
A Framework for Software Maintenance

Chiang-Choon Danny POO

Department of Information Systems and Computer Science
National University of Singapore, Kent Ridge Road,

Singapore 0511

A b s t r a c t . In describing a software system, there are three elements that are
always considered : objects, functional requirements and business policies. In the
traditional approach to software development, these elements are often mixed with
one another in a system's definition in such a way that their meanings are embedded
into the software, making their identification very difficult. This has the knock-on
effect of making maintenance, and hence evolution, difficult.

This paper suggests a framework for addressing software maintenance and it calls
for a clearer separation between the business policies, functional requirements and
object models.

1. System Evolution is Inevitable

Software investment cost has been recognised by many as expensive. The high cost incurred
is attributed not to the complexity of creating systems but to the maintenance efforts
required to accommodate changes in inflexibly-designed systems [11,13].

The design of an information system often changes throughout its lifecycle; this has
been attributed to changing users' requirements. These changes have been recognised to be
intrinsic to software, often unpredictable and cannot be accommodated without iteration in
the definition and development phases. Thus, the key to successful systems development,
lies not in designing systems that satisfy the initial users' requirements but in the
continuous provision for system evolution, particularly in the area of accommodating
changes due to users' requests [1, 2,11].

2. The Object-Oriented Approach

The functional approach to information systems development has been the primary approach
used for the past two decades. This approach is characterised by data flow and operations
upon them. The structure of systems produced is based mainly on system functional
activities. This approach has two major problems. First, system functionalities are highly
volatile elements, and will inevitably lead to more frequent changes in system structure,
which in turn translates to increased maintenance efforts. Second, systems produced using
the functional approach have an architecture whose structure is characterised by a string of
sequential functional operations. Any changes to these functionalities will create a chain
reaction and the effect will be propagated throughout the system. Thus, the complexity
involved in making such changes is usually not proportional to the requirements.

In recent years, there has been a shift in the way systems are designed: from a function-
oriented to an object-oriented approach. The latter focuses on the objects that describe the
problem domain and their mutual interactions. Unlike the functional approach, the primary

89

design issue of the object-oriented approach is no longer what functionalities the system
does, but what object it does it to.

The primary motivation for adopting the object-oriented approach is the stable model of
reference upon which a problem space can be examined. Objects in a problem domain are
comparatively more stable than functional requirements [10]. For instance, the objects in a
library or order processing environment today will probably be the same as the objects in
such an environment a few years from now. Thus books and library users, and customers
and orders will continue to be the principal objects in library and order processing
environments, respectively, even though the functionalities of the applications may have
changed over the years.

The object-oriented approach has several advantages over the traditional functional
approach in terms of the correctness, robustness, extensibility, reusability, and
compatibility of the final delivered system [12]. These key aspects of software quality are
especially important because of the difficulties experienced with present-day systems
development practices -- that is, programs often do not do what they are supposed to do;
they are not equipped enough to deal with abnormal situations; they are not amenable to
change; their construction does not rely on previous efforts; and they do not combine well
with each other.

3 . Objec t -or iented Sof tware Structure

The advantages of adopting an object-oriented approach in software system definition have
been well documented elsewhere [e.g. 3, 12, 23]. The slructure of a system developed using
the object-oriented approach is different from that produced using a function-oriented
approach. How then should we model our problem domain in terms of objects? and How are
functional requirements which are part and parcel of an information system description be
considered in the modelling activity? The next few subsections will elaborate on these two
issues.

3.1 . Characteristics of an Object Model

Actions
Since objects in the real world participate in a set of events, their actions in the events

would indicate what can happen to them. For example, a Customer in a banking
environment participates in events such as Deposit money, Withdraw money, Open an
account and Close an account, the actions that are relevant to a customer in such a situation
would be those actions relating to the opening and closing of accounts, and depositing and
withdrawing of money from the account. Nevertheless, a Customer in an order-processing
environment would participate in events 1 that are different from those in the banking
environment, thus his actions would be completely different from customers in the banking
application. In other words, the meaning of a customer, and hence objects in a problem
domain, is defined by the actions that it performs or the events with which it undertakes.
That is, object actions characterise the behaviour of the object.

Ordering of Actions
It is obvious that an object does not conduct its actions in the real world randomly.

There is a pattern by which the sequence of actions follows. For example, when a user
wishes to borrow some items from the library, he first has to register himself as a member

1 The events are Order, Cancel, MakePayment~ etc.

90

of the library. Only when he has become a member of the library, may he performs other
actions like borrow a book, renew a book and return a book. He may also repeatedly renew
other books which he has initially borrowed, etc. He continues to perform these actions
until such time when he decides to terminate his membership with the library, during such
time he executes a Terminate action which formally ends his membership. Thus, we see a
pattern of actions for a library member i.e. Register, Borrow, Renew, Return, (and repeated
Borrow, Renew and Return) and Terminate. This pattern of actions describes the life history
or dynamic behaviour of the member. Modelling the dynamic behaviour of an object
provides us with a more accurate representation of an object since events in the real world
are constraint by a certain time ordering.

~ Acquire
Dispose

~ Bind-out ~ Acquire, Dispose ~ Lend, Renew
Bind-in Lend, Return Return, Classify
Classify

-] Bind-out
Bind-in

Figure 3.1 : Object Classification Diagram for Library Items

91

Attributes
In addition to actions, an object is also characterised by a set of properties known as

attributes. The latter describes the state of an object. An example of attributes for a library
member might be : Name, address, age, and loan-limit.

Classification
Objects in the real world are usually classified. For instance, books, periodicals, annual

reports, prospectus and statistical publication may be classified as print items in a library
environment; and these items may either be of reference or non-reference materials. A
reference item may only be used in the library premises and unlike non-reference items may
not be loaned out to any library users. The computational model representing similar
informations of objects in the real world should thus include the concept of classification in
its description.

An object is classified by factoring common properties of similar objects into a class.
The class then specifies the behaviour of all instances. Classes can be partitioned into
subclasses, in which case the superclass is known as a generalisation [24] of the subclasses
(and the subclasses are termed specialisations of the superclass). Figure 3.1 is an Object
Classification Diagram (OCD) illustrating a classification hierarchy of library items in a
library circulation application. Notice the action Classify has been defined in the respective
subclasses; this is because Classify does not apply to Inter-Library Loan Item.

From the figure, we see that actions Acquire and Dispose have been repeated in Inter-
Library Loan Item; the reason is due to different semantic requirements of these actions on
the part of Inter-Library Loan Item from the others. For instance, we need to know the
source library from which the inter-library loan item is acquired but this piece of
information is not relevant to the other library items.

Relationships
Besides the vertical relationship of objects through classification, there is another form

of relationship known as horizontal relationship. This kind of relationship describes the
affiliation between two or more objects. Modelling relationships between objects provides
us with an overview of the affiliation of objects with one another. For instance, a
relationship between a borrowing member and a non-reference book is Borrow 1.

We can further impose upon a relationship a static restriction that dictates the cardinality
of participation of object instances in the relationship. If the cardinality of the Borrow
relationship between a borrowing member and non-reference book is one-to-many, it
indicates that a member can borrow many non-reference books but only one non-reference
book can be borrowed by one member. Expressing this form of relationship can be achieved
with an Object Relationship Diagram (ORD) as shown in figure 3.2.

Borrowing Borrow INon_reference[
Member [1 ~] Book J

Rectangles represent objects; a line connecting the two objects indicates a relationship (in this
example, Borrow). Double vertical bar denotes multiple relationship and single bar indicates
single relationship.

Figure 3.2 : Relationship between Member and Non-reference Book (I:M)

1 Borrow or Lend could be used depending on the direction in which the relationship is
specified.

92

3 . 2 . A Proposed Object Model

In summary, we can define objects as having five characteristics :
1. Objects have acdons that describe their behaviour.
2. The actions of objects are time-ordered.
3. Objects have attributes that describe their states at a particular point in time.
4. The definition of objects can be organised into a class-instance relationship in

a classification hierarchy.
5. Objects are affiliated to one another through relationships.

Figure 3.3 summarises this object model.

Horizontal Relationship
"r " -

m
0

m

a~
..~

Superclass
Obiect A

Actions Relationship

State

I AtMbutes Attributes
Actions Actions
State State

Subclass Subclass
Object B Object C

Object D
]Attributes

I I i Actions
II Jsmte

Figure 3.3 : Characteristics of ObJects in an Object Model

4. Functional Requirement Modelling

Functional requirements are those input, output and processing requirements; they are part
and parcel of any information systems description. They are specified in order to satisfy
users' functional requirements. An example of a functional requirement in a library
circulation application might be : On request, lists all books currently on loan to staff
member A. This functional requirement is related to two objects : Non-reference Book and
Staff Member. Contemporary object-oriented modelling approaches suggest the
encapsulation of this functional requirement as an operation of a model object, i.e., define it
as an operation of either Non-Reference Book or Staff Member. While this solution is
plausible, it is not favourable for the following reasons:

93

1.

2.

.

4.

.

.

It violates the essence of the definition of object. An operation defined for an object
should be applicable to the object, the whole object and nothing but the object [3].
Since a functional requirement is a statement which is related to more than one
object (in this case, Non-Reference Book and Staff Member), we cannot
categorically say that a functional requirement belongs to a particular object.
Hence, functional requirements should not be defined as operations of objects in the
object model.
It weakens the visibility of functional requirements, making changes to functional
requirements difficult. For instance, in which of the two objects in the above
example (Non-Reference Book and Staff Member) is the functional requirement
represented, since representation of the requirement in both objects is possible.
Functional requirements are highly volatile elements. The principle of good
software development practice [16, 17, 25] advocates the separation of volatile
elements from the stable ones; this is to reduce the effect of change in one part of a
system to another (possibly not related to the change at all).
To model functional requirements as operations of model objects has effectively
forced us to consider the way a system is to be designed and implemented since
there are many ways in which a requirement can be satisfied in the design of a
system at a later stage. For instance, the functional requirement above can be
satisfied in design by defining an operation in either Non-Reference Book or Staff
Member, alternatively, we can define it as an operation of another third object that
interact with Non-Reference and Staff Member to fulfill what is required.
This solution will lead to maintenance complexity in future changes to functional
requirements. To illustrate, let us assume that the above functional requirement is
encapsulated as an operation in one of the objects, say Non-Reference Book, and
consider how a symmetric problem such as : On request, lists all books currently
on loan to staff members who have joined the library between I January 1990 and
1 January 1991 would affect the definition of the model. If this problem were to be
satisfied as before, it would require a separate service module. The service module
would have to interact with all instances of Staff Member to select the relevant
instances (i.e. satisfying the constraint that he joined the library between the 1
January 1990 and 1 January 1991); and then looking up all instances of Non-
Reference Book l and selecting those that are on loan to those relevant members.
We note that a simple change in the functional requirement has resulted in a major
change in the way the problem is resolved.
Finally, to insist on the definition of functional requirements as operations of
model objects would go against the way a user would generally express functional
requirements. They view functional requirements in a functional way and do not
consider them as being part of a model object (i.e. it should not be considered as
operation of either Non-Reference Book or Staff Member).

Hence, in conclusion, we state that it is necessary to separate the definitions of the object
model from its functional requirements. If objects have been correctly modelled they are
likely to change infrequently, if at all. Modification of objects should only be effected by
major changes to the basic meaning of the system and generally reflects a change in the
business environment.

We may def'me an object keeping a record of the books that the member has borrowed;
this is certainly much better than searching through all instances of books to derive
the answer. But this is more of a design issue of describing how the solution could be
achieved, and is not suitable in the analysis phase where we aim to understand what the
solution is.

94

5. A Partial Framework for System Evolution

The discussion so far suggests that a system's framework consists of two layers as shown in
figure 5.1. At the kernel of the diagram is the object model.

Figure 5.1 : Object Model and Functional Requirements

6 . Business Policies

Consider the entries of Table 1. The latter contains a business policy pertaining to the loan
quota for each class of member in a typical library environment (refer also to figure 3.1).

Member Class
Staft (Producer)
Staff (Non-Producer)
External Individual
External Institutional
Approved Training Centres
Reader

Restr ic t ions
All items
All items except 16mm films
All items except 16mm films
All items except 16ram films
All items except 16mm films
Use library facilities only

Loan quota
4 print and 5 non-print items

[4 print and 5 non-print items
4 print and 5 non-print items
10 print and 10 non-print items
10 print and 10 non-print items
0 item

Table 1 : L o a n quota business policy

For instance, in Table I, a staff member (Producer) may borrow all types of library
items subject to a maximum of 4 print items and 5 non-print items. For Readers, they may
only use the library facilities (such as using the library for reference work) but may not
borrow any library items.

Consider the following policies : A borrowed item is said to be overdue when it is not
returned to the library a day after the due date. Also, any overdue item is subjected to a fine
of 50 cents per day per item. These policies read :

FineMember IF BorrowedltemlsOverdue.
BorrowedltemlsOverdue IF TotalFine > 0.

The total fine is governed by a computational policy indicated by the following formulae :
TotalFine = TotalDaysOverdue * 50 (cents)
TotalDaysOverdue = NumberOfDaysBorrowed - l(day grace period) - TotalSundays

- TotalPublicHolidays.

95

NumberOfDaysBorrowed = RetumDate - LendDate 1.

These high-level declarative business policy statements are what a user would generally
define in their context and are what they would view them as; unfortunately, they are
usually not represented as they are. Instead, they are commonly transformed into low-level
computational representation in its final specification. That is, the set of business policies,
with which the definition of a system depends, is buried deep within the system program
code, totally obscured from the users who define them in the first place and who are the ones
that will request for changes in the future.

This mode of representation suffers from a number of problems. Firstly, programs
become complex because the order of the procedural statements determines much of the
logic of the program. Secondly, it is difficult to check the correctness of a program as few
people with the knowledge of the policies will be able to understand the implementation.
Finally, maintenance of programs is difficult, since programs describe a procedure of
carrying out these policies rather than containing the policies themselves. Any changes to
the business policy would require a re-ordering of the program logic and this could be cosily
[7]. In other words, procedural representation of business policies requires the pre-
determination of the order of execution (of the program logic), whereas if they have been
represented declaratively, then it is the environment that chooses the policy to be applied
whenever the situation arises.

6.1. Taking a Synergistic Approach to Structuring a System

Based on the above, we can conclude that business policies of a system specification should
be explicitly specified in software development and identifiably maintained throughout the
development process and subsequent evolution, so as to permit immediate and flexible
response to changes in users' requirements. Hence, in addition to separating object model
from its functionalities, we also need to explicitly represent business policies such that the
definition of the policies and their corresponding operational application are separated. Thus,
in addition to the two layers, we have a third layer, the business policy layer as shown in
figure 6.1.

Figure 6.1 : The three layers of a system structure

1 ReturnDate and LendDate are attributes of library items; they record the date upon
which the item is returned and borrowed respectively.

96

This synergistic approach to structuring a system can potentially alleviate the
deficiencies of present-day systems development methods, with particular emphasis on
software maintenance.

7 . Expl ic i t Representa t ion o f Bus iness Pol ic ies

To explicitly represent a business policy is to raise the level of representation of the
business policy. As business policies are declarative statements about objects, their
attributes and their actions, we thus expect them to be represented in the same manner. Let
us now examine the areas in which business policies can be explicitly represented given the
framework as illustrated in figure 6.1.

There are 4 areas in which explicit representation of business policies is applicable :
1. Object action
2. Object attribute
3. Condition derivatives
4. Computation derivatives.

7.1 . Object Action

An action denotes a participation on the part of an object in an event. The execution of an
action changes the state of an object. For instance, a Non-reference book issue is an event
participated by two objects - Non-reference Book and Member. The action is a common
action between the two objects (let's call the action 'Lend'), and when this event occurs, the
Lend actions of the two objects are executed. The completion of the actions update the states
of the two objects (i.e. the data values of the relevant attributes such as loanCount and
currentBorrower will be updated).

7.1 .1 . Pre-Action Constraint and Post-Action Triggering Policies

However, before any actions can be executed, certain conditions may have to be satisfied.
For example, before a book can be loaned to a member, it must first be available for loan;
also, that the member has not exceeded his loan quota. For a book renewal, the book must
not b~ initially reserved by another member, etc.

The above constraints are related to the point in time before the execution of an action.
This is known as pre-action conditional constraint. There are also cases where upon the
completion of an action, certain functionalities must follow. For instance, when a book
which has been initially reserved by a member is returned, a notification card must be
printed, to be sent to the reserving member. The action concerned is "Renew 1", and the
functionality is "Print a notification card".

In other words, for each action, there are pre-action condition and post-action triggering
business policies associated with it. The pre-action condition business policies serve as a
gate to the execution of an action; opening only when the conditions are satisfied and
barring any execution if the situations are not consistent with the constraints. The post-
action triggering business policies are links that connect actions to other functionalities
which are regularly performed upon the completion of an event.

1 Renew is a common action of library item and member.

97

The pre-action condition business policies for the Lend action (Staff Member objec0
could be expressed as :

BEFORE Lend CONDITION PrintloanCount < PrintloanQuota.

For the action Renew, the pre-action condition business policy may be specified as :
BEFORE Renew CONDITION noPriorReservation

(where noPriorReservation is a functional module that returns a boolean value)

The post-action trigger business policy "When a book which has been initially reserved
by a member is returned, print a notification card" can be expressed as follows :

AFTER Return AND ResvnCount > 0 CALL PrintNotificationCard(Bookld).

This policy brings together the three related elements : Action (Return), attributes
(ResvnCoun0 and functionality (PrintNotificationCard).

Explicit representation thus makes clear the policies relating to pre~action constraints and
post-action functionality triggers.

OUT-BIND

BEGIN
Lend

RETURNED

Renew

RENEWED

l_.._l
Renew

A circle denotes a state. A darkened circle indicates the beginning and ending states of an object;
they are special states applicable to all objects. A line connection indicates an action; the
activation of the action moves the object from a state to another. For example, if the object is
currently at CLASSIFIED state, it may accept actions Bind-Out (which will lead it to the OUT-
BIND state) or Len 0 (which will lead it to the LENT state). The diagram also indicates the set of
actions that the object may accept at a given state. In other words, the Non-Reference Book can
only accept Bind-Out or Lend (and nothing else), if it is at the CLASSIFIED state.

Figure 7.1 : State-transitions of Non-Reference Book

7.1 .2 . Action Sequencing Policies

We saw in the earlier sections that an action is time-ordered. An object changes its state
upon the completion of an action. The state transition is represented in the object by a

98

change in attributes' values. State-transitions can be depicted graphically using the standard
state-transition diagram as in figure 7.1, or textually, in the following form :

FROM source-state WHEN action TO destination-state
For the object Non-reference Book, we may tabulate its state-transitions (or temporal

constraints) as in Table 2. The FROM column consists of all source states. Given the set of
respective actions in the WHEN column, the TO column defines the set of corresponding
destination states. Since a state denotes the point in time when an action event has taken
place, we use past-tense verb phrase to denote state. For example, the state for action Lend
is LENT and for actions Renew, RENEWED, and Return, RETURNED etc.

Table 3 is another example but it is for Reference Book. The difference between tables 2
and 3 is that there are no state-transitions entries for the loan of book in the case of the
Reference Book.

F R O M W H E N TO
BEGIN
ACQUIRED
CLASSIFIED
CLASSIFIED
CLASSIFIED
LENT
LENT
RENEWED
RENEWED
RETURNED
RETURNED
DISPOSED
OUT-BIND
IN-BIND
IN-BIND

Acquire
Classify

Bind-Out
Dispose
Renew
Return
Renew
Return

Dispose
End
Bind-In
Dispose
Lend

ACQUIRED
CLASSIFIED
LENT
OUT-BIND
DISPOSED
RENEWED
RETURNED
RENEWED
RETURNED
LENT
DISPOSED
END
IN-BIND
DISPOSED
LENT

Table 2 : Temporal constraints for Non-reference Book

F R O M W l t E N TO
BEGIN
ACQUIRED
CLASSIFIED
CLASSIFIED
DISPOSED
OUT-BIND
IN-BIND

Acquire
Classify
Bind-Out
Dispose
End
Bind-in
Dispose

ACQUIRED
CLASSIFIED
OUT-BIND
DISPOSED
END
IN-BIND
DISPOSED

Table 3 : Temporal constraints for Reference Book

Action calls in the WHEN part of the expression correspond to action modules of
objects. These modules are independent modules performing the tasks required of the objects
in fulfilling the events. These tasks include the following kinds of operations :

1. attributes updates operations
2. value verification operations and
3. derivative operations where the derivation is based on other attributes.

99

Combining the state-transition expressions and action modules, we derive a situation as
illustrated in figure 7.2 where action modules and their temporal constraints are loosely
coupled and shared through the inheritance hierarchy as and where applicable 1. Thus, the
above suggests that temporal constraint policies (business policy definition) of actions and
their corresponding action modules (mechanism) should be separately defined, so that
changes in the temporal constraints 2 (state-transitions) are confined to changes in the set of
state-transition expressions as tabled above. For instance, if for some reasons, the renewing
policy for library items has changed as follows :

All items which are available for loans are renewable
except Non-Reference Books which must be returned when due.

Action Modules

~T ~ L~IU

TO LENT

Figure 7.2 : Loosely coupling Action modules and their temporal constraints

This is a case of a change in the temporal constraints on actions and in this case, it
applies to a Non-Reference Book. What is required to fulfilI the change in the policy is to
amend the set of state-transition expressions. In this instance, it entails the deletion of the
followings from the set (see Table 2), all others remaining the same.

FROM RENEWED WHEN Renew TO RENEWED
FROM LENT WHEN Renew TO RENEWED

1 where an action is a specialised action then it has to be specifically defined in the
specialisation class where it applies.

2 denoting a change in the life-history of an object.

100

Hence, explicitly representing the temporal constraints and separating their definitions
from the action modules would thus provide a platform upon which changes in business
policies could be made.

7.2. Object Attributes

An object has attributes and attributes affect one another in two ways. First, an attribute
may only take a certain value depending on the object class. For instance, the loanQuota
attribute of each member class is based on the following policies :

IF Producer THEN PrintLoanQuota = 4 and NonPrintl.~anQuota = 5
IF NonProducer THEN PrintLoanQuota = 4 and NonPrinlLoanQuota = 5
IF ExtlndivlMember THEN PrintLoanQuota = 4 and NonPrintLoanQuota = 5
IF ExtlnstitnMember THEN PrintLoanQuota = I0 and NonPrintLoanQuota = 10
IF MemberATC THEN PrintLoanQuota = 10 and NonPrintLoanQuota = 10
IFRcader THEN PrintLoanQuota = 0 and NonPrintLoanQuota = 0

Second, the value of an attribute may be constrained by another attribute. For example, the
attributes DisposedDate and RetumDate of the Non-Reference Book are constrained in the
following manner :

DisposedDate >= ReturnDate.

This means that a book cannot be disposed unless it has been returned earlier. Also, loan
quota and loan count are similarly constrained in the following manner �9

PrintLoanCount <= PrintLoanQuota
NonPrintLoanCount <= NonPrintLoanQuota

The above are constraint policies pertaining to object attributes; these policies do
change. The meaning of these policies is usually encoded into low-level computational
statements often obscured by the complexity of program code. Of course, constant
parameters could be used; in which case, PrintLoanQuota and NonPrintLoanQuota could be
stored in a parameter table and changed as and when the quota value for each of the member
category changes. This solution is feasible but limited. For instance, the second kind of
constraint which is also related to the first constraint cannot be represented using a
parameter table. In fact, the second constraint has to be encoded within program logic,
obscuring the definitions. Hence, to reduce the maintenance effort, we also need to consider
the explicit representation of attribute value constraints as discussed above.

7.3. Condition Derivatives

Another area of concern is in the factoring of derivatives of condition policies. For example,
the condition BorrowedltemlsOverdue was Fast expressed as :

BorrowedltemlsOverdue IF TotalFine > 0
Alternatively, we may express BorrowedltemlsOverdue as :

BorrowedltemlsOverdue IF (ReturnDate - DueDate) > 1

That is, if an item is returned more than a day after the due date then the item is considered
as overdue. The digit "1" on the right-hand side of the expression indicates a one-day grace
period for the member.

This policy (BorrowedltemlsOverdue) may be applied in various part of the system and
possibly hidden in the complexity of the system, leading to difficulty in making changes to
the policy when the need arises. However, if the definition of the policy is abstracted and

101

explicitly represented in a specification, then changes to the policy applies only at the
policy definition rather than at where the policy occurs.

I F a = b 1
THEN ...

O

I F a = b
THEN...

e

r

IF c
T H E N . . .

IF c
THEN...

o

P o l i c y (c : - a = b)

Fig 7.3 Fig 7.3b

Figure 7.3 illustrates the advantage of explicitly representing this type of condition
derivative policies. In figure 7.3a, we have a policy (c IF a=b) which occurs at various parts
of a system being represented as it is (a=b) in the system. Changing this policy would
require the search for their occurrences and then making the required changes. However, in
figure 7.3b, abstracting and explicitly representing the policy would confine the change only
to the definition of the policy without affecting the entire system. Certainly, the latter
approach is much better.

Explicit representation of condition derivative policies is particularly useful in system
simulations where the change in conditions, representing different situations, could be
facilitated easily. It is also useful for the monitoring of systems particularly when the
system is implemented in a new environment. For instance, the above OVERDUE policy
may include the one-day grace period for the initial two months of implementation but
would have to be removed once the period is over. In this case, since the change is a policy
change, then only the meaning of the policy should be changed from

BorrowedltemlsOverdue IF (RetumDate - DueDate) > 1
to

BorrowedltemlsOverdue IF (RetumDate - DueDate) > 0
and the others should remain the same as before.

7.4. Computational Derivatives

A condition derivative policy is related to another kind of policy known as computational
policy. The term computational indicates that the policy has an arithmetical flavour. Indeed,
the policy connects object attributes and other computational policies via an arithmetical
formula. While the condition derivative policy suggests that a certain condition is true, it is
the computational policy that stipulates how the value is to be calculated. For instance, we
could tell if a Non-Reference Book is overdue via the condition derivative policy but we
need a computational policy to indicate the total fine due. The formula for the calculation is
stated in a computational policy as follows :

TotalFine = TotalDaysOverdue * 50.
TotalDaysOverdue = ReturnDate - DueDate - 1 - TotalSundays - TotalPublicHolidays.

ReturnDate and DueDate are attributes of the object Non-Reference Book; TotalSundays and
TotalPublicHolidays could be pre-defined functions that return integer values relating to
total Sundays and public holidays during the overdue period respectively.

102

The above computational policy not only makes clear the meaning of the formula but
also brings together all related components associated with the computation. Since users
generally express computational policies in such a declarative manner, representing them in
a computer system in similar form would greatly enhance the maintenance effort.

Consider, for instance, the formula for the calculation of fine :
TotalFine = TotalDaysOverdue * 50.
TotalDaysOverdue = RetumDate- DueDate - 1 - TotalSundays - TotalPublicHolidays.

These formulae may be used in various parts of a system. Hence, when there is a change in
the definition of the formulae, there is a need to first locate where they have been used and
change them accordingly. To alleviate this problem, one may package the calculation within
a single module so that changes to the formula could be limited to the module. Although
this solution is possible, it falls short of making the definition explicit. What this solution
has achieved is to transform the meaning of the policy into a set of low-level program
logic, albeit in a single module; often making the policies unrecognisable.

Library System

/ [. Computational Policies

I l=l o' mo = * ,O /
I I "" - I [' --"= ~ TotalDaysOverdue = RetumDate - DueDate - 1 I

I I - I I

.. TotalF" TotalFfne/.. ~

F i g u r e 7 .4 : Explicit Representation of Computational Policies

To illustrate, let's consider the previous computational policies on TotalFine. The
TotalFine policy takes into consideration the fact that the library is not open on Sunday and
Public holidays; that is why the calculation of the total fine amount does not include these
days. Also, there is a one-day grace period given to the member for returning items that are
due. Let's assume now that the library is open to members on Sundays I, then the policy
has to be amended to :

TotalDaysOverdue = RetumDate - DaeDate - 1 - TotalPublicHolidays.

Furthermore, grace period may be revoked and if such a situation occurs, the policy will
have to be changed to :

TotalDaysOverdue = RetumDate - DueDate - TotalPublicHolidays.

1 Highly possible in Singapore.

103

and if need be, the policy may he reduced to :
TotalDaysOverdue = RetumDate - DueDate.

Even the rate of fine may be changed from 50 cents to say $1 to encourage members to
return the items on time.

Although the changes may seem trivial, the efforts required to make the change may not
be so using the conventional approach; and certainly the efforts would not be proportionate
to the complexity of change if the policy is not represented explicitly as in figure 7.4.

Based on the above, we can conclude that there is a need to factor out the derivation of
condition and computational policies from the environment in which they are used. In so
doing, we aim to enhance the maintenance of the policies when the need arises.

8. Conclusion

This paper recognises the need to continuously provide for software system evolution
throughout its entirety. It also suggests a framework upon which software system should be
structured for easier maintenance. The framework is characterised by 3 elements : object
model, functionalities and business policies. The paper concludes that these elements should
be separated from one another and in particular the representation of business policies should
be raised to a level where they can be explicitly recognised for changes when the business
environment evolves.

R e f e r e n c e s

1. vanAssche F., Layzell P.J. and Anderson M. RUBRIC : A rule-based approach to the
development of information systems, Proceedings of the 1st European Conference on
Information Technology for organisafionai Systems, Athens, 16-20 May 1988.
Boehm B.W., Software Engineering Economics, Prentice Hail Inc., 1981
Botch G. Object-oriented Development, IEEE Transactions on Software Engineering,
Vol SE-2, No. 2, Feb 1986, pp 211-221.
Cameron J.R. An overview of JSD, IEEE transactions on Software Engineering Vol
SE-12, No 2, Feb 1986 pp 222-240.
Cox, BJ., Object Oriented Programming: An Evolutionary Approach, Addison-Wesley
Publishing Co., August 1986
Davis R. and Buchanan B. Production rules as a representation for a knowledge-based
consultation, Artificial Intelligence 8, 1977 pp 15-45.
Fjeldstad R.K et ai, Application program maintenance in [15], pp 13-27.
Gustafsson M.L., Karlsson T. and Bubenko J.A. A declarative approach to conceptual
information modelling in [14].
Hayes-Roth F. Rule Based Systems, Communications of the Association of
Computing Machinery, Vol 28, No. 9, Sept 1985, pp 921-932.

10. Jackson M.A. System Development, London : Prentice Hail International Inc., 1983.
11. Lientz B.P. & Swanson B. Problems in Application Software Maintenance, Comm.

ACM, Vol 24, No. 11, pp 763-769, 1981.
12. Meyer B. Object-oriented Software Construction, Prentice-Hail, 1988.
13. Morris E.P. Strengths and Weaknesses in Current large scale data processing systems,

Alvey/BCS SGES workshop, Jan 1985.

2.
3.

4.

5.

6.

7.
8.

9.

104

14. Olle T.W. et al (eds). CRIS1 - Information System Design Methodologies : A
Comparative Review Amsterdam : North-Holland, 1982.

15. Parikh G. and Zvegintzov N. Tutorial on Software Engineering, IEEE, 1983.
16. Parnas D.L. On the criteria to be used in decomposing systems into modules

Communications of Association of Computing Machinery, Vol 15 No 12, 1972 pp
1053-1058.

17. Parnas D.L. Designing software for ease of extension and contraction IEEE
Transactions on Software Engineering SE-5, March 1979, pp 128-138.

18. Poo Chiang-Choon Danny. The integration of Rules into the Object-oriented Paradigm
to facilitate Software Maintenance Ph D thesis, Dept of Computation, UMIST,
Manchester, May 1988.

19. Poo Chiang-Choon Danny et al. Information Systems Development - A new direction,
Proceedings of SEARCC 90, Dec 1990, Manila (Philippines).

20. Poo Chiang-Choon Danny. Adapting and using JSD modelling technique as a front-
end to object-oriented systems development, Journal of Information and Software
Technology, Vol.33, No. 7, Sept 1991, pp 466-476.

21. Poo Chiang-Choon Danny. An Object-oriented Software Requirements Analysis
Method, (accepted for publication in International Journal on Software Engineering and
Knowledge Engineering in June 1992).

22. Poo Chiang-Choon Danny. TarTan : An object-oriented System Modelling Method for
MIS applications, Technical report, Dept of Information Systems and Computer
Science, National University of Singapore (same as author's correpondence address).

23. Rumbaugh James ct al. Object-oriented Modelling and Design, Prentice-Hall, 1991.
24. Smith J. and Smith D. Database Abstractions : Aggregation and Generalisation, ACM

Transactions on Database Systems, Vol 2, No. 2, 1977, pp 105-133.
25 Yourdon E. and Constantine L., Structured Design : Fundamentals of a discipline of

computer program and systems design, Yourdon Press, 1979.

