flexibility. We shall refer to this object management within groups as object sharing. 

A recent survey concludes that transaction concepts need more semantics for further 
improvement, and that these semantics can only come from information about the tasks 
to be performed by the team [3]. Where does this task information come from ? 

Ideas originating from distributed problem solving [23] and office information 
systems emphasize social structures and procedures in teamwork. The outcomes are still 
the objects, but they are considered side-effects of communication activities. Systems 
influenced by research in speech act theory manage communicating agents rather than 
resulting actions and objects. Such systems include discussion tools to figure out design 
decisions, as in glBIS [6], and to record the justification of design decisions [19]. Others 
account for assigning and monitoring contract-based working activities, like Coordinator 
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[25]. They view agents and their activities as parts ofgroup processes which share tasks 
to be processed. Conversation structures describe consistent participation of agents in 
communication processes. This shows a different kind of integration. Agents articulate 
their contributions at different workplaces. Then, how do these articulations fit together ? 

However, systems like glBIS or Coordinator do not formally relate to the object world. 
We shall refer to this object-independent management of tasks within and by groups as 
task sharing. 

To conclude, there have been two lines of management approaches, one for object evolu- 
tion and the other for tasks affecting objects. The challenge addressed by the sharing 
process approach is to integrate both, object management and group process aspects. 
To capture both worlds, sharing processes have to feature: 

�9 different kinds of agents, like human agents performing tasks or technical agents 
managing objects, 

�9 different kinds of interaction between agents, like emailing---e.g, where agents 
are used to communicate to each other--and object tracing--e.g, where technical 
agents are used for object management, and 

�9 a synchronization facility which allows the specification of consistent patterns of 
interactions among human and technical agents in a flexible and adoptable kind. 

3 Sharing Processes 

The sharing process concept allows agents to share objects and tasks within an environ- 
ment which is comprised of a set of workplaces connected to a network. Formally, a 
sharing process can be defined as a triple < E, N, S > consisting of events E, a NFA N 
(non-deterministic finite automaton) and a state S determined by the history of events. 
Many sharing processes can have the same NFA structure and many events can be associ- 
ated to a single process. 

A sharing process documents and structures events (fig. 1). Conversely, events drive the 
evolution of a sharing process. An event is caused by an agent at any place in the net- 
work. Agents can be human designers who might communicate to other designers to as- 
sign a task, as well as technical agents, for instance, workspaces which acquire objects 
from other workspaces. 

NFAs provide synchronization by specifying the consistent evolution of sharing pro- 
cesses in terms of states and transitions. A process has one start state and possibly several 
final states. Transitions describe state changes and represent the progress of a process with 
respect to selected final states, the goal states. An event may non-deterministically cause 
different transitions depending on the state of the sharing process and the agent that 
delivered the event. In addition, events can trigger notifications to agents. 

Conversely, rules can be associated with transitions that trigger consequent events in 
parallel-running processes of a specified type. In the following, we often use the terms 
event and transition interchangeably where no confusion can arise; note, however, that 
transition is a formal concept, used in a limited modeling framework for understanding a 
wide variety of real-world phenomena, the events. It could well be that events happen that 
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do not really fit the automaton schemata, and we want to be able to record such 
"exceptions" in our model, hence the separation in fig. 1. 

Sharing Process structure ~ Finite Automaton 

% transition 
/ t r i g ~  

Rule 
Agent Notification 

Fig. 1: Sharing processes 

Sharing processes are intended to embed object evolution into the more general context of 
a development project. Each project initially appears like a task and comprises a possibly 
ordered set of sub-tasks. The state of a project is represented by the tasks completed at a 
given moment. A project reaches its final state when each sub-task has been completed. 
The input and results of tasks are managed by workspaces which are assigned to groups 
and single agents respectively. The top-level workspace contains fully integrated "final" 
project results, whereas lower levels in a workspace hierarchy contain more private and 
less integrated objects [2, 14]. Due to the conceptual similarity of work organization and 
work environment, we can associate workspaces with hierarchically organized projects 
that view objects. Hence, task responsibility assignment and object visibility by certain 
groups of agents must go together. This does not mean that both have to be identical, but 
they have to adhere to some kind of well-formed patterns. 

In subsequent sections, we show how to utilize sharing processes to define visibility by 
object sharing and modifiability by task sharing in terms of classes of sharing processes. 
These classes represent schemas for sharing inside a specific environment. Specific ob- 
jects, specific tasks and changes to specific objects are instances of these classes. 
Consistency of individual sharings is controlled by instantiation of the classes. 

4 Task Sharing 

One instance of sharing processes is the sharing of tasks. Task sharing processes handle 
the execution of tasks which has to adhere to certain protocols. The definition of these 
protocols depends on the work setting; a particular group may be in different settings at 
different times or may even adapt standard protocols to their specific needs dynamically. 
We can abstract from such options by looking at a broader phase structure for task shar- 
ing, consisting of the four phases of orientation, assignment, realization, and inspection. 

During orientation, agents identify a problem in one way or another and may come up 
with the definition of a set of tasks to be executed (cf. [9]). After a task has been 
identified, it enters the ball game which is about realizing the task. If the task consists of 
sub-tasks, then the task's sharing process forks into sub-processes, one for each sub-task. 
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Realization and inspection can be tackled within different work structures [4]. An in- 
tegrative work structure involves the whole group; this would be an application domain 
for real-time collaboration tools that increase group awareness and intensify cooperation 
[8]. A delegative work structure is more formal. It usually separates the realization and 
inspection phase even though it may iterate through intermediate reviews and similar 
techniques. 

While early workflow protocols were based on the assumption that events would just 
happen "on command", current conversation-based approaches typically begin with a ne- 
gotiation phase followed by an asynchronous work mode. The assignment could follow 
an electronic market protocol with group members or external agents "bidding" for tasks 
[23], or a bilateral haggling according to conversation-for-action protocols with message 
types such as request, offer and counter-offer, promise and renege [25]. 

request commitment ~. ~ 41 critique .._ ~ confu'mation 

0 h . ~  ~ T call f~ dem~176 
detrao.ion de~'action detracu'on 

Q Q o 
1: initial 4: inspection phase 
2: orientation phase 5: task completed 
3: realization phase 6: orientation delracted 

7: realization withdrawn 
8: inspection declined 

Fig. 2: A phase structure for delegative task sharing 

Fig. 2 abstracts from individual protocols by defining an event type called commitment 
which defines the transition from the task definition to the realization phase where the 
task is worked on in a subordinate workspace. Some time later, a call for demonstration 
initiates an inspection phase in which members of the task sharing process evaluate the 
results. In practice, these results are often called beta versions; they are distributed to all 
agents who have influenced the task definition. Usually, errors and weaknesses are detected 
and lead to events of type critique which have the task sharing subprocess return to its re- 
alization phase. If, however, the group is satisfied with the results, the subprocess goes 
into the successful f'mal state by transition of type confirm. Further, processes can termi- 
nate at any phase unsuccessfully. 

To reiterate, fig. 2 shows an abstracted schema for delegative work structures. This 
schema can be specialized with particular market or bilateral conversational protocols. For 
example, the ConceptTalk prototype adopts a Coordinator-like protocol [25] for bilateral 
task sharings but allows users to augment and alter it dynamically. 

5 Object Sharing 

A second instance of sharing processes is the sharing of objects among workspaces in the 
network. In the sequel, we assume that each workspace constitutes the workplace of a 
human designer but may be shared with other workplaces. The generalization to the case 
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where each workplace consists of multiple workspaces---the designer's working environ- 
ment---does not pose major problems in our model but may of course be an interface 
organization problem [10]. 

If copies of objects are distributed across workspaces, parallel accesses within different 
workspaces create multiple variants of an object. Object sharing processes conceive 
workspaces as technical agents, which manage objects and communicate to coordinate 
object accesses and changes. To support distributed object management, object sharing 
processes should feature: 

�9 creating and maintaining availability of objects in workspaces, possibly with dif- 
ferent access rights, 

�9 maintaining relationships among workspaces---e.g., hierarchies--and controlling 
adherence of availability with respect to these relationships, 

�9 managing version histories of objects within and across workspaces, and 

�9 monitoring and controlling concurrent access to objects to detect and notify 
conflicts. 

Each object sharing process handles the sharing of one object across two workspaces. 
Both workspaces contain a copy of the object. A object sharing is initiated between 
workspaces work I and work 2 when work 2 acquires an object from work I for the first 
time. It terminates when the object is removed from w o r k  2 or w o r k  1. The workspace, 
an object originates from, is called its public workspace. The acquiring workspace is 
considered a private workspace relative to the public one. The state of an object sharing 
represents how the private version relates to the public version. The state evolves due to 
changes to the object in one or both workspaces and transfers of the object among both 
workspaces. Thus, the process structure specifies concurrent access to shared objects. 

public change private change 
public change ~ "~ 

private change t..1, / U "  

c ~ c  II ~ [ : : : : ~ : : i  ........... . . . ~ e h a r  / public 

�9 resolve 

I~.,,/ ~ r'- 
f i .  reconcile r'- ~ . ~  
~ reconcile private change ~[~ } 

resync .......... ~ public remove resync 
........... Ill,. private remove 

h initial 3: removed privately 5: changed in private 7: parallel modification 
2: private copy 4: identical 6: changed in public 8: conflict 

Fig. 3: Structure of object sharing for "copying" objects (copy-merge paradigm) 
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One possible instance of concurrency control specified as a object sharing process shows 
fig. 3. It adheres to the copy-merge paradigm offered by SUN's Network Software Envi- 
ronment NSE [1]. Such a object sharing protocol supports an integrative work structure 
and may thus lead to a better overall group result than the usual reserve-deposit paradigm, 
provided sufficiently dense group collaboration can be achieved [4]. 

Using the same general approach, one can define different versions of concurrency control 
depending on the project requirements; in particular, for larger groups, the familiar check- 
in/check-out locking mechanisms can be used to provide more control (cf. fig. 4 for its 
fairly simple protocol). But we have to be careful with the concurrent existence of 
different protocols [24]. This problem is part of the more general issue of how to define 
the interaction of multiple sharing processes, to be discussed next. 

check-out ~ @  

check-in 
1: public 
2: locked 

Fig. 4: Structure of object sharing for "moving" objects (reserve-deposit paradigm) 

6 Integration of Object and Task Management 

So far, we have two types of sharing processes, one to manage object changes and the 
other to monitor the evolution of tasks. Object sharings realize a transaction mechanism 
in its own fight 1. Yet object sharings go a step beyond transaction concepts, since they 
incorporate a novel feature into the nature of a transaction, the change. 

Transaction concepts process a change in terms of its pre- and post-transaction value. 
Integrity constraints may place more restrictions on the change. Yet, transactions neither 
consider the agent who is doing the change, nor possible relationships to other transac- 
tions and their intended change. Even the nature of involved objects is not considered. 
Take a bug-fix in a component of a large software system. Two kinds of information can 
be utilized: the character of the component and the experience of the programmer. Both 
have impacts on the change, i.e., the transaction to replace the buggy version by the fixed 
version. If it is a fringe component, any programmer is qualified to make the change. If it 
is a central component of the system heavily used by other components, access should be 
limited to experienced programmers, preferably those having a record of this component. 
Both kinds of information are not captured by a transaction--i.e, the concept is invariant 
with respect to objects, callers, and intended modifications---but are relevant to a change 
in the context of group work. 

Object sharing is intended to utilize different sources of information. Some information 
might originate from a recording of design processes [12, 20] or others from a reverse 
engineering tool that measures structure [16]. On the other hand, programmer profiles can 

1 [BK 91] surveys the virtues and limitations of transaction concepts originating from both 
communities, databases and software development environments. 
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be obtained from recorded task sharings (success rates, in-time ratios, etc.). Some features 
could merely be designed for describing admissible object sharings, such as "no acquisi- 
tion of a vulnerable component by an agent with a low prof'de". 

Object sharings and task sharings are also a valuable source for determining the consis- 
tency of an object change. Possible conflicts arise, when two agents acquire the same 
object for modifications. They may become an actual conflict, when both agents modify 
and reconcile the object into a common parent workspace. Thus, we have to interface dif- 
ferent object sharings. 

Furthermore, object sharings have to adhere to some project discipline. It is fine when 
someone acquires an object to make some quality improvements, but it is bad policy to 
allow agents to reconcile arbitrary objects and changes into public workspaces. Thus, the 
eligibility of object changes depends on assigned tasks. This does not imply that only 
those changes to objects are eligible which have been agreed on; but, the agent who is 
responsible for the public workspace must be contacted before reconciliation. 

6.1 Coordinating Object Changes across Workspaces 

A workspace manages objects: objects are available in workspaces and a workspace 
"stores" the version history of objects. Hence, a workspace appears like a local library 
which is accessible by owners of the workspace. 

An object sharing establishes a communication line between two workspaces wo rk l  and 
work 2 at the time work 2 acquires an object from work I with respect to a specific 
object o b j .  However, it only defines the availability of o b j  in work2,  the private 
workspace. Availability in work l ,  the public workspace, is defined in a further object 
sharing that has the public workspace w o r k  1 as  its private workspace, and so forth up to 
some workspace in which the object has the status "only private". Two questions remain: 

�9 how to propagate changes to related workspaces with respect to the object ? 

�9 how to structure relationships among workspaces ? 

The first question accounts for the problem of concurrency control among different 
sharings of the same object. For example, the product's integrity requires that a public 
change transition appears in all object sharings that define availability of the same object 
with this public workspace. Optimistic policies as in fig. 3 as well as pessimistic poli- 
cies as indicated in fig. 4 must be coordinated in this manner. 

The second question refers to workspace structures---e.g., should a workspace structure be 
tailored to the system architecture or the group structure. For example, if objects are 
organized hierarchically in a complex object model, the change of component objects may 
also cause dependent private change events in all workspaces which contain configurations 
with this component. 

Both objectives may appear orthogonal at first sight--at least from a formal point of 
view. In fact, they are dependent, because of the objects they are governing. For example, 
a system may be configured from components interrelated by "uses" relationships. Thus, 
a change interferes with appearances of the same object in other workspaces and it might 
possibly affect other objects, which are related because of the system structure. Thus, 
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coordination of object changes has to consider multiple objectives. Hence, flexible 
couplings of object sharings are necessary; yet workspace structures should adhere to 
some empirical policies [4, 14]. The sharing process approach, especially the rule-based 
coupling of sharing process protocols, provides a flexible environment in which such 
policies can be defined and maintained. 

6 .2  Controlling Object Changes from a Task Perspective 

Whenever a subprocess of a task sharing enters its realization phase, an object sharing is 
initiated that make~ the required objects available (by physical copy or by access rights) to 
the workspace of the server agent of the subprocess. Since the results based on these 
objects may have to be re-integrated later on, the workspace is subordinated to the 
workspace where the objects come from. Briefly, the commitment in the task sharing 
causes a copy in the object sharing. 

Conversely, if an agent attempts to integrate a private object into another workspace in 
the object sharing protocol, this may have consequences in corresponding task sharing 
protocols. If the agent is already involved in a commilment for this task, the attempt to 
integrate would cause a call for demonstration in the task sharing. 

Several kinds of conflict may occur. Differences of opinion are recorded in idea sharing 
protocols, as rationales for design decisions [19]. Differences of interest can be worked 
out in the negotiation loops of the task sharing protocols. Technical conflicts due to 
parallel work on the same objects are resolved either formally, under consideration of the 
task structures, or by introducing an integrative work setting where changes are merged. 
Thus, our approach accepts the existence of such conflicts and provides ways to make 
them productive, rather than suppressing them like transactions do. We give two exam- 
pies that highlight the integration of object and teamwork management. 

Creativity in design teams may be enhanced by encouraging unsolicited contributions. 
When a user acquires an object on which another user already works due to a contract, a 
notification is sent to set up direct communication among the two users. They may then 
choose to (1) collaborate in an integrative work structure without concurrency control, (2) 
define notification services which inform one user when the other has completed certain 
critical subactivities after which parallel work is meaningful, or (3) work in parallel and 
resolve conflicts by merging results. 

The reconcile transition of the object sharing protocol triggers two checks. With respect 
to other object sharings, reconcile may lead to a conflict state; in this case, it is aborted 
and conflict resolution (resolve) must precede a new attempt to reconcile. With respect to 
task sharing, it must be evaluated if there is a task sharing between the owners of both 
workspaces which is in the realization phase for the objects in question. Otherwise, a no- 
tification is sent to the originator of the reconcile command to start such a task sharing. 

6 .3  Managing Ideograms Evolving in a Network 

To exemplify the different possibilities for couplings, imagine a project and a distribution 
of objects as shown in fig. 5. Among others, there are three designers Mike, John and 
Christian--working on one project developing ideograms. Their private workspaces and 
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the public workspace are connected to a network, a local or an organization-wide one. The 
public workspace manages entirely configured ideograms as well as parts of ideograms, 
some of them having revisions and variants. Versions are related by horizontal lines. As 
of now, there exists one configured version of the ideogram in the public workspace, the 
"girl" shown at the left-hand side. So far, the setting mimics object management systems. 

pHvate 
workspaces 

network 

Mike John 
Mike's task John's task 

Christian 

Fig. 5: Ideogram management in a network 

1 

In our setting so far, there are two task sharing and four object sharing processes alive, 
plus additional object sharings between the public workspace and its client workspace(s) 
which govern the objects residing in the public workspace. 

In the meantime, John is working on his task to refine the bottom part. To check com- 
patibility with respect to the central part, John also requires access to the middle part. 
Mike and John have decided to get a copy of the middle part, since both require a stable 
context, i.e., changes to that component should not corrupt their work. If a new version 
comes along in the project workspace, they will receive an email notification and then 
decide whether to re-synchronize their private version. The latter is again a specific 
coupling tailored to their needs. 

Mike's task is to refine the head component to produce a more appealing version of the 
current ideogram as managed by the workspace of the project. A task sharing between 
Mike and its client establishes this task. Mike's client is the ideogram manager who 
administers the project's product. Mike acquires the latest version of the head because of 
his task, which results in an object sharing between both workspaces. Acquisition might 
be done automatically at the time Mike has committed to the task---e.g, determined from 
structured emails---or manually by a designer and his workspace respectively any time 
after his commitment. 
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�9 The two task sharing processes concern the assignments of the tasks improve- 
head to Mike and refine-base to John. The client in both task sharings is the 
ideogram manager. 

�9 Two object sharing processes are initiated between the public and Mike's 
workspace, and between the public and John's workspace. They concern the head 
and the bottom part respectively. Both object sharings start in state identical and 
enter state changed-in-private after some modifications have been done in the 
private workspace (cf. fig. 3). Both changes are associated to a task. The other 
two object sharings concern the body part. They are still in state identical, since 
nothing happened to the body in both, the private and the public workspace. 

After some time, the third designer Christian acquires the body part. A third object shar- 
ing for the body part starts. In contrast to Mike and John, Christian starts changing the 
body part significantly yet there is no agreement on this job, i.e., no task sharing has 
been established. Although Mike acquired the object In'st, he has not gained the right to 
prohibit Christian from changing the body. That is a matter of the protocol used. 
However, Mike and John may want to get a notification. The actual sharings are related 
by the object, of the project workspace, which they share as common source. Hence, par- 
ties to be notified will be derived by deduction rules. 

The purpose of their acquisition was a stable context, since they have to interface their 
parts with the body. Contrary, the acquisition of the head part by Mike is intended to be 
more exclusive. Suppose, Christian wants to check how his new body versions fit the 
head and bottom part. When acquiring the head part for instance, he gets a note that this 
object is in change. Christian can contact Mike to get an intermediate version--Mike 
may reconcile his current version to the public workspace---or wait until Mike finishes 
his task and commits the change. 

A conflict arises when Mike or John have to adapt their copy of the body part in order to 
make the body fit to their parts. Then, a conflict occurs and changes have to be merged by 
Mike and John. Their progress cannot be rolled-back due to a shared componet that 
requires minor adaptations---like transaction concepts usually do. Further, Christian's 
change has to be considered too. Christian, Mike and John may communicate to agree on 
the party responsible for merging their changes. 

Since object sharings tolerate conflicts, inconsistency matures as a matter of manage- 
ment, in contrast to the reserve-deposit paradigm. Object sharing protocols manage 
inconsistency, since they detect conflicts, notify about conflicts and monitor conflict 
resolution. At first thought, tightly interfacing object and task sharing appears to better 
designer comfort and enforce stronger policies on object modifications. Interfacing allows 
the system to provide necessary objects automatically and ensures that no object modifica- 
tion happens without task permission. But, at second thought, a tight and rigid coupling 
could come in the way of designer productivity and momentum. One may want to develop 
different conflict notification and resolution protocols. Such a diversity should consider 
the kind of object and its role inside the system, the kind of change.--viewed from an 
angle of content as well as project deadlines---and the profile of the party responsible for 
the change. 
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The examples show just a few of the many possible couplings among sharing processes. 
Which of these are actually realized, is a management decision. Despite all the flexibility 
of the sharing process approach, each coupling determines yet another technological 
protocol that impacts workflow and habits in design teams. The need for formal couplings 
should therefore be carefully considered in each case. Tools are needed by which the group 
can re-define the terms of their interaction, without having to go to some systems 
specialist. Otherwise, we see little chance of acceptance for systems based on these 
models--or any other models, for that matter. 

7 ConceptTalk 

Another prerequisite for successful organizational implementation is that the introduction 
of team support should be unobtrusive. Existing work practices for communication, 
collaboration, and coordination should be altered as little as possible [21]. The design of 
the ConceptTalk prototype [15] has tried to follow these premises as far as possible, 
firstly by using meta-modeling techniques instead of hardcoding of protocols, secondly by 
building upon standard software environments rather than starting from scratch. 

The UNIX world was chosen as an example of a standard development platform. For our 
experiments, we assume that one is familiar with the following kinds of UNIX tools: 

�9 an object management system (NSE [1]) which offers workspaces as well as 
simple version and configuration management (based on SCCS and MAKE), 

�9 standard eleclmnic mail, and 

�9 the basic command set of Unix (or a fancier user interface on top of it). 

ConceptTalk itself is a small C program that integrates such tools, based on protocol, 
state, and rule information obtained from a background knowledge server, ConceptBase 
[11]. ConceptBase uses the conceptual modeling language Telos [17] for the formal repre- 
sentation of sharing processes and its instances. Besides the abstraction facilities of 
object-oriented data models, Telos contributes two important features to our approach: 
assertional facilities and naetaclasses. The assertional facilities come along as integrity 
constraints and deductive rules. Constraints and rules are heavily used in the coupling of 
sharing processes. Metaclasses are a natural way to integrate distinct protocol and object 
models. One instance of a metaclass is the concept of a sharing process which introduces 
the concept of agents. The classes of designers as well as workspaces in the network are 
represented as instances of agents. In [20], the use of metamodeling for integrating group 
models, as proposed here, with specific object models is demonstrated. 

Communication via mail and collaboration via NSE is coordinated by Telos models. As a 
specific task sharing protocol, we use a slightly modified version of the one proposed in 
[25]. Since this protocol is not real-time, each of its message types is directly associated 
with a state transition; the overall structure elaborates the phase model shown in fig. 2 by 
various negotiation loops. ConceptBase offers a choice of graphical and textual editing 
tools for changing protocols interactively, even while conversations under these protocols 
are going on. Flexibility in sharing processes is also provided by the option of moving 
up and down in generalization (isA) hierarchies of existing protocols; the top of such a 
hierarchy could be the simple send-respond pattern of standard email. Finally, the 
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environment also offers a few specialized shared-window tools for real-time collaboration 
on common workspaces, including a specialized graphical editor and a public domain con- 
ferencing software for informal chatting over low-bandwidth channels. 

For cases where no graphical interface is available, a simple command interface allows the 
use of ConceptTalk in standard Unix environments. Confer is an extended mail that of- 
fers the available message types at any moment in time and records the exchange of typed 
messages; the user can review the state of the task sharings in which he is involved as a 
customer resp. contractor. Note allows each user to define personalized notification ser- 
vices which "observe" either an individual process or some class of processes with respect 
to particular events. The events are specified either by a general class of events or by 
some structure element of the NFA, e.g., an edge; the available classes of processes and 
the already existing notification services can be shown. Finally, pose structures 
workspaces as project processes by associating scheduling information (e.g., problems, 
tasks, and dependencies among them). This information can be either completely informal 
(e.g., text, drawings), or represented in Telos. 

In line with our philosophy of changing the existing work environment as little as possi- 
ble, object sharing directly uses the NSE commands acquire, resync, resolve, and reconcile 
[1] to denote the corresponding state transitions in the protocol automaton shown in 
fig. 3. However, in ConceptTalk, these commands to not work autonomously but are 
controlled in ConceptBase with respect to their feasibility and consequences, especially in 
terms of coupling with other result and task sharing processes according to the defined 
rules. Several built-in notification services are provided for notification of conflicts due to 
concurrency control problems or missing tasks. 

8 Conclusions 

Information systems technology is expected---even stronger, is demanded--to play a key 
role in future software environments [5]. There is a strong request for object management 
technology going beyond file servers and that is the very nature of information systems. 
Yet, at least two requirements of engineering domains are not adequately covered by 
information systems technology: group support and change management. The approach 
presented in this paper is a step towards these objectives. 

From the viewpoint of group support, the sharing process approach brings the considera- 
tion of the objects back into formalisms underlying conversation-oriented models. 
Sharing processes provide a schema to describe the consistent access of agents to tasks 
and objects. Suitable agents are human designers as well workspaces; participation covers 
contribution of designers to task executions in terms of semi-structured messages, as well 
as object transfers and change tracking in workspaces. Task sharing structures communi- 
cation while object sharing defines the structure for collaboration. Both of them are 
brought together in a common framework by defining rules that associate dependent 
events in object sharing protocols with events in task sharing protocols, and vice versa. 

From the viewpoint of change management, we have not only taken a different view of 
advanced transaction concepts (object sharing), but have also provided formal means to 
associate it with group-oriented extensions to software process modeling (expressed as 
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task sharing protocols). Together with the use of a knowledge representation language, 
the sharing process model allows a more flexible definition and control of change types 
and their interrelationships than fixed "red-book" rule collections or pre-defined Petri nets. 
As an example, we mentioned the idea that the group could define different protocols for 
the change of central and of fringe components. This can be a starting point for improv- 
ing process-oriented consistency and data quality in repositories. 

On the other hand, experience in office automation has shown that formal consistency and 
enforcement of bureaucratic procedures is not everything. Conflicts are a valuable source 
of diversity and better long-term product quality--inconsistency must be managed with 
equal emphasis as consistency. The copy-merge paradigm adopted in ConceptTalk is in- 
tended to intensify collaboration in smaller subgroups. Instead of superficially avoiding 
conflicts by exclusive access rights, it emphasizes conflict recognition and explicit con- 
flict resolution. To prevent lost work due to communication-less optimistic parallel 
work, very large groups should embed this protocol in a stricter global protocol. 

The ConceptTalk prototype is only a first step in evaluating the potential of the sharing 
process approach for change management. As already shown in usage experiences with ex- 
tensible tool kits such as NSE, the definition and enactment of specific change types, and 
their integration into coherent management policies for group-intensive work structures is 
a major challenge which will probably also require extensions of the underlying reasoning 
mechanisms and protocol compilation techniques to be computationally effective. 
Ongoing application experiments with the ConceptTalk prototype in software engineer- 
ing, hypertext co-authoring, and industrial engineering contexts are further revealing a 
large number of practical requirements. 
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