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Abstract. The paper describes the architectural principles of a database CASE tool 
that allows more flexible design strategies than those of traditional tools that propose 
oversimplistic draw-and-generate approaches. Providing this flexibility is based on 
four basic principles, namely a unique generic specification model that allows the 
definition of a large variety of specific design products, transformational functions as 
major database design tools, a toolbox architecture, allowing a maximal independence 
between functions, and multiple model definition through parametrization of the unique 
generic model. These architectural characteristics themselves derive from two 
fundamental paradigms, namely the process-product-requirements approach to model 
design behaviours, and the transformational approach to system design. 

K e y w o r d s  :design modeling, system design, database design, transformational 
approach, CASE tools. 

1. INTRODUCTION 
Most current database CASE tools provide four major families of functions for their users, 
namely conceptual specification entry, conceptual specification validation, reporting and 
executable code generation. They concentrate mainly on conceptual specification acquisition, 
leaving the problem of producing efficient physical schemas practically unsolved. They are 
based on simple and rigid strategies that give the illusion that database design is a straighforward 
and deterministic process once the conceptual schema has been developed. Indeed, many CASE 
tools propose a draw-and-generate strategy that leads to poor and sometimes unreadable DBMS 
schemas. More sophisticated strategies that would allow the integration of more realistic 
requirements (time efficiency, space efficiency, distribution, privacy, modularity, hardware 
constraints, etc) are impossible. That leads designers to two unacceptable practices : integrating 
these requirements into the conceptual schema, or modifying the generated DDL text with a text 
processor. 

TRAMIS is an experimental CASE tool that proposes a different approach through which both 
novice and skilled designers can produce database schemas according to their own strategies, 
ranging from draw-and-generate to fine-tuning. In particular, it offers its users both a high degree 
of flexibility, and the possibility to restrict it when needed. 

The paper describes the architectural principles of TRAMIS. It describes the four basic 
principles that give it this flexibility, namely a unique generic specification model that allows 
the definition of a large variety of specific design products, transformational functions as major 
database design tools, a toolbox architecture, allowing maximal independence between functions, 
and multiple model definition through parametrization of the unique generic model. These 
architectural characteristics derive from two fundamental paradigms, namely the process-product- 
requirements model of design behaviour, and the transformational approach to system design. 
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However, the paper will not concentrate on database design methods in particular, nor on the 
detailed description of a specific CASE tool. 

The paper is organized as follows. Section 2 develops the concept of design modeling, i.e. the 
description o f  how designers behave or should behave. Section 3 analyzes some important 
aspects of the transformational approach applied to database design. The other sections develop 
the four architectural principles of TRAMIS, namely the unique specification model (section 4), 
the transformation functions (section 5), the functions and architecture of the CASE tool (section 
6), and the model specialization as a tool to define the skeleton of specific strategies (section 7). 

2. M O D E L I N G  T H E  D E S I G N  A C T I V I T Y  

The design of  any technical system is a complex task that is broken down into smaller design 
activities in such a way that each of them can be dedicated to solving specific design problems or 
satisfying specific requirements. The nature of these activities, the requirements that are taken 
into account and the way these activities can be carried out (partly) define a design method 
(SSADM, JSD, YOURDON, MERISE, NIAM are examples of software engineering design 
methods). We are dealing with the general properties that several design methods share, i.e. with 
some kind of generic design model. In the realm of software systems, and more specifically 
databases, two kinds of  generic design models can be put forward, namely the multilevel 
approach and the more flexible process-product-requirements model. These models try to state 
how designers must behave (forward engineering), or even to describe how designers behave in 
practice (reverse engineering [6]). 

The multilevel approach relies on a fixed hierarchy of levels of specification description, 
characterized mainly by their degree of independence according to the implementation tools. 
Each level is defined by a set of target documents, and by the design activities that produce these 
documents. Most current practical database design approaches offer three levels, namely the 
conceptual, logical and physical levels [16] [15]. 

The process-product- requirements  model proposes a more flexible approach according to 
which a design is carried out by design processes that transform products in order to make them 
satisfy requirements (Figure 1). A product is any standard specification set that is considered as 
significant in the design method in concern. A process is an activity that is aimed at producing a 
set of products from another set of products 1. Any process is goal-oriented, that is it must give 
the output products properties that the input products don't satisfy. In most cases, the objective 
is meeting specific requirements such as normalisation, readableness, space efficiency, time 
efficiency, DBMS compliance, organizational constraints, hardware limitation, parallelism, 
user's skill, etc [2]. 

The way a process is carried out is defined by a design strategy, that can be based on formal rules 
or on heuristics. Applying the strategy generally implies carrying out other, lower-level 
processes. The latter are in turn design processes, and therefore produce output products from 
input products according to strategies as well, and so on (Figure 2). The output products of 
these low-level processes satisfy requirements that are either the requirements of the higher-level 
process, or specialization thereof (e.g. time efficiency requirements can be translated (as 
suggested by Tkm in Fig. 2) into maximum paging rate requirements in some physical design 
processes). 

1 Note that a product can be seen as a specific state of another product as well �9 an un-normalized 
schema and a normalized schema can be seen either as two products, or as two states of the same 
product; in the scope of this paper, both views are considered as equivalent. 
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REQUIREMENTS k ~ i ,  PROCESS m 

PRODUCTj = PROCESSm(PRODUCTi,REQUIREMENTS k) 

Fig. 1. The process-product-requirements design model. 

A strategy may use internal products that are not known at the higher level. Note that the 
multilevel approach can be seen as a specialization of this framework. 

STRATEGY m 

Fig. 2. A design process is defined by a strategy that describes how to 
produce PRODUCTj from PRODUCT i. The slrategy may use lower-level 
design processes, internal products and specialization of requirements. 
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3 .  THE TRANSFORMATIONAL APPROACH TO DATABASE 
DESIGN 

3.1 Schema transformation 

Modeling software design as the systematic transformation of formal specifications into efficient 
programs (and building CASE tools that support it) has long been considered as one of the 
ultimate goal of the research in software engineering [12]. Some important research programmes 
are dedicated to this approach (e.g. PROSPECTRA [10]). According to the former reference 
cited, a transformation is a relation between two program schemes P and P' (a program scheme is 
the [parametrized] representation of a class of related programs; a program of this class is 
obtained by instantiating the scheme parameters). It is said to be correct i f  a certain semantic 
relation holds between P and P'. These definitions still hold for database schemas, that are 
special kinds of abstract program schemes. The concept of transformation is particularly 
attractive in this realm, though it has not often been made explicit (for instance as a user tool) in 
current CASE tools. A (schema) transformation is most generally considered as an operator by 
which a data structure S 1 is replaced by another structure $2 which has some sort of equivalence 
with S 1. Schema transformation is a ubiquitous concept in database design. Proving the 
equivalence of schemas [9], refining a conceptual schema, integrating two partial schemas [1], 
producing a DBMS-compliant schema from a conceptual schema [13], restructuring a physical 
schema, DB reverse engineering [6], are basic design activities that can be carried out by carefully 
chosen schema transformations. 

Though developing this concept and its formalization is beyond the scope of this paper (see [7] 
for a more formal treatment), we shall sketch the main definitions and properties that will be 
important from the methodological viewpoint. 

A transformation T is an operator that replaces a source construct C in schema S by another 
construct C'; C' is the target of C through T, and is noted C' = T(C) 
A transformation T is defined by ,  (1) a precondition P that any construct C must satisfy in order 
to be transformed by T, (2) a maximal postcondition 1 Q that T(C) satisfies. T can therefore be 
written T = <P,Q> as well. P and Q are pattern-matching predicates that identify the 
components and the properties of C and T(C), and more specifically : 
�9 the components of C that are preserved in T(C), 
�9 the components of C that are discarded from T(C), 
�9 the components of T(C) that didn't exist in C. 

As an alternative to this predicative specification, [12]) proposes procedural rules that define the 
removing, inserting, renaming operations that produce the target schema when applied to the 
source schema. In the TRAMIS tool, the predicative specifications have been translated into 
procedural rules. In some cases, (i.e. when the graphical language is powerful enough), it is 
possible to give a more readable representation of a transformation by expressing C and T(C) 
graphically (Figures 3 and 4). A transformation T1 = <P,Q> is reversible 2, or semantics- 
preserving, iffthere exists a transformation T2 such that, for any schema S, 

1 The terms pre- and postcondition must not be confused with those used in programming theory (by 
Hoare and Dijkstra for instance). In the present context, predicates P and Q includes applicability 
preconditions but also terms that identify all the objects directly or undirectly implied in the 
transformation. This latter part is not relevant in programming theory. 
2 In fact, the issue is a bit more complex, since a transformation must be defined not only by a 
mapping T between schemas but also by a mapping t between data populations (instances) of the 
schemas. Two kind of semantics preservation can be defined, namely reversibility and symmetrical 
reversibility [7]. T1 is reversible iff, for any instance s of schema S such that P(S), s --- t2(tl(s)); T1 is 
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P(S) ~ T2(TI (S) )=S  

T2 is the reverse of T1, and conversely. We have the following property : T2 = <Q,P> 

3.2 Generic v s  specific transformation 
Let's consider one of the most popular reversible transformations that replaces a many-to-many 
relationship type by a simpler construct based on two one-to-many relationship types. Figure 3 
gives both a graphical representation and the predicative representation of this transformation 1. 

i-j ~ RB [ - ~  R 
m-n RAR ~ - ~  RBRm'n~ RBB 

1-1 1-1 \ .,,v / 
id(R) : RAA,RBB 

Q = 

entity-type(A) & entity-type(B) & rel-type(R) 
& role(R, RA, A, [i,j]) & role(R, RB,B, [m,n]) & art(R, [aR]) 
entity-type(A) & entity-type(B) & entity-type(R) 
& rel-type(RA) & rel-type(RB) 

& role(RA, RAA, A, [i,j]) & role(RA, RAR, R, [i,i]) 
& role(RB,RBB, B, [m,n]) & role(RB,RBR, R, [i,i]) 
& art(R, [aR]) & id(R, [RAA, RBB]) 

Fig. 3. Graphical and logic-based expression of a generic transformation. In the logic- 
based expression, predicate entity-type(X) means that X is the name of an entity type, 
predicate role(R,X,E,[i,j]) means that relationship type R has a role X, taken by entity type 
E, and with cardinality constraint [i,j], predicate att(R,[X,Y,..]) means that 
entity/relationship type R has attributes X,Y .... and predicate id(X,[A,B,..]) means that 
entity/relationship type X has an identifier made up of {A,B,..}. 

The transformation is defined for objects the names of which are generic (R, A, B, RAA, etc); 
therefore, it defines a class of  transformations (a sort of program scheme according to [12]). 
Replacing these names by actual names gives a specific transformation (see Figure 4). 

Schema transformation is a ubiquitous concept in database design, and appears explicitly or 
implicitly in many modeling and design activities (e.g. top-down design, reverse engineering, 
view integration, multibases), However, it has not been often studied as an design process of its 
own. Let's only mention [3], [9], [11], [14], [7] as some proposals in this direction. 

3.3 Transformations in design processses 
Schema transformations are not really design processes by themselves, but rather basic tools that 
can be used to carry out such processes. 

symmetrically reversible iff both T1 and T2 are reversible, i.e., in addition to the property mentioned 
above, for any instance s' of S" such that Q(S'), s" = tl(t2(s')), For simplicity, we shall ignore this 
distinction in this paper. 
1 To be quite precise, some parts are missing in predicate Q. In particular, R cannot have a role in 
other relationship types than RA and RB. Without these parts T is not reversible. See [7] for more 
details. 



192 

COMPANY 
CNUM 
CNAME 
~ S  

I IPRODUCTI , , ~ N ~ 0 - N  I ~  I ~ m A  
\ ffrv / I PNAM~ I 

I CAW~7,oRv I " " 

COMPANY 
CNUM 
CNAME 
CADDRESS 

I I ~ 
| P N A . ~  l 
I ~ ,~coR~ I 

id(PRODUCrlON) : COMPANY,PRODUCT 

P = entity-type(COMPANY) & entity-type(PRODUCT) & rel-type(PRODUCTION) 

& role(PRODUCTION,COMPANY, COMPANY, [0,N]) 
& role(PRODUCTION,PRODUCT, PRODUCT, [0,N]) 

& art(PRODUCTION, [QTY]) 
entity-type(COMPANY) & entity-type(PRODUCT) 
& entity-type(PRODUCTION) & rel-type(CO-PRO) 

& role(CO-PRO, COMPANY,COMPANY, [0,N]) 

& role{CO-PRO,PRODUCTION, PRODUCTION, [I,i]) 
& role(PRO-PRO, PRODUCT,PRODUCT,[0,N]) 

& role(PRO-PRO, PRODUCTION,PRODUCTION, [i,I]) 
& 

Q = 

& rel-type (PRO-PRO) 

att(PRODUCTION, [QTY]) & id(PRODUCTION, [COMPANY, PRODUCT]) 

Fig. 4. Graphical and logic-based expression of a specific transformation. It has 
been obtained by substituting actual data type names for the generic ones. 

Studying the problem of design strategies in some details is beyond the scope of this paper, 
however the role of transformations in a design process can be grossly sketched as follows : 

Let R be the set of  requirements (expressed as a set of predicates or rules) of process P, 
S the input schema of the process, 
C a consvuct of schema S, 
r a rule of R such that : ~ r(C) 
T the set of available transformations. 

C is a construct of schema S that does not satisfy requirements R, and that must be transformed. 

An obvious elementary strategy is as follows : 
(1) select a transformation T of T such that PT(C) & (QT ~ r) 
(2) replace C by T(C) in S 

Potential problems may arise that require more sophisticated strategies. Let's examine some of 
them. 

P1 : Construct C may violate more than one rule. 
Strategy : Let R' be the set of rules that C doesn't satisfy. Choose a rule r in R' such that there 
exists a transformation T in T such that : T(C) violates as few rules of R as possible. This 

strategy may generate a set of solutions 1. 

P2 : More than one transformation satisfies : P(C) & (Q ~ r) 
Slrategy : the selection of T can be done either arbitrarily, or according to other rules. In the 
latter case, P generates a set of solutions. The final selection will be done according to other 
kinds of requirements, i.e. in another design process. 

1 In all generality, there will be a tree of solutions, since more than one design process may 
encounter this problem. 
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P3 : No transformations satisfy P(C) 
Diagnostic : either the transformation set 2" is not powerful enough or the requirement cannot be 
satisfied. 
Strategies : extend the set of transformations, keep construct C as it is or discard C. 

P4 : No transformations satisfy : Q ~ r 
Strategy : choose a transformation T such that PT(C), then select another transformation T' such 
that : (QT ~ PT') & (QT ' ~  r); if the latter cannot be satisfied, iterate the process. This strategy 
may generate a set of solutions. 

P5 : T(C) violates a rule that C satisfied 
This problem can be local, i.e. it concerns the termination of P, or it can be global, such as 
when P may destroy the effect (i.e. the satisfaction of a set of requirements) of a former process. 
Though it has been solved in TRAMIS with adhoc strategies, this problem still has no general 
solution and is currently under investigation. 

These problems may induce the production of a large solution space. In such a situation, the 
concept of output products (PRODUCTj in Figure 1) must be replaced by that of set of  
equivalent output products that must be explored according to other criteria. A higher-level 
strategy must be defined to manage this space and reduce it to one solution. 

4. T H E  U N I Q U E  S P E C I F I C A T I O N  M O D E L  O F  T R A M I S  

According to the generic design model developed in section 2, designing a database is 
decomposed into several processes, starting from, say, requirements collection, and ending with 
DDL schema generation 1. These processes define a set of standard products, such as the validated 
conceptual schema or the executable DDL schema. This set of products can also be perceived as 
a set of states of the database schema. According to this view, designing a database consists in 
applying the design processes to a source schema (general a conceptual schema) in order to 
transform it into an executable database schema that satisfies a given set of requirements such as 
semantic correctness, readableness, efficiency and executahility. 

TRAMIS is based on a unique generic model to express database structures in any of its possible 
states. This unique model allows a neutral definition of the design processes, as well as a high 
flexibility in the design strategies used by the designers. For instance, a conceptual 
transformation can be used on a physical schema as well. The TRAMIS model is an extension 
of the Entity-Relationship model that can express both conceptual and technical structures. Its 
formalization can be found in [5]; however, we will follow a more intuitive approach inthis  
section. 

In addition, the design activities need richer specifications than mere structural description of the 
data. For instance, statistical information is needed for choosing adequate physical parameters, or 
for evaluating the volume and the response time of the database. Descriptive textual information 
and annotations are essential to define the semantics of the data objects, and to document the 
design process itself. 

The TRAMIS specification model is made up of six generic objects classified into high-level 
objects that define macrostructures (schema, entity type, relationship type and space) and the 

1 In all generality, the database life-cycle is broader than suggested. For instance, phases such as 
schema reverse engineering, or schema and data maintenance according to changes in the requirements 
must be taken into account as well. It has been proved that the paradigms that underly TRAMIS and 
that are presented is this paper are well suited to support these phases [6]. 
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low-level objects that define microstructures (attribute and group). Some objects (relationship 
type and group) can be given additional characteristics specifically aimed at describing technical 
or physical structures. 

Schema : represents a description of a data base. Any number of entity types, relationship 
types and spaces can be associated with a schema. Schemas may be linked to other schemas 
according to specific relationships : is the normalized version of, is a view of, is the ORACLE 
version of, is a space-efficient version of, is integrated into, etc. 

Entity type : represents any information unit that can be perceived or manipulated as a whole, 
at any level of the design process. It can be used to model both conceptual entities and technical 
objects (such as record types, tables, segment types, etc). 

Relationship type : represents any significant aggregate of at least two entity types. Each 
position in the aggregate is called a role that is played by one or several entity types. The 
cardinality constraint of a role is a couple of integers specifying in how many (min-max) 
relationships an entity must and can play that role (N stands for oo). It can be used to model both 
conceptual relationships and technical constructs (such as tuple linkage, CODASYL sets, 
parent]child relationships, file coupling, etc). 

FROM 

W ID MOVE 

LOCATION DATE 
Q~ 

PRODUCT 

PRO ID 
NAME 

Fig.  5. Example of a relationship type of degree 3 with attributes 

At a technical or programming level, a relationship can be perceived not only as a logical 
association between entities, but also as an access mechanism to navigate through (technical) 
entities; therefore, a binary relationship type can support zero, one or two access paths, each 
defined from the origin role toward the target role. This concept can be seen as an abstraction of 
CODASYL set types, IMS parent]child relationship, TOTAL paths, ADABAS file coupling, 
etc. 

Fig. 6. A relationship type supporting two access paths 

Space : is a collection of entities, possibly of different types. At the technical level, a space 
can model objects such as files, dbspaces, tablespaces, areas and datasets. 

Attribute : is associated with a parent object, i.e. an entity type, a relationship type or a 
compound attribute. An attribute can be atomic or compound. It is qualified by a cardinality 
conslraint expressed as a couple of integers stating how many (min-max) values can and must be 
associated with the parent object. Any number of attributes (including zero) can be associated 
with an entity type or a relationship type. 
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PERSON ] 

PER-ID: num12 -~ ...... ::::----:_:.:::----~::~,,~::__.= ...... ::::--..w_ atomic,  mandatory ,  s ingle-vaiued ! 

NAME : char30 I 
MAIDEN-NAME [0..11: char30::i=-:...:" ....... - ............ atomic, optional, single-valued 
CHR-NAME [1..4]: charl5 .......... " . . . . . . . . . . . . .  -~--~, atomic,  mandatory ,  mul t ivalued 
ADDRESS [1..2]: ~==- ....... :==- ................................ ~ compound ,  mandatory,  mul t ivalued 

NUMBER: char8 
STREET: char35 .............................................. component, atomic, mandatory, single-valued 
CITY: char35 
PHONE [0..1]: c h a r 3 ~  . . . . . . . . . . . . . . . . . . .  component, atomic, optional, single-valued 

Fig. 7. Various types of attributes 

Group : the group is a simple and powerful construct with which one can model entity and 
relationship identifiers, referential integrity, intra- and inter-entity attribute redundancy, logical 
access, statistical support, etc. A group is a collection of attributes and/or roles and is associated 
with an entity type or a relationship type. A group can have some specific functions regarding 
its parent entity or relationship type : 

�9 it can be an identifier (in the example below, an EMPLOYEE is identified by its EMP-ID 
and its origin SUBSIDIARY, a MOVE relationship is identified by its date and its source and 
destination WAREHOUSES, a SCHEDULE is identified by TEACHER + TIME values and by 
TIME + PLACE values) . . .  

I SUBStDIARY I 

u ....... ORIGIN I O-N 

Fig. 8. 

id(MOVE) = ~'~ id(SCHEDULE) .......................... 

Representation of identifiers as groups of attributes/roles 

�9 a reference (inclusion, equality, copy) to other attributes (in the example below, SUBS-ID + 
EMPL-ID is a foreign key to EMPLOYEE) . . .  

FILE l EMPLOYEE 

FILF~ID F~I~ SUBS-ID 
I DATE ~EMPL-IO 
~fSUBS-ID 
~ EMPL-ID 

.1 included into 

Fig. 9. Representation of an inclusion constraint (here a referential constraint) as the 
inclusion of a group into another one. 

�9 or, at the technical level, an access mechanism called access key (the abstraction of index, 
calc keys, hash organization, etc). In the example below, FILE-ID is both an identifier and an 
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access key to FILE; DATE and the EMPLOYEE entity it is coming FROM constitute an access 
key to FILE (i.e. given an EMPLOYEE entity and a DATE value, one can gain a quick and 
selective access to the concerned FILE entities). 

FILE 

id-and-key(FILE) = ~ | 
key(FILE) . . . . . . . . . .  j . . . . . . . .  

EMPLOYEE 
SUBSolD 
EMPL-ID 
NAME 

Fig. 10. Representation of an access key as a group of attributes/roles. This example 
is typical of CODASYL (indexed set types) and IMS structures. 

Besides its intrinsic properties, a TRAMIS object can be characterized according to four facets : 
naming,  structural, statistical, informal specification. 

The n a m i n g  f a c e t  names an object with up to four names 1. 
�9 the  na tura l  name : the name that was first given when the object was defined; 
�9 the  s h o r t  n a m e  : an abbreviated name for the object; can be used to build default names in 

some transformations; 
�9 the  or ig in  : the natural name of the object from which the current object is derived; 
�9 the  t e c h n i c a l  n a m e  : a synonym that satisfies DBMS or programming language naming 

syntax and that will be used to generate executable descriptions (DDL schema); by default, the 
technical name is the natural name. 

The s t r u c t u r a l  f a c e t  defines the relationships between an object and its neighbor objects. 
�9 a s c h e m a  : comprises entity types and relationship types; is linked to other schemas; 
�9 en t i t y  t ype  : is in a schema, plays roles in relationship types, has attributes, has groups, is in 

spaces; 
�9 a r e l a t i o n s h i p  type  : is in a schema, has roles, has attributes, has groups; 
�9 a ro le  : is defined in a relationship type, is played by entity types, is in groups; 
�9 an a t t r i bu t e  : is attached to an entity or relationship type, is in a group; 
�9 a g r o u p  : comprises aUributes and/or roles; is attached to an entity/relationship type; is linked 

with another group (included into, equals, copy of); 
�9 a s p a c e  : contains entity types. 

The s t a t i s t i c a l  f a c e t  defines static and dynamic quantification of  the data. 

S ta t i c  s ta t i s t i c s  : 

�9 entity type : average population size (N in schema 11); 
�9 relationship type : average population size (derived: = ~t of  a role x N of its entity type)); 

1 The notion of synonyms for a concept is considered another way. Indeed, when a problem is 
reasonably formalized, a consistent set of names is associated with a collection of objects in a given 
context, such as in a service. Therefore, it is better to represent the context in which a name is given 
to an object, rather than all the names under which this object is known. We have chosen to represent 
a context by a view, which in turn is represented by a schema. So, an object can have an arbitrary 
number of names, but each of them is defined in one of the contexts in which it is known, i.e. in a 
schema that includes this object. 
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�9 attribute : average length (BL), average number of values per entity/relationship (I.tN); 
�9 role : average number of times an entity plays that role (B); 
�9 group : average number of distinct values (N), average number of entities with which a group 

value is associated ~) ;  
�9 space : average number of entities of each type it contains. 

Dynamic statistics (average number of operations per time unit) : 
�9 entity type : creation (add), deletion (delete), update (update) of entities; average number of 

sequential accesses (x average number of entities for each access); 
�9 relationship type : for each access path, average number of accesses (x average number of 

entities for each access); 
�9 group (with role access key): average number of accesses (x average number of entities for 

each access); 

d STAT statistics I / PRODUCT I - ~  STAT statistics I 
ICUSTOMER I " I N  = 25,000 I [ CUS ID i: -- IN = 10,000 I 
I CUS ID 
I CUS-NAME N ~ 0-N I PRO]ID / ~ S T A T  statistics 

i~l,  HOl~[0:5 ~ I STAT statistics I 
= loo I 

/ S % N p p ~ S T A T  statistics 

ISTAT st'tistics 1 ~ = 6 1 . 2  ] I st~p D [ " ~  , . . . . . . . . . . . . . .  , Ig= 6667 Ip~I= I STAT statistics - r ~ l  STAT statistics I 
I ~ = 40 I SUP-NAME I 1 N = 150 I 

Fig. 11. Example of static statistics 

_1 cusToMER I 

' 

PHONE[O:5 

DYN statistics (per day) 
add : 50 
delete : 10 
update : 150 
seq. access : 0.05 x 25,000 

I PRODUCT I 

q CUS ID I PRO -ID 
STATUS ~ 
Q'rY 

- key~ PRODUCT) 

DYNstatistics (perdaY) lDYNstatistics (perdaY)llDYNstatistics 2(perdaY) 1 0 0  I 
path access: 2,000 x 20 I path access: 600 x 6,667 I Ikey access: 3 x 

Fig. 12. Example of dynamic statistics 

Through the informal specification facet textual information is added to objects. 
�9 Description : gives an object its interpretation according to the real world concepts it denotes. 

This description gives the semantics of the object. 
�9 Technical notes : annotation that gives justification concerning design choices or gives the 

future programmers and administlators useful informations and advices to maintain integrity of 
the DB. It is managed by both the designer and TRAMIS. Generally concerns lower-level 
schemas. 
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J CUSTOMER 

CUS_ID 
Description : [ CUS_NAME 
A CUSTOMER is any I ADDRESSsTREET 
person, service or [ CITY 
company that has ... [ PHONE[O:5] 

TE_REG 
TUS ote : 

I Description This entity type contains 
States whether the cus- optional and rarely used 
tomer should be ... attributes ... 

Fig. 13. Example of informal specifications of objects 

The generic specification model of TRAMIS can be specia l ized  into a great variety of 
submodels, for instance according to the design levels or design product classes of a standard or 
user-defined multilevel design method, or according to the target DBMS. The following schemas 
are typical examples of a consistent set of specification models describing standard design 
products. Each schema must include all the specifications of the previous one (i.e. the 
information must be either the same, or transformed through specification-preserving 
operations). Such products can be used by strategies such as that of Fig. 22. 
�9 a conceptual schema comprises a schema, entity types, relationship types, attributes, identifier 

groups, static statistics. 
�9 In an interpreted conceptual schema all objects have been given a semantic textual description; 
�9 a quantified conceptual schema is a conceptual schema with static statistics; 
�9 a logical access schema is a binary schema in which the logical access constructs (access key 

groups and access paths) needed by the applications have been defined; 
�9 a quantified access schema is a logical access schema with dynamic statistics; 
�9 an opt imized  access  schema is a logical access schema in which performance-oriented 

transformations have been carried out (and justified in a technical note); 
�9 a DBMS-compl ian t  schema is a logical access schema that has been transformed in order to 

make it compliant with the specific model of a DBMS. 

Specializing the generic model into a specific submodel can be done by the set of  rules the 
schema must satisfy. These rules formalize a specific category of requirements as defined in 3.3. 

E x a m p l e  : an ORACLE-compliant schema is a TRAMIS schema in which, 
�9 there are no relationship types; 
�9 there is from one to 254 attributes per entity type; 
�9 the attributes are single-valued and atomic; 
�9 a group must be an access key (i.e. an index); 
�9 an entity type cannot be in more than one space. 
�9 a name is made up of 1 to 30 characters, the 1st being a letter, and the other ones being 

letters, figures, '_', '$' or '#'; 
�9 a name cannot belong to the ORACLE reserved-word list ('create', 'index', etc); 
�9 the total length of the attributes that make a group cannot exceed 240 char. 

In these constraints an entity type is to be interpreted as a table, an attribute as a column, a space 
as an ORACLE space. 

5. T H E  T R A N S F O R M A T I O N A L  A P P R O A C H  I N  T R A M I S  

Specifications transformation is a basic paradigm of recent CASE tools such as KBSA [8]. In 
this perspective, TRAMIS generalizes the concept of schema transformation by providing a large 
set of transformations that can be used at any level of the design process. They are in no way 
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goal-oriented (except for model-driven ones), and can therefore be used in any design process and 
any strategy. 

The notion of reversibility is an important characteristic of a transformation. If a transformation 
is reversible, then the source and the target schemas have the same descriptive power, and 
describe the same universe of discourse, although possibly with a different presentation (syntax). 
Reversible transformations are also called semantics-preserving. The transformations provided 
by TRAMIS preserve not only the semantics of the source schema (i.e. the conceptual 
structures), but the other aspects of the specifications as well : technical structures, names, 
statistical and informal information. For instance, the access structures (access keys and access 
paths) in S1 are transformed into different, but functionally equivalent access structures in $2; 
statistics in S 1 are recomputed according to the new structures in $2; informal specifications of 
objects that disappear from S1 are transferred, possibly with some adaptations, to the new 
objects in $2. TRAMIS transformations are not only semantics-preserving but also 
specification-preserving 1. 

5.1 The  t r a n s f o r m a t i o n  toolset  

TRAMIS proposes a three-level transformation toolset 2 that can be used freely, according to the 
skill of the user, the desirable efficiency of the executable schema and the time allowed for 
producing that schema : 

�9 e lementary  t rans format ions  : one transformation is applied to one object; with these 
tools, the user keeps full control on the schema transformation since similar situations can be 
solved by different transformations; e.g. a multivalued attribute can be transformed in four 
ways; 
Formally : given construct C in schema S and transformation T,, both selected by the user, C 
is replaced by T(C) if PT(C). 

�9 global t r ans fo rmat ions  : one transformation is applied to all the relevant objects of a 
schema. 
Formally : given transformation T and a class of constructs CC, both selected by the user, for 
each C in CC such that PT(C), replace C by T(C). Examples : replace all one-to-many 
relationship types by foreign keys + referential constraints; replace all multivalued attributes 
by entity types + many-to-one relationship types. 

�9 mode l -dr iven  trans format ions  : all the constructs of a schema that do not comply with 
the rules a given model are transformed; these transformations require virtually no control 
from the user; the resulting schema is correct, complies with, say, the relational or 
CODASYL model, but has few refinements as far as efficiency is concerned 3. 

1 To be quite precise, all the transformations of TRAMIS are specification-preserving, but some of 
them are not semantics preserving. For instance, transformation Tr-A3 is specification augmenting, 
since ordering and identity properties, lacking in the source schema, are given to the instantiated 
attributes. On the contrary, transformation Tr-A4 is clearly semantics-degrading. 
2 A schema transformation should not be confused with a design process, although the latter is said to 
transform a product into another one. Indeed, a design process that preserves the specifications need 
not be reversible (an unfortunate fact as far as reverse engineering is concerned). For example, adding 
an entity type to a schema transforms it into a richer schema that preserves the previous 
specifications, while the reverse process (deleting the entity type) doesn't preserve the specifications 
that are in the second schema. 
3 This is the only schema production function that is provided by many current database CASE tools. 
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This process is based on a complex strategy driven by two sets of requirements, namely 
compliance to the selected data model, and time efficiency 1. According to the analysis 
presented in section 3, problem P1 is solved by rule priority (the rule with the highest priority 
among those that C violates triggers first), problem P2 is solved by defining a default 
transformation for each rule (a more sophisticated strategy is planned), problem P3 is solved 
by discarding the construct and by writing its description as an annotation in the informal 
specification, problem P4 uses a monotonicity property of some transformations that can be 
informally interpreted as follows : given a construct C that violates rule r, transformation T 
such that ~ PT(C) can be applied provided T(C) "is a less difficult problem according to r" or 
T(C) induces "a less severe violation of r" or T(C) is "closer to a satisfying construct than 
C ''2. Problem P5 is solved by adhoc ordering of rules to be checked. 

Here follows a list of some elementary transformations proposed by TRAMIS. For 
conciseness, only conceptual structure transformations will be considered and given a short 
explanation; the transformation of the other facets will be evoked later. A formal description and 
the proof of the reversibility of most transformations that introduce/remove an entity type (TR- 
El, TR-E2, TR-R1, TR-A1, TR-A2) can be found in [7]. 

5.2 Transformation of entity types 
�9 Tr-E1 : Decomposes an entity type E into two entity types E1 and E2, and distributes the 

attributes, the roles and the groups of E among E1 and E2. 
�9 Tr-E2 : Integrates an entity type E2 into an entity type El. Reverse of Tr-E1. 

I sT~ 
~ 0 ~ N N  1-N ~ ~p ~0- .NN i 1-N ~ O-N 

. I , - = - ,  TOTAL.,SOLD 

Fig. 14. Decomposition of PRODUCT into two entity types by extracting 
one attribute and a role. 

5.3 Transformation of relationship types 
�9 Tr-R1 : Replaces a relationship type R with an entity type and as many one-to-many 

relationship types as R had roles. 
�9 Tr-R2 : Replaces a one-to-many relationship type R between E1 and E2 by attributes of E2 

that are a copy of the identifying attributes of E1 + referential integrity constraint. 

1 In the current version, the efficiency requirements are satisfied by very simple rules. More advanced 
optimisation rules will be used in the future. The rationale is that, at least at present time, high 
efficiency can mainly be ensured by human expertise. 
2 This concept depends on the set of transformation that is available, For instance, according to the 
transformations set that has been chosen in TRAMIS, a one-to-many relationship type is not as far 
from relational structures as a many-to-many relationship type is. Another approach to this problem 
could have been to define new transformations as the composition of simpler ones [12]. 
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I ORDER [ CUSTOMER 
ORD-ID l CUS-ID 
DAVE o-~1 0-NIcus- -  

I 'PRo4D I ~ o  \ 2;Z ..... ] -  

I a ~ r ~ s o t ~  ] id(SALES) = 

Tr-R1 

% 

Tr-R2 

~ o ~ m  I CUSTOMER I 
included into hi I 

ORD-ID I ~ CUS-ID ] 

0-N i 
PRO-ID p x . . . .  / [~ATIT..-1-----J 

TOTAL-SOLD 
id(SALES) = ,.~ 

Fig. 15. Transformation of relationship type FROM into reference attributes (foreign 
key), and transformation of relationship type SALES into an entity type. 

5.4 Transformat ion of a t t r i b u t e s  

�9 Tr-A1 : Transforms an attribute A of  entity type E into an entity type EA and a many-to-  
many relationship type R A  between E and EA. Each E A  entity represents a distinct value o f  
A. 

�9 Tr-A2 : Transforms an attribute A of  entity type E into an entity type EA and a one-to-many 
relat ionship type R A  between E and EA. Each E A  entity represents an occurrence o f  an A 
value attached to an E entity. 

�9 Tr-A3 : Transforms a multivalued attribute into a list of  single-valued attributes. 
�9 Tr-A4 : Transforms a multivalued attribute into one single-valued attribute. 
�9 Tr-A5 : Aggregates a group of  attributes into a compound attribute. 
�9 Tr-A6 : Decomposes a compound attribute. Reverse of  Tr-A5. 
�9 Tr-A7 : Transforms a compound attribute into an atomic attribute. 

CUSTOMER 

CNUM: int 
NAME: char35 
PHONE# [1..3]: charl2 

Tr-A1 ~ r  Tr-A2 ~ Tr-A3 Tr-A4 

CUSTOMER 

CNUM: int 
NAME: char35 

1-3 

I PHONE 
PHONE#: charl2 

CUSTOMER 

CNUM: int 
NAME: char35 

I 1~1 

PHONE-of-C 

PHONE#: charl2 

id(PHONF~of-C) = owner,PHONF~ 

CUSTOMER 

CNUM: int 
NAME: char35 
PHONE#I: charl2 
(PHONE#2: charl 2) 
(PHONE#3: charl 2) 

CUSTOMER 
CNUM: int 
NAME: char35 
PHONE# : char36 

Fig .  16. Four possible transformations to get rid of a multivalued attribute. 
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5.5 Transformation of groups 

�9 Tr-G1 : Separates two overlapping groups by duplicating common attributes (e.g. for COBOL 
data structures). 

�9 Tr-G2 : Replaces a role component by the identifier of the entity type playing that role (e.g. 
for CODASYL schemas as in the schema below). 

�9 Tr-G3 : Adds a singular relationship type role to a group (e.g. for CODASYL schemas). 

PRODUCT I CUSTOMER 

PROdD 

QTY-O-H 
TOTAL-SOLD 

10N 

l 
. . . . . . ~  1-I 1-1 

id(SALES) = ---::-::::-| " ~ 

Tr-G2 

I PRODUCT 

O-N 

[ TOTAL-SOLD 

id(SALES) = = refereace, 

Fig. 17. Replacing role C in the identier of SALES by the identifier of CUSTOMER 
(the CODASYL data model doesn't accept more than one role in a unique constraint). 

5.6 T r a n s f o r m a t i o n  of names 

�9 Tr-N1 : Substring substitution. 
�9 Tr-N2 : Name prefixing. 

l 
iD O R D E R  

CUSTOMt~-NAME 
CUSTOMER-ADDRESS 

  .O/iD 

Tr-N1 
'CUSTOMER' --> 'CUS' 

% ' _ . > ' '  

Tr-N2 
prefix('ORD_') 

' '  d 

ORDER 

ORD_ID 
ORD_CUS_NAME 
ORD_CUS_ADDRESS 
ORD_PRO_ID 
ORD_QTY 

Fig. 18. Translation and prefixing operations. 

5.7 Transformation of the non-conceptual facets 
As already specified, the transformations concern all facets of  the objects. 
transformation Tr-A1 processes the access structures ... 

For instance, 
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CUSTOMER Tr-A1 
CNUM 
NAME ~ x ~  

PHONE# [0..5] l 

key(CUSTOMER) 

CUSTOMER 1N I 

NAME 

PHONE 

PHONE# 

key(PHONE) 

F ig .  19. Translating an access key into an access path (e.g. in a CODASYL schema 
that doesn't accept multivalued access keys). 

as well as the statistical facets (only the static statistics are illustrated below) .... 

STAT statistics I 
N = 25,000 I 

E 

I 
CNU  I 

AME l ~rout, HONE# [0..51~---- _ 9 " 

/ 
p.L -- 6 STAT statistics 

I~N = 1.2 N = 20,000 

Fig. 20. 

ISTAT statistics I 
N = 25,000 I 

E 

PHONE 
m 

PPaONE# 

~ [ S T A T  statistics 
STAT statisticsl[ STAT statisti~lgL = 6 
N-- 1,2 II N = 1,5 IILtN = 1 

STAT statistics 
N = 20,000 

Conversion of static statistics in a structural transformation. 

6. A R C H I T E C T U R E  A N D  F U N C T I O N S  O F  T R A M I S  

TRAMIS provides a set of tools that can be used freely. The tools are independent from each 
other and communicate through the common specification database only. The toolset 
architecture of TRAMIS results primarily from methodological decisions about the kind of 
design processes the tool is aimed at. 
�9 A design process, particularly in software engineering, generally follows an incremental, trial- 

&-error global strategy, in which prototyping and backtracking are common practices and in 
which more than one activity can be carried out in parallel; 

�9 Both skilled and novice (or hurried) designers must find their way easily. In other terms, some 
users need fine-tuning tools on which they have full control, while other users need simple 
and automated tools for quick production of executable descriptions. 

�9 Database schema specifications can be evaluated and processed even if they are incomplete and 
non consistent. Therefore, the tools must be robust. 

�9 If the conceptual design step is recognized as a major activity, the technical design step must 
also receive sufficient attention. In most case, an automatic translation of the conceptual 
schema into a DBMS-DDL produces no more than an incomplete, prototype, database schema 
that must be further processed by hand. A database CASE tool must provide its users with a 
large set of tools for the evaluation and production of efficient executable solutions. 

�9 The behaviour of the tool, and more specifically the specification model and the user interface, 
must be non-obtrusive for the different classes of users. The user must not be aware of 
concepts and tools he wants to ignore. 
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The toolkit organization of TRAMIS, together with the three-level architecture of the 
transformation toolset, provides an adequate basis for such a flexible database design approach. 

TRAMIS is organized as an extensible collection of toolsets working on a common specification 
database (or repository). The specification database contains the current state of the project 
database schemas under development. The toolsets are accessed through a common dialog 
manager providing a WIMP-based user-interface. 

DIALOG 

MANAGER 

DATABASE NAVIGATION & UPDATE 

�9 ELEMENTARY 
TRANSFORMATION �9 GLOBAL 

�9 MODEL 

t MODEL CHECKING 

"~ REPORT GENERATOR 

DDL GENERATOR 

"~ IMPORT & EXPORT 

H E/R 

DBMS 

F 
F- 

Fig. 21. Gross architecture of the TRAMIS CASE tool. 

NAVIGATION and UPDATE : allows the browsing of the current state of the specification 
database, object selection by name or in a list of objects and the navigation from object to 
associated objects. Allows the consultation and updating of the different facets of the current 
object, together with the creation and deletion of objects. 

SCHEMA TRANSFORMATION : allows the application of one elementary transformation on 
the current object, the application of one transformation on all the objects of the schema, and the 
application of all the necessary transformations on the objects of the schema in order to 
transform it into a new schema that complies with a selected model. All the facets of the 
transformed objects are recomputed in order to preserve their information contents (a typical 
elementary transformation requires from 10 to more than 100 elementary updates, a performance 
that cannot be done by hand). 

MODEL CHECKING : at any moment, the user can validate its specifications against a selected 
submodel. TRAMIS compiles the rules defining the submodel and analyzes the current 
specifications according to these rules. TRAMIS generates diagnostics that will be examined by 
the user. A submodel is defined in an ASCII text consisting of a list of statements expressed in 
a specific rule language. The user can build any number of submodels. TRAMIS includes four 
predefined, general-purpose submodels (standard E/R, relational, CODASYL, COBOL files). 

REPORT GENERATION : production of a detailed report, for all objects or for one object, a 
statistical report (with volumes and operations), a dictionary report (concise structured list of 
object names with natural~technical names translation or conversely). 

DDL GENERATION : translation of a TRAMIS schema into executable descriptions according 
to a selected DBMS. The generation is twofold : production of a DDL text and generation of 
an additional document that reports all the integrity constraints that have not been translated 
in the DDL text together with validation procedures for these constraints. This report, aimed at 
the programmer and the DBA, includes the technical notes as well. 
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IMPORT / EXPORT : TRAMIS has been given an external specification language (Information 
System Specification Language, or ISL) in which any specification can be expressed. This 
language allows communication between tools, selective backup or even data input. Through the 
export function, a selected part (what objects and what facets) of the specification database 
contents can be generated in ISL. Through the import function, the contents of an ISL text can 
be integrated to the specification database. This function allows an incremental integration of 
different schemata. 

7. M E T H O D O L O G I C A L  S P E C I A L I Z A T I O N  O F  T R A M I S  

The toolkit approach of TRAMIS gives the user a high degree of freedom in its design 
behaviour. This freedom is not always welcome, particularly where a strict methodological 
standard has to be followed. TRAMIS can help enforce such standards through the concept of 
submodel. Any design method can be formalized as a set of processes, each of which consists in 
transforming and enriching a specific state of the specifications into another one. A specific 
state of specifications, e.g. a database schema, can be characterized by the information it includes 
and by the constraints this information must satisfy. The schemas that are mentionned and 
described at the end of section 4 constitute examples of significant states in many design 
methods. Each of these kinds of schema can be defined by a specialization of the general 
specification model of TRAMIS, i.e. by a submodel. This submodel is defined by a set of 
restricting rules stating whether an arbitrary schema satisfies the submodel. Some general- 
purpose submodels are already built in TRAMIS : standard E/R, relational, CODASYL and 
standard file structures. More specific models are also proposed for actual DBMS (ORACLE, 
RDB, IDS-2, etc). However, TRAMIS provides the user with a rule language with which he 
can define his own submodels. In addition, the model checking function of TRAMIS can 
evaluate the current state of the specifications under development against a chosen set of rules, 
i.e. according to a given submodel, and reports all the violations 1. 

It is therefore easy to implement a specific design method as follows : 
�9 identify the main design processes; 
�9 identify and define precisely the products, i.e. the specification states that are inputs and 

outputs for these processes; 
�9 define these states by compliance with a submodel of TRAMIS and implement this submodel 

as a set of rules. 
�9 each design process can be considered complete when its resulting schema satisfies the 

submodel concerned. 

The following schema illuslrates two typical design methods (processes and products) that can be 
implemented into TRAMIS through the definition of adhoc submodels. The left-hand approach 
defines a simple, three-phase process, particularly suited for prototyping. The right-hand 
approach proposes a detailed methodology for optimized schema production. 

1 In the current state of TRAMIS, the role of a submodel is basically passive. Indeed, the whole 
generic model is available to the users. The latter can only ask the tool to evaluate the current 
specifications against a selected submodel. An active role would be as follows : at any time, a 
submodel is current; all the operations on the specifications are monitored by the rules of the model. 
For instance, a submodel that defines the Bachrnan's model (Data Structure Diagrams) would prevent 
users from defining relationship types with a degree greater than two. Such a behaviour will not go 
without problems, since changing the current model (for example shifting from E-R to Bachman, or to 
SQL) would make the current state of the specifications partly invalid. 
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. ~ Requirements 
I Conceptual analysis ~ - ,, 
' ' ~ ~ r ~ d ~ o ~ S ~ : >  , ~ [ s~ti.~i~ti~.~s ~ 

. l~,""~fimized access schema~ 
I Schematransformation ~ 
�9 .~a..~t~'DB MS-comp liant s c h e m ~  
I DDL ~meration [~. 

DDL schema 

Fig. 22. Two typical strategies for database design. 

8. C O N C L U S I O N S  

TRAMIS is a database CASE tool that has been designed with two important hypotheses in 
mind. The first hypothesis is that designing a complex system can be perceived as carrying out 
design processes that produce design products from other design products, in such a way that the 
former satisfy requirements the latter don't satisfy. A tool must accept a great variety of design 
behaviour, and therefore, must support several standard or non-standard design strategies. The 
second hypothesis is that schema transformation is a major tool for database design, and that is 
can be the basis of many design processes. For instance, database schema design can be seen as 
a step-by-step transformation of some initial version of the conceptual schema. 

These principles have lead to four important architectural decisions : the unique specification 
model whatever the design level, a toolset interface that includes transformational functions, and 
a facility for fefining design product classes through submodels. Indeed, the flexibility that must 
be provided to ensure maximum freedom in design processes and strategies makes it impossible 
to define a fixed set of models and standard design methods. 

However, the two basic hypothesis have not been fully applied yet. Indeed, many design 
processes and strategies must be carried out by the designer himself, since the tool automates 
mainly low-level processes and strategies. The most complex process offered by TRAMIS is the 
automatic production of DBMS-compliant schemas. Beyond this function, defining a n d  

conducting sophisticated processes and strategies is up to the user, mainly helped by the 
submodel definition and the model checking function. 

On the other hand, several additional schema transformations should be included in order to allow 
more sophisticated schema restructuring techniques. In particular, operators for manipulating 
generalization/specialization constructs, additional redundancy and denormalization 
transformations, and new reverse engineering transformations should be added. 

TRAMIS has been developed by the University of Namur both as an educational tool and, later, 
as a component of an industrial design environment. It is written in C for MS-Windows 
workstations. A commercial version of TRAMIS is available under the name TRAMIS/Master 1. 
It is complemented with TRAMIS/View, a graphical editor and integrator for MERISE-like 
database descriptions, and with TRAMIS/Flow, allowing the definition of data-flow diagrams. 

1 Distributed by CONCIS, 37bis, rue du Prtbuard, 95100 Argenteuil, France. 
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