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A b s t r a c t .  In describing a software system, there are three elements that are 
always considered : objects, functional requirements and business policies. In the 
traditional approach to software development, these elements are often mixed with 
one another in a system's definition in such a way that their meanings are embedded 
into the software, making their identification very difficult. This has the knock-on 
effect of making maintenance, and hence evolution, difficult. 

This paper suggests a framework for addressing software maintenance and it calls 
for a clearer separation between the business policies, functional requirements and 
object models. 

1. System Evolution is Inevitable 

Software investment cost has been recognised by many as expensive. The high cost incurred 
is attributed not to the complexity of creating systems but to the maintenance efforts 
required to accommodate changes in inflexibly-designed systems [11,13]. 

The design of an information system often changes throughout its lifecycle; this has 
been attributed to changing users' requirements. These changes have been recognised to be 
intrinsic to software, often unpredictable and cannot be accommodated without iteration in 
the definition and development phases. Thus, the key to successful systems development, 
lies not in designing systems that satisfy the initial users' requirements but in the 
continuous provision for system evolution, particularly in the area of  accommodating 
changes due to users' requests [1, 2,11]. 

2. The Object-Oriented Approach 

The functional approach to information systems development has been the primary approach 
used for the past two decades. This approach is characterised by data flow and operations 
upon them. The structure of systems produced is based mainly on system functional 
activities. This approach has two major problems. First, system functionalities are highly 
volatile elements, and will inevitably lead to more frequent changes in system structure, 
which in turn translates to increased maintenance efforts. Second, systems produced using 
the functional approach have an architecture whose structure is characterised by a string of 
sequential functional operations. Any changes to these functionalities will create a chain 
reaction and the effect will be propagated throughout the system. Thus, the complexity 
involved in making such changes is usually not proportional to the requirements. 

In recent years, there has been a shift in the way systems are designed: from a function- 
oriented to an object-oriented approach. The latter focuses on the objects that describe the 
problem domain and their mutual interactions. Unlike the functional approach, the primary 
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design issue of the object-oriented approach is no longer what functionalities the system 
does, but what object it does it to. 

The primary motivation for adopting the object-oriented approach is the stable model of 
reference upon which a problem space can be examined. Objects in a problem domain are 
comparatively more stable than functional requirements [10]. For instance, the objects in a 
library or order processing environment today will probably be the same as the objects in 
such an environment a few years from now. Thus books and library users, and customers 
and orders will continue to be the principal objects in library and order processing 
environments, respectively, even though the functionalities of the applications may have 
changed over the years. 

The object-oriented approach has several advantages over the traditional functional 
approach in terms of the correctness, robustness, extensibility, reusability, and 
compatibility of the final delivered system [12]. These key aspects of software quality are 
especially important because of the difficulties experienced with present-day systems 
development practices -- that is, programs often do not do what they are supposed to do; 
they are not equipped enough to deal with abnormal situations; they are not amenable to 
change; their construction does not rely on previous efforts; and they do not combine well 
with each other. 

3 .  Objec t -or iented  Sof tware  Structure  

The advantages of adopting an object-oriented approach in software system definition have 
been well documented elsewhere [e.g. 3, 12, 23]. The slructure of a system developed using 
the object-oriented approach is different from that produced using a function-oriented 
approach. How then should we model our problem domain in terms of objects? and How are 
functional requirements which are part and parcel of an information system description be 
considered in the modelling activity? The next few subsections will elaborate on these two 
issues. 

3.1 .  Characteristics of an Object Model 

Actions 
Since objects in the real world participate in a set of events, their actions in the events 

would indicate what can happen to them. For example, a Customer in a banking 
environment participates in events such as Deposit money, Withdraw money, Open an 
account and Close an account, the actions that are relevant to a customer in such a situation 
would be those actions relating to the opening and closing of accounts, and depositing and 
withdrawing of money from the account. Nevertheless, a Customer in an order-processing 
environment would participate in events 1 that are different from those in the banking 
environment, thus his actions would be completely different from customers in the banking 
application. In other words, the meaning of a customer, and hence objects in a problem 
domain, is defined by the actions that it performs or the events with which it undertakes. 
That is, object actions characterise the behaviour of the object. 

Ordering of Actions 
It is obvious that an object does not conduct its actions in the real world randomly. 

There is a pattern by which the sequence of actions follows. For example, when a user 
wishes to borrow some items from the library, he first has to register himself as a member 

1 The events are Order, Cancel, MakePayment~ etc. 



90 

of the library. Only when he has become a member of the library, may he performs other 
actions like borrow a book, renew a book and return a book. He may also repeatedly renew 
other books which he has initially borrowed, etc. He continues to perform these actions 
until such time when he decides to terminate his membership with the library, during such 
time he executes a Terminate action which formally ends his membership. Thus, we see a 
pattern of actions for a library member i.e. Register, Borrow, Renew, Return, (and repeated 
Borrow, Renew and Return) and Terminate. This pattern of actions describes the life history 
or dynamic behaviour of the member. Modelling the dynamic behaviour of an object 
provides us with a more accurate representation of an object since events in the real world 
are constraint by a certain time ordering. 

~ Acquire 
Dispose 

~ Bind-out ~ Acquire, Dispose ~ Lend, Renew 
Bind-in Lend, Return Return, Classify 
Classify 

-]  Bind-out 
Bind-in 

Figure 3.1 : Object Classification Diagram for Library Items 
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Attributes 
In addition to actions, an object is also characterised by a set of properties known as 

attributes. The latter describes the state of an object. An example of attributes for a library 
member might be : Name, address, age, and loan-limit. 

Classification 
Objects in the real world are usually classified. For instance, books, periodicals, annual 

reports, prospectus and statistical publication may be classified as print items in a library 
environment; and these items may either be of reference or non-reference materials. A 
reference item may only be used in the library premises and unlike non-reference items may 
not be loaned out to any library users. The computational model representing similar 
informations of objects in the real world should thus include the concept of classification in 
its description. 

An object is classified by factoring common properties of similar objects into a class. 
The class then specifies the behaviour of all instances. Classes can be partitioned into 
subclasses, in which case the superclass is known as a generalisation [24] of the subclasses 
(and the subclasses are termed specialisations of the superclass). Figure 3.1 is an Object 
Classification Diagram (OCD) illustrating a classification hierarchy of library items in a 
library circulation application. Notice the action Classify has been defined in the respective 
subclasses; this is because Classify does not apply to Inter-Library Loan Item. 

From the figure, we see that actions Acquire and Dispose have been repeated in Inter- 
Library Loan Item; the reason is due to different semantic requirements of these actions on 
the part of  Inter-Library Loan Item from the others. For instance, we need to know the 
source library from which the inter-library loan item is acquired but this piece of 
information is not relevant to the other library items. 

Relationships 
Besides the vertical relationship of objects through classification, there is another form 

of relationship known as horizontal relationship. This kind of relationship describes the 
affiliation between two or more objects. Modelling relationships between objects provides 
us with an overview of the affiliation of objects with one another. For instance, a 
relationship between a borrowing member and a non-reference book is Borrow 1. 

We can further impose upon a relationship a static restriction that dictates the cardinality 
of participation of object instances in the relationship. If the cardinality of the Borrow 
relationship between a borrowing member and non-reference book is one-to-many, it 
indicates that a member can borrow many non-reference books but only one non-reference 
book can be borrowed by one member. Expressing this form of relationship can be achieved 
with an Object Relationship Diagram (ORD) as shown in figure 3.2. 

Borrowing Borrow INon_reference[ 
Member [1 ~ ] Book J 

Rectangles represent objects; a line connecting the two objects indicates a relationship (in this 
example, Borrow). Double vertical bar denotes multiple relationship and single bar indicates 
single relationship. 

Figure 3.2 : Relationship between Member and Non-reference Book (I:M) 

1 Borrow or Lend could be used depending on the direction in which the relationship is 
specified. 
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3 . 2 .  A Proposed Object  Model 

In summary, we can define objects as having five characteristics : 
1. Objects have acdons that describe their behaviour. 
2. The actions of objects are time-ordered. 
3. Objects have attributes that describe their states at a particular point in time. 
4. The definition of objects can be organised into a class-instance relationship in 

a classification hierarchy. 
5. Objects are affiliated to one another through relationships. 

Figure 3.3 summarises this object model. 

Horizontal Relationship 
"r " -  

m 
0 

m 

a~ 
..~ 

Superclass 
Obiect A 

Actions Relationship 

State 

I AtMbutes Attributes 
Actions Actions 
State State 

Subclass Subclass 
Object B Object C 

Object D 
]Attributes 

I I i Actions 
II Jsmte 

Figure 3.3 : Characteristics of ObJects in an Object Model 

4.  Functional Requirement Modelling 

Functional requirements are those input, output and processing requirements; they are part 
and parcel of any information systems description. They are specified in order to satisfy 
users' functional requirements. An example of a functional requirement in a library 
circulation application might be : On request, lists all books currently on loan to staff 
member A. This functional requirement is related to two objects : Non-reference Book and 
Staff Member. Contemporary object-oriented modelling approaches suggest the 
encapsulation of this functional requirement as an operation of a model object, i.e., define it 
as an operation of either Non-Reference Book or Staff Member. While this solution is 
plausible, it is not favourable for the following reasons: 
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It violates the essence of the definition of object. An operation defined for an object 
should be applicable to the object, the whole object and nothing but the object [3]. 
Since a functional requirement is a statement which is related to more than one 
object (in this case, Non-Reference Book and Staff Member), we cannot 
categorically say that a functional requirement belongs to a particular object. 
Hence, functional requirements should not be defined as operations of objects in the 
object model. 
It weakens the visibility of functional requirements, making changes to functional 
requirements difficult. For instance, in which of  the two objects in the above 
example (Non-Reference Book and Staff Member) is the functional requirement 
represented, since representation of the requirement in both objects is possible. 
Functional requirements are highly volatile elements. The principle of good 
software development practice [16, 17, 25] advocates the separation of volatile 
elements from the stable ones; this is to reduce the effect of change in one part of a 
system to another (possibly not related to the change at all). 
To model functional requirements as operations of model objects has effectively 
forced us to consider the way a system is to be designed and implemented since 
there are many ways in which a requirement can be satisfied in the design of a 
system at a later stage. For instance, the functional requirement above can be 
satisfied in design by defining an operation in either Non-Reference Book or Staff 
Member, alternatively, we can define it as an operation of another third object that 
interact with Non-Reference and Staff Member to fulfill what is required. 
This solution will lead to maintenance complexity in future changes to functional 
requirements. To illustrate, let us assume that the above functional requirement is 
encapsulated as an operation in one of the objects, say Non-Reference Book, and 
consider how a symmetric problem such as : On request, lists all books currently 
on loan to staff members who have joined the library between I January 1990 and 
1 January 1991 would affect the definition of the model. If this problem were to be 
satisfied as before, it would require a separate service module. The service module 
would have to interact with all instances of Staff Member to select the relevant 
instances (i.e. satisfying the constraint that he joined the library between the 1 
January 1990 and 1 January 1991); and then looking up all instances of  Non- 
Reference Book l and selecting those that are on loan to those relevant members. 
We note that a simple change in the functional requirement has resulted in a major 
change in the way the problem is resolved. 
Finally, to insist on the definition of functional requirements as operations of 
model objects would go against the way a user would generally express functional 
requirements. They view functional requirements in a functional way and do not 
consider them as being part of a model object (i.e. it should not be considered as 
operation of either Non-Reference Book or Staff Member). 

Hence, in conclusion, we state that it is necessary to separate the definitions of the object 
model from its functional requirements. If objects have been correctly modelled they are 
likely to change infrequently, if at all. Modification of objects should only be effected by 
major changes to the basic meaning of the system and generally reflects a change in the 
business environment. 

We may def'me an object keeping a record of the books that the member has borrowed; 
this is certainly much better than searching through all instances of books to derive 
the answer. But this is more of a design issue of describing how the solution could be 
achieved, and is not suitable in the analysis phase where we aim to understand what the 
solution is. 
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5.  A Partial Framework for System Evolution 

The discussion so far suggests that a system's framework consists of two layers as shown in 
figure 5.1. At the kernel of the diagram is the object model. 

Figure 5.1 : Object Model and Functional Requirements 

6 .  Business Policies 

Consider the entries of Table 1. The latter contains a business policy pertaining to the loan 
quota for each class of member in a typical library environment (refer also to figure 3.1). 

Member Class 
Staft (Producer) 
Staff (Non-Producer) 
External Individual 
External Institutional 
Approved Training Centres 
Reader 

Restr ic t ions  
All items 
All items except 16mm films 
All items except 16mm films 
All items except 16ram films 
All items except 16mm films 
Use library facilities only 

Loan quota 
4 print and 5 non-print items 

[ 4 print and 5 non-print items 
4 print and 5 non-print items 
10 print and 10 non-print items 
10 print and 10 non-print items 
0 item 

Table 1 : L o a n  quota business policy 

For instance, in Table I, a staff member (Producer) may borrow all types of library 
items subject to a maximum of 4 print items and 5 non-print items. For Readers, they may 
only use the library facilities (such as using the library for reference work) but may not 
borrow any library items. 

Consider the following policies : A borrowed item is said to be overdue when it is not 
returned to the library a day after the due date. Also, any overdue item is subjected to a fine 
of 50 cents per day per item. These policies read : 

FineMember IF BorrowedltemlsOverdue. 
BorrowedltemlsOverdue IF TotalFine > 0. 

The total fine is governed by a computational policy indicated by the following formulae : 
TotalFine = TotalDaysOverdue * 50 (cents) 
TotalDaysOverdue = NumberOfDaysBorrowed - l(day grace period) - TotalSundays 

- TotalPublicHolidays. 
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NumberOfDaysBorrowed = RetumDate - LendDate 1. 

These high-level declarative business policy statements are what a user would generally 
define in their context and are what they would view them as; unfortunately, they are 
usually not represented as they are. Instead, they are commonly transformed into low-level 
computational representation in its final specification. That is, the set of business policies, 
with which the definition of a system depends, is buried deep within the system program 
code, totally obscured from the users who define them in the first place and who are the ones 
that will request for changes in the future. 

This mode of representation suffers from a number of  problems. Firstly, programs 
become complex because the order of the procedural statements determines much of  the 
logic of the program. Secondly, it is difficult to check the correctness of a program as few 
people with the knowledge of the policies will be able to understand the implementation. 
Finally, maintenance of programs is difficult, since programs describe a procedure of 
carrying out these policies rather than containing the policies themselves. Any changes to 
the business policy would require a re-ordering of the program logic and this could be cosily 
[7]. In other words, procedural representation of business policies requires the pre- 
determination of the order of execution (of the program logic), whereas if they have been 
represented declaratively, then it is the environment that chooses the policy to be applied 
whenever the situation arises. 

6.1.  Taking a Synergistic Approach to Structuring a System 

Based on the above, we can conclude that business policies of a system specification should 
be explicitly specified in software development and identifiably maintained throughout the 
development process and subsequent evolution, so as to permit immediate and flexible 
response to changes in users' requirements. Hence, in addition to separating object model 
from its functionalities, we also need to explicitly represent business policies such that the 
definition of the policies and their corresponding operational application are separated. Thus, 
in addition to the two layers, we have a third layer, the business policy layer as shown in 
figure 6.1. 

Figure 6.1 : The three layers of a system structure 

1 ReturnDate and LendDate are attributes of library items; they record the date upon 
which the item is returned and borrowed respectively. 
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This synergistic approach to structuring a system can potentially alleviate the 
deficiencies of present-day systems development methods, with particular emphasis on 
software maintenance. 

7 .  Expl ic i t  Representa t ion  o f  Bus iness  Pol ic ies  

To explicitly represent a business policy is to raise the level of representation of the 
business policy. As business policies are declarative statements about objects, their 
attributes and their actions, we thus expect them to be represented in the same manner. Let 
us now examine the areas in which business policies can be explicitly represented given the 
framework as illustrated in figure 6.1. 

There are 4 areas in which explicit representation of business policies is applicable : 
1. Object action 
2. Object attribute 
3. Condition derivatives 
4. Computation derivatives. 

7.1 .  Object Action 

An action denotes a participation on the part of an object in an event. The execution of an 
action changes the state of an object. For instance, a Non-reference book issue is an event 
participated by two objects - Non-reference Book and Member. The action is a common 
action between the two objects (let's call the action 'Lend'), and when this event occurs, the 
Lend actions of the two objects are executed. The completion of the actions update the states 
of  the two objects (i.e. the data values of the relevant attributes such as loanCount and 
currentBorrower will be updated). 

7.1 .1 .  Pre-Action Constraint and Post-Action Triggering Policies 

However, before any actions can be executed, certain conditions may have to be satisfied. 
For example, before a book can be loaned to a member, it must first be available for loan; 
also, that the member has not exceeded his loan quota. For a book renewal, the book must 
not b~ initially reserved by another member, etc. 

The above constraints are related to the point in time before the execution of an action. 
This is known as pre-action conditional constraint. There are also cases where upon the 
completion of an action, certain functionalities must follow. For instance, when a book 
which has been initially reserved by a member is returned, a notification card must be 
printed, to be sent to the reserving member. The action concerned is "Renew 1", and the 
functionality is "Print a notification card". 

In other words, for each action, there are pre-action condition and post-action triggering 
business policies associated with it. The pre-action condition business policies serve as a 
gate to the execution of an action; opening only when the conditions are satisfied and 
barring any execution if the situations are not consistent with the constraints. The post- 
action triggering business policies are links that connect actions to other functionalities 
which are regularly performed upon the completion of an event. 

1 Renew is a common action of library item and member. 
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The pre-action condition business policies for the Lend action (Staff Member objec0 
could be expressed as : 

BEFORE Lend CONDITION PrintloanCount < PrintloanQuota. 

For the action Renew, the pre-action condition business policy may be specified as : 
BEFORE Renew CONDITION noPriorReservation 

(where noPriorReservation is a functional module that returns a boolean value) 

The post-action trigger business policy "When a book which has been initially reserved 
by a member is returned, print a notification card" can be expressed as follows : 

AFTER Return AND ResvnCount > 0 CALL PrintNotificationCard(Bookld). 

This policy brings together the three related elements : Action (Return), attributes 
(ResvnCoun0 and functionality (PrintNotificationCard). 

Explicit representation thus makes clear the policies relating to pre~action constraints and 
post-action functionality triggers. 

OUT-BIND 

BEGIN 
Lend 

RETURNED 

Renew 

RENEWED 

l_.._l 
Renew 

A circle denotes a state. A darkened circle indicates the beginning and ending states of an object; 
they are special states applicable to all objects. A line connection indicates an action; the 
activation of the action moves the object from a state to another. For example, if the object is 
currently at CLASSIFIED state, it may accept actions Bind-Out (which will lead it to the OUT- 
BIND state) or Len 0 (which will lead it to the LENT state). The diagram also indicates the set of 
actions that the object may accept at a given state. In other words, the Non-Reference Book can 
only accept Bind-Out or Lend (and nothing else), if it is at the CLASSIFIED state. 

Figure 7.1 : State-transitions of Non-Reference Book 

7.1 .2 .  Action Sequencing Policies 

We saw in the earlier sections that an action is time-ordered. An object changes its state 
upon the completion of an action. The state transition is represented in the object by a 
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change in attributes' values. State-transitions can be depicted graphically using the standard 
state-transition diagram as in figure 7.1, or textually, in the following form : 

FROM source-state WHEN action TO destination-state 
For the object Non-reference Book, we may tabulate its state-transitions (or temporal 

constraints) as in Table 2. The FROM column consists of all source states. Given the set of 
respective actions in the WHEN column, the TO column defines the set of corresponding 
destination states. Since a state denotes the point in time when an action event has taken 
place, we use past-tense verb phrase to denote state. For example, the state for action Lend 
is LENT and for actions Renew, RENEWED, and Return, RETURNED etc. 

Table 3 is another example but it is for Reference Book. The difference between tables 2 
and 3 is that there are no state-transitions entries for the loan of book in the case of the 
Reference Book. 

F R O M  W H E N  TO 
BEGIN 
ACQUIRED 
CLASSIFIED 
CLASSIFIED 
CLASSIFIED 
LENT 
LENT 
RENEWED 
RENEWED 
RETURNED 
RETURNED 
DISPOSED 
OUT-BIND 
IN-BIND 
IN-BIND 

Acquire 
Classify 

Bind-Out 
Dispose 
Renew 
Return 
Renew 
Return 

Dispose 
End 
Bind-In 
Dispose 
Lend 

ACQUIRED 
CLASSIFIED 
LENT 
OUT-BIND 
DISPOSED 
RENEWED 
RETURNED 
RENEWED 
RETURNED 
LENT 
DISPOSED 
END 
IN-BIND 
DISPOSED 
LENT 

Table 2 : Temporal constraints for Non-reference Book 

F R O M  W l t E N  TO 
BEGIN 
ACQUIRED 
CLASSIFIED 
CLASSIFIED 
DISPOSED 
OUT-BIND 
IN-BIND 

Acquire 
Classify 
Bind-Out 
Dispose 
End 
Bind-in 
Dispose 

ACQUIRED 
CLASSIFIED 
OUT-BIND 
DISPOSED 
END 
IN-BIND 
DISPOSED 

Table 3 : Temporal constraints for Reference Book 

Action calls in the WHEN part of the expression correspond to action modules of 
objects. These modules are independent modules performing the tasks required of the objects 
in fulfilling the events. These tasks include the following kinds of operations : 

1. attributes updates operations 
2. value verification operations and 
3. derivative operations where the derivation is based on other attributes. 
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Combining the state-transition expressions and action modules, we derive a situation as 
illustrated in figure 7.2 where action modules and their temporal constraints are loosely 
coupled and shared through the inheritance hierarchy as and where applicable 1. Thus, the 
above suggests that temporal constraint policies (business policy definition) of actions and 
their corresponding action modules (mechanism) should be separately defined, so that 
changes in the temporal constraints 2 (state-transitions) are confined to changes in the set of 
state-transition expressions as tabled above. For instance, if for some reasons, the renewing 
policy for library items has changed as follows : 

All items which are available for loans are renewable 
except Non-Reference Books which must be returned when due. 

Action Modules 

~T ~ L~IU 

TO LENT 

Figure 7.2 : Loosely coupling Action modules and their temporal constraints 

This is a case of a change in the temporal constraints on actions and in this case, it 
applies to a Non-Reference Book. What is required to fulfilI the change in the policy is to 
amend the set of state-transition expressions. In this instance, it entails the deletion of the 
followings from the set (see Table 2), all others remaining the same. 

FROM RENEWED WHEN Renew TO RENEWED 
FROM LENT WHEN Renew TO RENEWED 

1 where an action is a specialised action then it has to be specifically defined in the 
specialisation class where it applies. 

2 denoting a change in the life-history of an object. 
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Hence, explicitly representing the temporal constraints and separating their definitions 
from the action modules would thus provide a platform upon which changes in business 
policies could be made. 

7.2.  Object Attributes 

An object has attributes and attributes affect one another in two ways. First, an attribute 
may only take a certain value depending on the object class. For instance, the loanQuota 
attribute of each member class is based on the following policies : 

IF Producer THEN PrintLoanQuota = 4 and NonPrintl.~anQuota = 5 
IF NonProducer THEN PrintLoanQuota = 4 and NonPrinlLoanQuota = 5 
IF ExtlndivlMember THEN PrintLoanQuota = 4 and NonPrintLoanQuota = 5 
IF ExtlnstitnMember THEN PrintLoanQuota = I0 and NonPrintLoanQuota = 10 
IF MemberATC THEN PrintLoanQuota = 10 and NonPrintLoanQuota = 10 
IFRcader THEN PrintLoanQuota = 0 and NonPrintLoanQuota = 0 

Second, the value of an attribute may be constrained by another attribute. For example, the 
attributes DisposedDate and RetumDate of the Non-Reference Book are constrained in the 
following manner : 

DisposedDate >= ReturnDate. 

This means that a book cannot be disposed unless it has been returned earlier. Also, loan 
quota and loan count are similarly constrained in the following manner �9 

PrintLoanCount <= PrintLoanQuota 
NonPrintLoanCount <= NonPrintLoanQuota 

The above are constraint policies pertaining to object attributes; these policies do 
change. The meaning of  these policies is usually encoded into low-level computational 
statements often obscured by the complexity of  program code. Of course, constant 
parameters could be used; in which case, PrintLoanQuota and NonPrintLoanQuota could be 
stored in a parameter table and changed as and when the quota value for each of the member 
category changes. This solution is feasible but limited. For instance, the second kind of 
constraint which is also related to the first constraint cannot be represented using a 
parameter table. In fact, the second constraint has to be encoded within program logic, 
obscuring the definitions. Hence, to reduce the maintenance effort, we also need to consider 
the explicit representation of attribute value constraints as discussed above. 

7.3.  Condition Derivatives 

Another area of concern is in the factoring of derivatives of condition policies. For example, 
the condition BorrowedltemlsOverdue was Fast expressed as : 

BorrowedltemlsOverdue IF TotalFine > 0 
Alternatively, we may express BorrowedltemlsOverdue as : 

BorrowedltemlsOverdue IF (ReturnDate - DueDate) > 1 

That is, if an item is returned more than a day after the due date then the item is considered 
as overdue. The digit "1" on the right-hand side of the expression indicates a one-day grace 
period for the member. 

This policy (BorrowedltemlsOverdue) may be applied in various part of the system and 
possibly hidden in the complexity of the system, leading to difficulty in making changes to 
the policy when the need arises. However, if the definition of the policy is abstracted and 
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explicitly represented in a specification, then changes to the policy applies only at the 
policy definition rather than at where the policy occurs. 

I F a = b  1 
THEN ... 

O 

I F a = b  
THEN... 

e 

r 

IF c 
T H E N  . . .  

IF c 
THEN... 

o 

P o l i c y ( c : - a = b  ) 

Fig 7.3 Fig 7.3b 

Figure 7.3 illustrates the advantage of explicitly representing this type of condition 
derivative policies. In figure 7.3a, we have a policy (c IF a=b) which occurs at various parts 
of a system being represented as it is (a=b) in the system. Changing this policy would 
require the search for their occurrences and then making the required changes. However, in 
figure 7.3b, abstracting and explicitly representing the policy would confine the change only 
to the definition of the policy without affecting the entire system. Certainly, the latter 
approach is much better. 

Explicit representation of condition derivative policies is particularly useful in system 
simulations where the change in conditions, representing different situations, could be 
facilitated easily. It is also useful for the monitoring of systems particularly when the 
system is implemented in a new environment. For instance, the above OVERDUE policy 
may include the one-day grace period for the initial two months of implementation but 
would have to be removed once the period is over. In this case, since the change is a policy 
change, then only the meaning of the policy should be changed from 

BorrowedltemlsOverdue IF (RetumDate - DueDate) > 1 
to 

BorrowedltemlsOverdue IF (RetumDate - DueDate) > 0 
and the others should remain the same as before. 

7.4. Computational Derivatives 

A condition derivative policy is related to another kind of policy known as computational 
policy. The term computational indicates that the policy has an arithmetical flavour. Indeed, 
the policy connects object attributes and other computational policies via an arithmetical 
formula. While the condition derivative policy suggests that a certain condition is true, it is 
the computational policy that stipulates how the value is to be calculated. For instance, we 
could tell if a Non-Reference Book is overdue via the condition derivative policy but we 
need a computational policy to indicate the total fine due. The formula for the calculation is 
stated in a computational policy as follows : 

TotalFine = TotalDaysOverdue * 50. 
TotalDaysOverdue = ReturnDate - DueDate - 1 - TotalSundays - TotalPublicHolidays. 

ReturnDate and DueDate are attributes of the object Non-Reference Book; TotalSundays and 
TotalPublicHolidays could be pre-defined functions that return integer values relating to 
total Sundays and public holidays during the overdue period respectively. 
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The above computational policy not only makes clear the meaning of the formula but 
also brings together all related components associated with the computation. Since users 
generally express computational policies in such a declarative manner, representing them in 
a computer system in similar form would greatly enhance the maintenance effort. 

Consider, for instance, the formula for the calculation of fine : 
TotalFine = TotalDaysOverdue * 50. 
TotalDaysOverdue = RetumDate- DueDate - 1 - TotalSundays - TotalPublicHolidays. 

These formulae may be used in various parts of  a system. Hence, when there is a change in 
the definition of  the formulae, there is a need to first locate where they have been used and 
change them accordingly. To alleviate this problem, one may package the calculation within 
a single module so that changes to the formula could be limited to the module. Although 
this solution is possible, it falls short of making the definition explicit. What this solution 
has achieved is to transform the meaning of the policy into a set of  low-level program 
logic, albeit in a single module; often making the policies unrecognisable. 

Library System 

/ [  . . . . . . . . .  Computational Policies 

I l=l o' mo = * ,O / 
I I "" - I [ ' --"= ~ TotalDaysOverdue = RetumDate - DueDate - 1 I 

I . . . . . . . . .  I -  I ................................... I 

.. TotalF" TotalFfne/.. ~ 

F i g u r e  7 .4  : Explicit Representation of Computational Policies 

To illustrate, let's consider the previous computational policies on TotalFine. The 
TotalFine policy takes into consideration the fact that the library is not open on Sunday and 
Public holidays; that is why the calculation of the total fine amount does not include these 
days. Also, there is a one-day grace period given to the member for returning items that are 
due. Let's assume now that the library is open to members on Sundays I, then the policy 
has to be amended to : 

TotalDaysOverdue = RetumDate - DaeDate - 1 - TotalPublicHolidays. 

Furthermore, grace period may be revoked and if such a situation occurs, the policy will 
have to be changed to : 

TotalDaysOverdue = RetumDate - DueDate - TotalPublicHolidays. 

1 Highly possible in Singapore. 
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and if need be, the policy may he reduced to : 
TotalDaysOverdue = RetumDate - DueDate. 

Even the rate of fine may be changed from 50 cents to say $1 to encourage members to 
return the items on time. 

Although the changes may seem trivial, the efforts required to make the change may not 
be so using the conventional approach; and certainly the efforts would not be proportionate 
to the complexity of change if the policy is not represented explicitly as in figure 7.4. 

Based on the above, we can conclude that there is a need to factor out the derivation of 
condition and computational policies from the environment in which they are used. In so 
doing, we aim to enhance the maintenance of the policies when the need arises. 

8.  Conclusion 

This paper recognises the need to continuously provide for software system evolution 
throughout its entirety. It also suggests a framework upon which software system should be 
structured for easier maintenance. The framework is characterised by 3 elements : object 
model, functionalities and business policies. The paper concludes that these elements should 
be separated from one another and in particular the representation of business policies should 
be raised to a level where they can be explicitly recognised for changes when the business 
environment evolves. 
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