
A Knowledge Based Technique for the Process
Modelling of Information Systems: the Object

Life Cycle Diagram

Saimond Ip and Tony ttolden

Information Engineering Division
Department of Engineering, University of Cambridge

Trumpington Street, Cambridge CB2 1PZ, United Kingdom

Abstract. This paper presents a new technique for IS process/behavioural
modelling. Object Life Cycle is proposed as an extension of the conventional
entity life history diagram with a Petri-Net based formalism and an Event-
Precondition-Action process representation. A normalization approach for IS
process modelling is suggested and several OLC norms discussed. General-
ization and aggregation of OLCs are explored along with the concepts of a
substate and a component event. Coordination of the objects via event raising
is visualized by the Inter-Object Communication Model. Finally, we discuss
how OLCs relate with RUBRIC rules and data flow diagrams.

1 I n t r o d u c t i o n

As part of an ongoing project to develop a new generation of knowledge based IS
Methodology, a set of new techniques is developed for conceptual modelling, one of
which is the Object Life Cycle Diagram (OLC) for behavioural/process modelling.
We examine several major existing techniques and try to find out what constitutes
a good process model. The result is presented in section 2. With these discoveries
as our guide, OLC is developed and its basic constructs are presented in section 3.
Two important methodological features are also developed alongside OLC. Firstly,
a normalization approach is adopted in process modelling and several OLC normal
forms are discussed in section 4. Secondly, two abstraction principles, namely, gener-
alization and aggregation, are employed extensively in OLC diagrams and detailed
discussions of how they are used can be found in sections 5 and 6. A major ad-
vantage of OLCs is that, at a certain normal form, they can be easily implemented
and executed in a knowledge based systems environment. The last section briefly
examines this issue.

2 T o w a r d s a n I n t e g r a t e d E x t e n s i o n o f E x i s t i n g T e c h n i q u e s

Roughly speaking, IS Engineering involves three different parties: the end-user, the
programmer, and the modeller [7], with the last (who constructs the conceptual

165

model) acting as the bridge between the first two. First and foremost, a conceptual
model must be user.oriented, that is, it should be readily understood by an end-user
and conform to his way of thinking about the problem. It would also be advantageous
if the same techniques can be extended to model more implementational details
for the programmer. The ideal solution is therefore a technique which can offer
a continuous spectrum of forms, ranging from user-oriented high level models to
programmer-oriented implementatioual models. Last but not least, a good model
would lead itself to different abstraction principles.

What makes structured analysis techniques ([11] [15]) such as data flow diagrams so
widely used? It appears that data flow is a very natural way for end-users to visualise
a system and the diagrammatic representations are simple but very powerful. The
important abstraction principle of functional decomposition is also naturally built
into data flow diagrams and is often employed extensively. But their high level
descriptions cannot be readily extended to provide more implementation details.
Yet structured techniques is now so well established and popular that it is both
unwise (since it is proven to be a useful approach) and impractical (since so many
professionals are trained and so many specifications already written) to abandon
them altogether. Any new technique should be complementary to structured analysis
and integrate seamlessly with it.

Two other techniques have been applied fruitfully to IS analysis. First, there are
interesting attempts to utilize different kinds of Petri Nets (eg. [13] [26] [32] [34]
[36] [44]), most notably its successful integration with data flow and process mod-
els [13]. The main attraction of Petri Net is its ability to provide a continuous
spectrum of forms covering both highly abstract user-oriented models and actually
executable models with formal properties and implementation details. Several ab-
straction principles based on net refinements (which usually amounts to functional
decomposition) have also been employed in IS analysis and design. 1 Second, the
RUBRIC project[29] has demonstrated that business rule is a very useful paradigm
for IS Engineering. It recognises the explicit separation of organizational policy from
implementational details and is therefore geared towards the organization's way of
thinking. On the other hand, sufficiently well defined rules can be readily analysed
and are executable and, therefore, has a high degree of continuity. A rule is also
a completely independent unit and free from considerations of procedural control
~OWS.

It is observed that the only abstraction principle used in data flow diagrams and
Petri Nets is functional decomposition. Generalization and aggregation, often in the
form of "object-orientation", are now widely acknowledged as important and useful
abstraction principles and are employed extensively in programming languages[42]
[28] and databases[2]; but their use in ISE are so far confined to data modelling[45]
[20]. Their extensive use becomes a major motivation behind the development of
our new process model. The idea of an object is particularly appealing because
it entails the concept of encapsulation[28] which tends to give more modular and
re-usable designs. Entity Life History/Cycle (ELH/C) Diagram is a well-integrated

lExamples of net refinement principles are refinement of surroundings[2~, refinement by S- and
T-Sets[36], and refinement by primitives[l~.

166

part of traditional structured methodologies, such as SSADM[16], and our approach
is to extend it by giving it a new formalism and new concepts to become the Object
Life Cycle (OLC) Diagram. The final representation chosen is Petri-Net based with
additional rule-based constructs. This is made possible by the remarkable similarity
between an event-condition-action rule ([29] [10]; the Remora IS methodology also
employs similar constructs[35]):and a transition in a predicate/transition net with
its input predicates represented by the conditions and output predicates determined
by the rule's actions. The event of the rule is a special input predicate that will
be consumed by another "garbage-collection" transition if it is not instantaneously
used by the original transition. Finally, the integration of the OLC and data flow
diagrams (section 8) is facilitated by the distinction between the two different ways
which a process can involve any object, either to change its state (object flow) or
simply to read and use some of its information (data flow) [32] [44].

3 T h e O b j e c t L i fe C y c l e D i a g r a m (O L C)

An OLC is constructed for every object class defined in Object Relationship Model
(ORM) [20]. Figs. 1 & 2 give examples of different OLCs. Every object in a class
must be in a certain state. 2 The possible states of an object class are shown as
circles in an OLC. Every object class in ORM must also have "state" as one of its
attributes. There are two special states that are universial to all OLCs: never-exist
and cease-to-exist. A complete OLC must begin with the former and end with the
latter. An object can be transformed from one state to another by a process (shown
as a round-cornered box). A process may have more than one input and output
states. An input and an output state of a process can be the same. If they have
to be the same, a double-arrowed link is used. A double-lined and double-arrowed
link next to a process means that it can operate on an object at any state (except
never-exist and cease-to-exist) without changing the state.

The full definition of a process contains three distinct parts: event, precondition, and
action. When an event (shown as a box with darkened left edge) is raised to an object
at one of the input states of a corresponding process, the conditions are checked. If
all the conditions are met, the actions will be performed and the object transformed
to the output state of the process. A process can be triggered by more than one
event and several processes may have the same triggering event (although once an
event have triggered a particular process, it is retracted and cannot trigger further
processes). For example, in fig. 1, if ?pub (an instance of Publication) is at the state
borrowed or overdue and ?b (an instance of Borrower) at the state registered, the
process Return-Publication will be triggered by the event Pub-Returned to check
whether (?pub is-borrowed-by ?b). If the condition is met, the process will delete
all the facts related to ?pub being borrowed by ?b and assert that a publication has
been put back into the location ?loc. The state of ?pub will be changed to on-shelf.

2Similar to our approach, the Lifecycle diagram proposed by Shlaer[38] also uses events and
states. However, Schlaer includes all the dynamic responses to incoming events in the concept of a
s tate and does not put them in separate processes.

167

Fig. l(a) OLC for Publciation

/

Fig. l(b) OLC for Borrower

168

Ezternal object classes are simply shown as boxes. If a process belongs to more
than one object, then, in the context of the OLC of any one of the objects, it can
be linked to the appropriate external objects (shown as a link with a small box).
For example, in fig. l(a), the process Return-Publication involves objects of classes
Publication (the class of the OLC itself), Member, and Location. If a process simply
need to read-access the information about an external object, a simple link is used.
The information required from an external object and an event can be (optionally)
written on the link. For example, in fig. 2(a) the process Borrow-Publication needs
the information about the identity of the publication to be borrowed (?pub) from
the triggering event Request-to-Borrow, the state and the location of ?pub from
Publication, and the accessibility of the location of ?pub from Location.

The events that trigger processes to create an object from the state never-exist
(defaulted to be New) and to delete it into the state cease-to-exist are really raised
to the class of the object instead of the instance itself. For example, in fig. l(b) the
event New tells the object class Borrower to create an instance of itself with certain
parameters.

Where do events come from? Some are external events (eg. Request-to-Borrow in fig.
1) while others are internal ones (eg. Pub-Borrowed in fig. 2(c)) and are generated by
the action of a process. Hence, an external event might trigger off a chain of events.
But as far as an OLC is concerned, the source of an event is completely irrelevant.
This independence is clearly an advantage since the boundary of a system often
changes enormously. A process may also raise an event to the external environment.
Such events to and from the external forms the sole interface between the process
model and its environment.

Occasionally, a process has to be automatically triggered when all its preconditions
are met. For example, in fig. 2(c) the process Overdue should be triggered to warn
of an overdue whenever the due-date of the publication is today. This amounts to
a process with a triggering event permanently and repeatedly raised (shown simply
as a '~rl~UE ~ event), The process would simply be reduced to a normal forward
chaining rule, that is, the actions would be performed if all the preconditions become
true. The process would therefore only be triggered by some change in the system
and not repeatedly by the preconditions remaining true.

4 A N o r m a l i z a t i o n A p p r o a c h t o C o n c e p t u a l M o d e l l i n g

A norm (or a normal form) of any model is a particular form with some predefined
desirable properties. But a normalization approach is more than just using norms in
modelling. It is the provision of a spectrum of successively more restrictive norms.
It is argued in section 2 that the ability of a modelling technique to provide such a
spectrum (what we call the technique's continuity) is clearly advantageous. ~

SThr success of the normalization approach in the design of relational database [9] is at least a
good indication of its potential in process modelling. In fact, relational normal forms (in particular,
up to the third normal form) axe so successful that normalization becomes almost synonymous with
relational analysis.

169

Fig. l(a) OLC for Publciation

J

I

Fig. l(b) OLC for Borrower

170

A normalization approach is appropriate for process modelling because of the dif-
ferent benefits offered by the models at the two ends of the spectrum. Relatively
unnormalized forms are more abstract (easier to understand and to construct as
a kind of '~first draft"), less formal (requires less technical knowledge to use), and
usually conform better to the end-users' way of thinking. On the other hand, suc-
cessively more normalized forms contain more detailed information (valuable for
implementation and possibly automatic code-generation) and is more formal (allow
more formal analyses) and more similar to the way the IS is eventually implemented.
Norms can also act as a template to standardize a model by enforcing specific ar-
rangements of some model information. The beauty of the normalization approach
is that no one is forced to go through a rigid set of norms. Experienced analysts (or
even end-users) might skip the "early" unnormalized forms and increasingly model
directly in more normalized forms. Modellers might not want to "go all the way"
and use all the norms. They might find some norms too detailed to be used for con-
ceptual modelling and others with properties unnecessary for their circumstances.
Everyone just uses the norms they find useful and convenient.

The five norms of OLC are given in table 1. The encapsulation norm is based on
the classification norm (ie. a model in the encapsulation norm must also be in the
classification norm) and all the other three norms are based on the encapsulation
norm. These last three norms are basically independent of each other. The list is
not meant to be exhaustive and new norms might be developed as the need arises.
It should also be pointed out that the encapsulation norm is regarded as the corner
stone of our process model and any OLC should eventually be transformed into
this norm while the last three norms are relatively optional and are useful only for
specific reasons.

Table 1 Norms of OLC

The Classification Norm
D e f i n i t i o n : An OLC is in the Classification Norm if and only if each process and each
event belongs to one and only one object class.

Example: OLGs in fig. 1 are unnormalized since Borrow-Publication and Return-Publication
belongs to two object classes but fig. 2 contains OLCs in the classification norm. Return-
Publication of Borrower in fig. 2(a) and Return-Publication of Publication in fig. 2(c) are
now two different processes.

Rationale: This norm forces the modeller to assign each process (and hence its triggering
events) to an object class and hence makes all processes subordinate to objects and the
abstraction of classification uniformly endorsed. Unnormalized forms allow assignment
decisions to be delayed and recorded explicitly (possibly for future revisions).

The Encapsulation Norm
Definition: An OLC is in the Encapsulation Norm if and only if each process can only
modify the object instance to which its triggering event is raised.

Example: Borrow-Publication in fig. 1 is broken into Borrow-Publication of Borrower,
Borrow-Publication of Pub, and Remove-Pub of Location (not shown) in fig. 2 (all OLCs
in encapsulation norm).

171

Borrow.Publication of Borrower
Event (Request-to-Bonvw TO 7pub)
Precondition
(s~tc ?pub on-shelf)
(locatcd-in ?pub ?lot)
(accessibility ?loc yes)
(max-hum-of-pub TO 7max)
(cur-hum-of-pub ?b 7cur)
Action
(add (borrows TO ?pub))
(modify (cur-hum-of-pub ?b ?cur+l))
(raisr (Pub.Borrowed 7pub)

II~llmlt llLBorr
Event TRUE
Precondition
(max-hum-of pub 7b max)
(cur hum of pub To ?cur)
(< ?cur ?max)
Action NIL

(Pub Rmov~ ?lot))
IF (equal ?max ?cur)
THEN (next-gate up-to-limiO I ~ ~
ELSE (next state registered)

. Reques~ T) 0~162 7lOC) (-at'/2~-~ $ ~

Fig. 2(a) The Processes Borrow-Publication & Delimit of Borrower
in Clas.~fication and Encapsulation Norm

"1
Borrow-Failure of Borrower /
Event (Request to-Borrow To ?pub) /
Precondition |
(NOT (state ?pub on-shelf)) I
Action J
(ralse event (Failur~ to Borrow External 7pub)[

Fig 2('0) The event RequesttoBorrow triggering an alternative Process

172

Rat iona le : Modular style of representation enforced by encapsulation or information hid-
ing [28] [42]. A process can only modify another object by raising events to it; hence the
triggering events to an object form its only interface with the rest of the system. The
process model becomes a set of independent objects communicating via events.

The Weak and The Strong ORM Norms
Defini t ions: An OLC of an object class A is in the Weak ORM Norm if and only if an
object to which one of its processes can raise an event must be: 1) an instance of an object
class (or the object class itself) directly related to A in the ORM or 2) given to the process
as an argument of its triggering event. The OLC will be in Strong ORM Norm if and only
if it is in the weak ORM norm and each process can only read-access objects of the above
two categories/27].

Examples : Let us assume that in the ORM Borrower is only related to Pubhcation which is
also related to Location. Borrow-Publication of Borrower in fig. 2(a) wants to raise an event
Pub-Removed to Location and, in the weak ORM norm of fig. 3, this job is delegated to
Borrow-Publication of Publication. Fig. 4 shows how strong ORM norm causes additional
events to be raised for accessing an indirectly related object (note the final event Loc-info
raised at the other end of the access path to pass back the information to the original
enquiring object Borrower).

Ra t iona le : Further enhance information hiding and decoupling of control by narrowing
the accessibility of an object to its related objects in the ORM, cf. the inter-object com-
munication model in section 7. If any process (or data structure) of an object class A is
modified, one needs only to consider its effect on related objects in the ORM and objects
taking A as an event argument. Standardization in the decomposition of event chains is
also enforced along a path on the ORM. The strong ORM might hinder readability due to
the large number of events being raised.

The Discrete Time Norm
Defini t ion: An OLC is in the Discrete Time Norm if and only if each of its processes has
no duration at all.

Example : Fig. 7 shows how part of an OLC can be transformed into the discrete time
norm. Any non-discrete time elements are pushed into the states of the OLC and/or to
other objects (in this case the state potentially-deleted and External).

Rat iona le : This norm ensures the independence of a process and its sole access to the
relevant information. It tackles the problem of I /O uncohesiveness [1] and forces all com-
plicated (and asynchronous) interactions among processes to be be modelled explicitly. It
also makes an OLC executable (section 9).

The Explicit-Condition Norm
Defini t ion: An OLC is in the Explicit-Condition Norm if and only if each of its processes
has a unique output state.

Example : The Explicit-Condition norm of Borrow-Publication in fig. 2(a) is given in fig.
5.

Rat iona le : To explicitly model the conditions for choosing the output states as the pre-
conditions of the process.

173

Borrow.Publlcstion or Publication
Event (pub-Borrowed ?pub)
Precondition
(today-date Today-date ?date)
(b-pcriod '/pub ?b-pcrlod)
Aetlon (add (due-dltc ?pub ?dtte+?b-pcfiod)

Return-Publication of Publication
Event (Pub-Rcturncd ?pub)
Precondition
(iz-borrowcd-by ?pub 7"0)
0ocat~-in ?pub 71oc)
Action
(deltic (is-borrowed-by ?pub ?b)

Process] (d~-d,,~ ?p~ ?))
,,, I . (~ c n t (Pub.pro-in ?lot)
Overdue of Publication [(pub.Rcmrnexl ?b))
Event TRUE [
Precondition }
(today-dite Today-date ?date)]
(du~-datr ?pub ?date) [|Pub-B wnd I
A~lou I . ~ " ~ (

Fig. 2(c) Part of the OLC of Publication in the
Encapsulation (& Classification) Norm

Borrow-Publlcation of Borrower
Event (Request-to-Borrow ?b 7pub)
Precondition
(state ?pub on-thd 0
0ocatvd-in 7pub ?lot:)
(accessibility ?loc yes)
(max-num-of-pub ?b ?max)
(cur-num-of.pub 7b ?cur)
Action
(add (borrows '?b ?pub))
(modify (cur-hum-of-pub ?b 2cur+l))
(raise,-~vent (Pub-Borrowed ?pub))
IF (equal ?max ?cur)
THEN (next-stare up-W-llmi 0
ELSE (ncxt-statc ttgi*tcrcd)

Borrow-Publication of Publication
Event (Pub-Borrowed ?pub)
Precondition
(today-date Today-date ?dam)
(b-pcrlod 7pub 7b-period)
Action
ouid (due-date ?pub ?date+?b-pcrlod))
(ndsc.-cvcm (Pub-Re-moved 71oc))

Co) Modified part of OLC of Publication

(a) Modified part of OLC of Borrower

Fig. 3 Borrower and Publication in Weak ORM Norm

174

Ask-for.Loc of Borrower
Event (Request-to-Borrow To ?pub)
Precondition (state ?pub on-shelf)
Action (mist-event (Check-loc ?pub))

/ \
(state)

(?pub) Oocated-~. ?lot)
I \

Borrow [

T

Process

Borrow-Publication of Borrower
Event (Loc-info .'To ~ ?~r~ss)
Precondition
(equ~ ?._ccess yes)
(max-hum-of-pub 7b ~ax)
(cur-hum-of-pub To 7cur)
Action
(add (borrows 7b ?pub))
(modify (cur-num-of-l~b 7b ?cur+l))
(raise-event (Pub-Borrowed ?pub))
IF (equal 7max 7cur)
THEN (next-state up-m-Limit)
EI.~E (next-state rcgis'te~)

(a) Modified Part of OLC of Borrower

Pm=ss]
Get.Loc.Info of.Publication
Event (Check-Loc ?pub ?b)
Precondition
(located-in ?pub ?loc)
(accessibLlhy ?loc ?toess)
Action
(raise-event 0.~-Info ?b ?pub ?access))

l_~,_',on [

/
,Tb /

(b) Modified Part of OLC of Publication

Fig. 4 0 L C s in Strong ORM Norm

175

5 Generalization of OLCs

The idea behind generalization 4 is to group similar objects together in a represen-
tation with their common properties. Classification is therefore one form of gener-
alization. This section, however, focuses on how classes can be generalized to give a
concise and meaningful representation of the process model. Any object class (the
superclass) can be specialized to form a subclass. This specialization can be thought
of as a restriction in the structure and behaviour of the superclass. By definition,
any member of the subclass must also belong to the superclass. The subclass inherits
both the structural and the behavioural information (the entire OLC including all
the processes, events, and states) from its superclass. A subclass can modify the
behaviour of its superclass in two different waysS: either by adding and defining new
states, events, and processes or by re-defining processes.

The granularity of inheritance has long been recognized as an important factor in the
usefulness of any generalisation/specialization relationships[42]. Inheritance will be
much more powerful if incremental additions can be made to a process. OLC has a
finer granularity than conventional object-oriented programming languages since an
event can be raised to different processes of the same object and any modifications
can be limited to only some of these (and only the necessary parts of the process,
including i/o states, preconditions, or actions, are changed). There are a number
of attempts in object oriented languages to provide incremental specialization of
functions[42], most notably the declarative method combination (eg. the division
of a method into before/after/main parts in Flavors) and the use of commands like
"Super" in Loops which invokes the method of a superclass in a local method that
re-defines it. The separation of processes" and states allows specialization of OLCs
to effectively subsume these two schemes. Firstly, by re-defining the input and/or
output states of a "main" process, an arbitrary number of processes can be added
both before or after it (or in any other topology) ,possibly with the triggering event
raised to preceding processes instead. Secondly, the "Super" invoking command can
be achieved by simply having the original process intact (except for input/output
states). Any additional behaviour can be added on with the triggering event pos-
sibly raised to a different process. For example, in fig. 9(d) the process deletion of
privileged borrower is inherited unchanged from the OLC of borrower. But an addi-
tional condition (check-address) is checked (with a new state mid-check added) and
an extra action (send-farewell-letter) performed (with another state to-send-farewell
introduced).

Multiple inheritance is so useful that most object oriented systems incorporate it in
various degrees. OLC is rather flexible and can be associated with many different
strategies of conflict resolution. For demonstration purpose, we have chosen a scheme
that gives precedence to subclasses over superclasses and to different superclasses

4 [22] gives a more detailed discussion of abstraction principles, including the concepts of a mixin
and non-excludlng-subclass norm in generalization, the concept of a perspective in aggregation, and
examples of functional decomposition, as applied to OLCs.

~A third type of modification that excludes the processes or states of a superclass is discussed
in [2~1.

176

(c) Discret~ (and Encapsulated) Norms

F] f

, ~ , ~ , , (~ 1 ,

[precondltlon [[~ ~t~r J l
(NOT (lives-in ?b Cambridge))

I j I I
adding new conditions adding new actions

(d) Incremental Specialization for Privileged-Borrower
Fig. 7The Process Deletion in OLC of Borrowex

Fig. ~ OLC for Member in Encapsulated Norm

177

according to a predefined priority list (with warning issued to the designer). The
result is similar to Loops[42] and is often known as a "left-right depth first up-to-
joint (and including joint) ~ selection strategy. How do we combine the OLCs of
the different supercla.sses to form the OLC of the subclass? This is not a straight
forward task and requires in-depth knowledge of the behavioural interaction between
the superclasses. Typically it is only possible to trigger a process inherited from a
superclass A when the object is at certain particular states inherited from another
superclass B. Sometimes it is even necessary to decompose a state inherited from
B to differentiate whether certain processes from A can be triggered. We introduce
the concept of a substale 7 to deal with such circumstances.

State-1 of a subclass is defined to be a substate of state-2 of its superclass if and
only if any process that can be triggered from state-2 (as its input state) can also
be triggered from state-1. We also say that state-2 is the superstate of state-1. A
state can have many substates and/or superstates. Needless to say, a process with
a superstate as its output state must, in the subclass, select one or more of its
substates as a substitute s. Fig. 9 gives an example of how the concept of substate
is used to combine the OLCs of Member-Borrower's two superclasses Member (fig.
8) and Borrower. It is observed that processes of Borrower triggered from the state
registered are always applicable at the state resident of Member but only sometimes
applicable from the state left. The solution is to split left into two substates just-left
and extended and to declare extended and resident to be substates of registered. The
processes governing the transitions between just-left and extended (Extension and
Extension-Expire) have to be defined. Additional events and processes operating on
these new substates can also be introduced. Note that there is a potential conflict
between the two processes Amend inherited from different superclasses 9 operating
on the state resident of Member-Borrower. But the substate extended can only be
operated on by the Amend inherited from Borrower.

6 A g g r e g a t i o n o f O L C s

Aggregation is used extensively in programming languages (eg. Loops[42]) and in
object oriented database systems[2] but most investigations so far concentrate on
the structural relationships between an object and its components. This section
looks at its use in behavioural modelling. But what are the benefits of using so
many (and, some may add, so complicated) abstraction principles? We would like
to reiterate our opinion that the usefulness of any abstraction can be seen from
three different views[20]: 1) the representational view that allows us to model the

SLoops' strategy is left-right depth first up-to-joint but excluding joint.

ZThis "substate of specialization" must not be confused with the more commonly used substates
and subprocesses in the functional decomposition of a process. Another very useful concept to tackle
these problems is "perspective" [22].

8A process of the superclass may always leave a superstate unchanged in which case an instance
of the subclass will also remain unchanged at whichever substate it happens to be at.

sir the two processes axe triggered by events of different names, they can co-exist. But in this
case, they axe triggered by events of the same name and a choice has to be made between the two.

178

Req~z-m-

~[Requcst-to-An~d resident & extended = substazc of registered
just-left & ex~ndcd = substaZc of]cf!

Fig. ~ Multiple Inheritance using Substatc in the OLC for
Member-Borrower (subclass o[Member and Borrowel)

]: ;~. ! 0 OLC of Project-Report

179

(a) OLC of Recommendation

Finlsh-Flnailse of Project-Report
Event (Finish 7p-r)
Precondition
(has-rec ?p-r 7r~)
(has-body 7p-r 7p-r-body)
Action
(raisr

(Finish 7no)
(Finish ?p-r-body))

Refine or ProJec(-Report
Event CRef'mem~mt ?p-r ?x 7y)
Precondition
(has-rq~: ?p-r 7rec)
(has-body ?p-r ?p-r-body)
Action
(raise-compone~a-event

(Refmemmt . ' ~ ?x)
CRefmme~t .~-r-body 7y))

Amend or Project-Report
Event (&mend ?p-r ?x)
Precondition
(has-rec ?p-r 7rr.c)
Action
(raise-coml~nent-cvent

(Rcl'mem~t ?tee ?x))

Approval of Project-Report
Event (Approve 7p-r ?exco)
Precondition
(has-roe ?p-r ?re.c)
(today-date Today-date ?today-date)
Action
(ra~n-component-event

(Approve ?rec))
(add (has-date ?p-r ?x))

(c) Definitions of Processes of Project-Report that raises component
events (to Recommendation and P-R-Body)

Fig. 11 OLCs of Recommendation and P-R-Body as Components of Project-Report

180

real world more closely and naturally; 2) the methodological view which sees an
aggregate as a temporary "abbreviation" for further detailed expansion; and 3) the
documentational view that presents relevant information of various degrees of details
to users with different needs.

The use of complex objects in our data model ORM is reported in [20]. For our
present purpose, it is suffice to know that a complex object class may contain many
component object classes which may relate with each other. The example used here
is the complex object class Project Report which has-rec an instance of Recommen-
dation class and has-body an instance of P-R-Body which in turn may has-section
one or many P-R-Section. As far as OLCs are concerned, a complex object is a sort of
"supersystem" governing the behaviour of its subsystems, ie. its component objects.
The current state of a complex object should indicate the availability of certain pro-
cesses both of the complex object itself and of some of its components. Hence, when
a process is performed on the complex object (and thereby attempting to change
its state), some of the states of its components have to be changed simultaneously.
Moreover, a process of the complex object often requires several simultaneous sub-
processes of its components to achieve the desired effects. We propose the concept
of a component even~ as the means to accomodate these characteristics.

The independent rule-like characteristic of an OLC process means that, under normal
circumstances, after the process has raised an event, it would simply proceed to finish
other actions and finally the object instance would be transformed to the output
state 1~ But if a complex object raises component events to its component objects,
the complex object instance can only proceed to the output state of the process
when allthe component events are "completely consumed". A component event is
completely consumed when either 1) it 'does not trigger any process at all and is
therefore deleted or 2) the component object instance is transformed to the output
state of the process it triggers. Therefore, when a complex object reach the output
state of a process, we can be certain that all the appropriate "subprocesses" are
finished and corresponding state changes achieved. A complex object can, however,
raise "ordinary" events to any of its components if the desired effect of component
events is not needed. It is also noted that, in the weak ORM norm, a complex object
can only raise component events to its direct components.

A rather detailed example of how the OLCs of the complex object Project-Report
interact with the OLCs of its components (and with each other) is given in figs. 10
and 11. For instance, when the external event Finish is raised to a Project-Report
(when it is at the being-finalised state), it triggers the process Finish-Finalise which
raises two component events (both called Finish too!) to the Project-Report's Rec
(Recommendation) and P-R-Body. The Project-Report can only proceed to the state
report-ready when the processes triggered by the two Finish events are completed
and both its Rec and P-R-Body have proceeded to their own ready states. It is
interesting to observe that some of the processes of Project-Report, for example,
Refine-Objective and Begin-Finalise, do not involve any of its components at all.

1~ contrast sharply with the idea of a "method" in conventional object oriented programming
language like Smalltalk-80. When a method send a message, it has to wait for an object to be
returned before it can proceed.

181

These can be thought of as part of the emergent behaviour of a complex object.

7 The Inter-Object Communication Model (IOCM)

The OLC of an object class is the formalization of the typical behaviour of in-
stances in the class. All instances (of all object classes) are assumed to operate
independently, concurrently, and asynchronously and any coordinations and syn-
chronizations should be modelled explicitly through the event raising mechanism.
In order to help us to visualize these interactions, an infer.object communication
model (IOCM) can be constructed[38]. It is simply a diagram with all the object
classes joined by directional links labelled with the events raised. Fig. 12 shows
part of the IOCM for the examples discussed in this paper. All specialization re-
lationships should also be included in the IOCM because all events raised by/to a
superclass are also raised by/to its subclasses. Component events raised by a com-
plex object to its components is specially marked as such (in this case with dotted
links). Following [38], we think it is sometimes useful to organize the large num-
ber of object classes (possibly dozens) into layers to facilitate the understanding of
a IOCM. A set of very rough and informal guidelines is used. Examples include:
an object usually receives guidance, requests, and coordinations from the objects
above it (with complex objects always above their components), objects of a higher
layer have more interaction with the "External", and the lowest layer consists of
completely passive and unintelligent objects.

8 O L C a n d R e l a t e d P r o c e s s M o d e l l i n g T e c h n i q u e s

This section will examine how OLC relates with other process modelling techniques,
in particular, the RUBRIC project and conventional structured analysis. The dy-
namic rules of the process model of RUBRIC[29] is basically equivalent to a process
in OLC with the same division into trigger (= OLC's event), precondition, and mes-
sage (= action). In fact, OLC can be seen as an attempt to organize the vast amount
of rules in a process model along the concept of an encapsulated object and to use a
Net-based formalism to visualize their interactions. Some static RUBRIC rules are
captured in our data model ORM while others are modelled as an OLC process with
a "TRUE" event as explained in section 3 (eg. a constraint rule can be represented
by such a "TRUE" event rule with warning actions).

OLC is seen as complementary to the use of data flow diagrams (DFD)[ll] with the
latter either developed in parallel with or act as the source specifications for the
former. Most constructs in DFD can be represented accurately in OLC. A process
in DFD can initially be modelled as an OLC process belonging to many different
object classes in unnormalized forms and eventually be classified and attached to
one specific object class (often one of its input data flow) 11. An input data flow

l lA data store is an object class with all its roles and attributes in ORM. All external entities
are grouped into the "External" in OLC; though it might of course be broken up if necessary.

182

[E-X-T-E-R-N-A-L l
Requestqo-Amend I Pub-Retumedl

!

Request-to-Borrow

1 ~ , Loc-lnfo

~ ~ Chcck-Loc , is-a !

Pub-Returned

Pub-Borrowed

Priv-Pub-Borrowed

i ~"-"~ I

Pul~Put.in
Pub-Rcmovod

] Vote-Result
w0//

I "

Writer-Released Vote-R~uh !
Writer-appoimed Vote

j x

| E-X-T-E-R-N-A-L l
Vote / Objective-Refined

/ Objective-Completely-Refined
[Pr~176 ~ ~r l~fm~-ment FL'fish

Y
M,mb~:.,- }
Writer-of-]

[Project-Report J
/ \

P Finish
Finish Approve

Ref'men~ent �9 Refmen~mt / \

"X
I M = ~ - " - I
| Voting-Member-of- [
] Proje, t-C, ro~ !

Fig. 12 Inter-Object Communication Model for Parts of the Case Study

183

to a process can be an "object flow", that is, a transformation of the state of the
object if it is from a data store (especially the one that the OLC process belongs), a
modification of the object's roles/attributes (where there will be both an input from
and an output to the data store), or a precondition to the OLC process. Output
flows to other data stores (that the process does not attach) signifies an attempt
to change other object classes and should be normalized and broken up. A data
flow from one process to another can either be a precondition (involving the former
associated object class) for the latter or a triggering event raised by the former to
the latter. Finally, functional decomposition of a DFD may be modelled in OLCs as
the breaking up of processes in their normalization, processes of complex objects and
subprocess of their component objects (triggered by component events), or simply
as the functional decomposition of processes into small subcycles within an OLC 12.

9 C o n c l u s i o n

It is believed that OLC can facihtate rapid prototyping by being transformed into
a semi-executable conceptual model. With heavy designer interaction, an OLC in
discrete-time norm can be represented by forward-chaining rules (with an event being
a special left hand side condition to be deleted by a garbage-collection rule if it is not
immediately consumed by a process rule). Such a model can be directly executed
with sample object instances and data. As completely independent units, OLCs can
be individually tested before integrated into larger systems. Powerful interactive
facilities should be provided for browsing and experimenting with various scenarios
to detect any errors and unintended behaviour. We are experimenting with ART[8]
as the prototyping environment.

We set out to develop an user-oriented behavioural modelling technique that facili-
tates the use of abstraction, provides a continuous spectrum to different parties and
is fully integrated with conventional structured techniques. We then demonstrated
how a normalization approach for OLC can provide the spectrum, how generalization
and aggregation can be applied meaningfully to OLCs, how OLCs can be simulated
in a knowledge based environment, and finally how data flow diagrams integrate
with OLCs. We are working on a prototype knowledge based support system on
a Symbolics Lisp Machine for the construction of OLCs (and ORMs). A graphical
editor is being built using Maxim[17] and translated into an ART[8] knowledge base.
These are then validated and consolidated with other models. We are experimenting
the techniques on a number of case studies. Examples in this paper are mainly from
a case study involving a nation wide campaigning body which runs an information
centre and has regular reports and publications.

A c k n o w l e d g e m e n t

We are grateful to Prof P. Loucopoulos and his colleagues at the Information Systems
Group, Department of Computation, UMIST, UK, for discussions and the exchange
of research information.

12We do not pay much attention to this important aspect of OLC modelling because there have
already been a lot of investigations, especially as related to Petri Net-based models [13] [36] [26].

184

R e f e r e n c e s

[1] ALABISO, B. "Transformation of Data Flow Analysis Models to Object Ori-
ented Design". OOPSLA '88 Proceedings, pp.335-353, Sept 1988.

[2] BANERJEE, J. et al. "Data Model Issues for Object-Oriented Applications".
A CM Transactions on Office Information Systems, 5(1):3-26, Jan 1987.

[3] BOBROW, D. G. et al. "CommonLoops: Merging Lisp and Object-Oriented
Programming". OOPSLA '86 Proceedings, pp.17-29, Sept 1986.

[4] BOOCH, G. "Object-Oriented Development". IEEE Transactions on Software
Engineering, SF_,-12(2):211-221, Feb 1986.

[5] BRUNO, G. and BALSAMO, A. "Petri Net-Based Object-Oriented Modelling of
Distributed Systems". OOPSLA '86 Proceedings, pp.284-293, Sept 1986.

[6] CAUVET, C., PROIX, C. and ROLLAND, C. "Information Systems Design: An
Expert System Approach". In MEERSMAN, P~. A., (eds), Artificial Intelligence
in Databases and Information Systems (DS-3), North-Holland, 1990.

[7] CHEUN(~, L., IF, S. and HOLDEN, T. "A Survey of AI Impacts on Information
Systems Engineering". Information and Software Technology, To be Published.

[8] CLAYTON, B. D. Inference ART: Programmers' Tutorial, Inference Corpora-
tion, 1987.

[9] CODD, E. F. "A Relational Model of Data for Large Shared Data Banks".
Communications of A CM, 13, 1970.

[10] DAYAL, U. et al. "Rules are Objects Too: A Knowledge Model for an Ac-
tive Object-Oriented Database System". Lecture Notes in Computer Science,
334:129-143, Springer-Verlag, 1988.

[11] DE MARCO, T. Structured Analysis and System Specification, Yourdon Press,
New York, 1978.

[12] ESSlNK, L. J. B. and ERHART, W. J. "Object Modelling and System Dynamics
in the Conceptualization Stages of Information Systems Development". Object
Oriented Approach in Information Systems, pp.89-116, Holland, 1991.

[13] FALQUET, G. et al. "Concept Integration as an Approach to Information Sys-
tems Design". In OLLE T. W. et al., (eds), Computerized Assistance During
the Information Systems Life Cycle, North-Holland, 1988.

[14] FRANCE, R. B. and DOCKER, T. W. G. "Formal Specification using Struc-
tured Systems Analysis". Lecture Notes in Computer Science, 387:293-310,
Springer-Verlag, 1989.

[15] GANE, C. and SARSON, T. Structured Systems Analysis: Tools and Techniques,
Prentice-Hall, Euglewood Cliffs, N J, 1986.

185

[16] HARES, J. S. SSADMfor the Advanced Practitioner, Wiley, 1990.

[17] HOLDEN, T., WILHELMIJ, P. W. and APPLEBu K. A. "Object-Oriented De-
sign of Visual Software Using MAXIM". European Conference on ~he Practical
Applications of Lisp, 1989.

[18] HOLDEN, T., CHEUNG, L. and IP, S. "Intelligent Support for the Information
System Design Process". European ART User.group Conference, Rome, 1990.

[19] HULL, M. E. et at. "Object-Oriented Design, Jackson System Development
(JSD) Specifications and Concurrency". Software Engineering Journal, pp.79--
86, March 1989.

[20] IF, S., CHEUNO, L. and HOLDEN, T. "Complex Objects in Knowledge Based
Requirement Engineering". 6th Knowledge-Based Software Engineering Confer-
ence, Syracuse, New York, Sep 1991.

[21] IP, S., CHEUNG, L. and HOLDEN, T. "A Knowledge Based Requirement Engi-
neering Assistant". BCS CASE on Trial H Conference, Cambridge, Mar 1992.

[22] IF, S. and HOLDEN, T. "Abstraction and Object Life Cycles in Process Mod-
elling', submitted to Journal of Information Systems.

[23] IP, S. and HOLDEN, T. "A Knowledge Assistant for the Design of Information
Systems". In DEEN, S. M. and THOMAS, G. P., editors, Data and Knowledge
Base Integration, Proceedings of the Working Conference on Data and Knowl-
edge Base Integration held at the University of Keele, England on October 4-5,
I989, Pitman, 1990.

[24] JACOBSON, I. "Object Oriented Development in an Industrial Environment".
OOPSLA '87 Proceedings, pp.183-191, Oct 1987.

[25] KARAKOSTAS, V. "Modelling and Maintenance Software Systems at the Tele-
ological Level". Software Maintenance: Research and Practice, 2:47-59, 1990.

[26] LAUSEN, G. "Conceptual Modelling Based On Net Refinements". Database
Semantics (DS-I), pp.41-57, North Holland, 1986.

[27] LIEBERHERI% K. et at. "Object-Oriented Programming: An Objective Sense of
Style". OOPSLA '88 Proceedings, pp.323-334, Sept 1988.

[28] LOCKEMANN, P. C. "Object-Oriented Information Management". Decision
Support Systems, 5:79-102, 1989.

[29] LOUCOPOULOS, P. "Improving Information System Development and Evolu-
tion Using a Rule-Based Paradigm". Software Engineering Journal, pp.259-267,
Sept 1989.

[30] LOUCOI'OULOS, P. "The Process Model ofTEMPORA'. UMIST, U.K., 1991.

[31] MANFREDI, F. et al. "An Object-Oriented Approach to the System Analysis".
Lecture Notes in Computer Science, 387:395-410, Springer-Verlag, 1989.

186

[32] OBERQUELLE, H. "Human-Machine Interaction and Role/Function/Action-
Nets". Lecture Notes in Computer Science, 255:171-190, Springer-Yerlag, 1986.

[33] PALASKAS, Z. and LOUCOPOULOS, P. "AMORE: The RUBRIC Implementa-
tion Environment". UMIST, U.K., 1989.

[34] RICHTER, G. and DURCHHOLZ, R. "IML-Inscribed High-Level Petri Nets".
Information Systems Design Methodologies: A Comparative Review, pp.335-
368, North Holland, 1982.

[35] ROLLAND, C. and RICHARD, C. "The REMORA Methodology for Information
Systems Design and Management". Information Systems Design Methodologies:
A Comparative Review, pp.335-368, North Holland, 1982.

[36] R~ISIG, W. "Petri Nets in Software Engineering". Lecture Notes in Computer
Science, 255:63-95, Springer-Verlag, 1986.

[37] SERNADAS, C. et al. "In-the-large Object-Oriented Design of Information Sys-
tems". Object Oriented Approach in Information Systems, pp.209-232, Holland,
1991.

[38] SHLAER, S. and MELLOR, S. J. "An Object-Oriented Approach to Domain
Analysis". A CM SIGSOFT Software Engineering Notes, 14(5):66-77, Jul 1989.

[39] SIBERTIN-BLANC, C. "Co-operative Objects for the Conceptual Modelling of
Organizational Information Systems". Object Oriented Approach in Information
Systems, pp.297-321, Holland, 1991.

[40] SMITH, J. M. and SMITH, D. C. P. "Database Abstractions: Aggregation and
Generalization". ACM Transactions on Database Systems, 2(2):105-133, Jun
1977.

[41] SNYDER, A. "Encapsulation and Inheritance in Object-Oriented Programming
Languages". OOPSLA '86 Proceedings, pp.38-45, Sept 1986.

[42] STEFIK, M. and BOBROW, D. G. "Object-Oriented Programming: Themes
and Variations". The AI Magazine, Winter 1986.

[43] STROUSTRUP, B. "What is Object-Oriented Programming?"

[44] STUDER, R. and HORNDASCH, A. "Modelling Static and Dynamic Aspects of
Information Systems". Database Semantics (DS-1), pp.13-26, North Holland,
1986.

[45] THEODOULIDIS, C., WANGLER, B. and LOUCOPOULOS, P. "Requirements
Specification in TEMPORA". Presented at Conference CAiSE'90, Stockholm,
May 1990.

[46] Voss, K. "Nets in Office Automation". Lecture Notes in Computer Science,
255:234-257, Springer-Verlag, 1986.

