
Supporting Component Matching for Software Reuse

Alistair Sutcliffe and Nell Maiden

Department of Business Computing,
City University,

Northampton Square,
London EC1V 0HB,

U.K.,
Phone: +44-71-253-4399 ext 3420,

E Mail: sf328@uk.ac.city.

Abstract

A mechanism is proposed for analogical matching of specifications for reuse. The process uses
generic domain templates with matching heuristics to determine the fit between a source (existing and
potentially reusable) specification and the description of the target domain. The design of supporting
tools for the matching process is described, with evidence from experimental studies upon which the
design was based. The prospects for analogically based software reuse and the requirements for tool
support is discussed.

1. Introduction

One of the critical problem in software reuse is finding software components which are appropriate to
a new application context and then ascertaining the goodness of fit hetwecn reusable components and
their target application.

The potential of reusing existing specifications to develop new systems has been brought closer by
the CASE tool revolution. It has been suggested that successful specification reuse can assist
requirements analysts to develop more complete, consistent and clearly-defined specifications.
Intelligent CASE tools require method and domain knowledge to assist the analytic process. For
example Ryan [1] reports providing software engineers with method knowledge alone failed to
enhance analytic performance. Exploiting the rich seam of domain knowledge captured in reusable
specifications is one source of intelligent support which has so far received little attention. Reuse at
the specification level offers a new paradigm for requirements engineering by exploiting existing
knowledge about a domain in new application contexts. Analogy may be a powerful paradigm which
enables matching and retrieval of components for specification reuse, however it has received little
attention in the literature [2,3].

Whilst considerable research is currently focused on the development of knowledge-based CASE tools
less attention has been directed to the practical problem of initially eliciting such knowledge. The
dilemma is how to economically gather and then subseqnenfly identify the appropriate domain
knowledge. Deriving application knowledge through domain analysis can be difficult and time
consuming [4,5]. One approach is to describe generic types of systems rather than specific
applications. CASE tools endowed with abstract specifications as templates [6], cliches [7] or
generalised application frames [8] might provide considerable assistance. However, selection of the
most appropriate template is difficult especially as reuse repositories increase in size.

Searching and selecting is one part of the reuse problem; however, equally important is matching to
determine the goodness of fit hetwccn reusable component(s) and a new application context. This
paper reports the development of a tool for specification reuse by analogy which addresses one of the
central problems of large scale reuse: the selection and matching of reusable components to a new
application context. The paper is organised as follows: first the schema and models of domain
abstractions are introduced and illuslrated with an example. This is followed by description of the
application of these models in a prototype tool for specification retrieval and matching. The structure
of the tool and its use are briefly reviewed, followed by a discussion of related work.

291

2. T h e A n a l o g i c a l M a t c h i n g Process

The perceived power of analogy is its potential to retrieve knowledge from one domain and apply it
to a different domain [9]. This suggests that analogical reasoning may be able to support reuse across
different problem domains, and has the potential to exploit CASE repositories populated with
specifications representing a wide variety of applications. Many cognitive theories of analogical
mapping exist [10]; however a common factor between the theories is the development of a abstract
knowledge structure which represents an inter linked set of facts common to two or more domains.
Analogical based reuse therefore aims to identify these abstractions, develop a matching process
which can partially automate this task and then a retrieval process which can select appropriate
reusable specifications from a CASE repository. The process is summarised in figure 1 which
illustrates the concept of structural analogy and its application as a matching mechanism for reusable
components. To demonstrate this potential an example of a software engineering analogy is
presented.

Fig 1. Summary of the Process of Reuse by AnalogY'

Use of analogy in the
matching process

Facts describing
new application

New
application
domain

example
analogy

Planets revolve
around sun

0 |
0

Matching to
properties of J

analogy J

(Matching
process

0 0 0
I

Abstract knowledge
structures- shared by matched
domains

Matching to
properties of

ents

~ . retrieval and transfer
f reusable components

j
knowledge structure
domain I- solar system

existing specifications
and reusable software

common abstraction
of orbiting objects~and forces

O
I

0 0 0

knowledge structure
domain 2- atomic structure

0
I

ooo

292

Theatre Reservation/Course Administration Example

The analogy is between a system for theatre seat reservations and a system supporting applications
to a university course. The theatre reservation system allows theatregoers to reserve seats for any
performance. They can reserve one or a block of seats, and seats vary in price. Theatre staff use the
system to reply to enquiries and to manage reservations. A waiting list is created whenever a
performance is over-booked, and theatregoers are transferred from the waiting list to seats when
cancellations are made. The context diagram for this theatre reservation system is given in Figure
2(a).

A university course application system manages appfications to a full-time and part-time MSc
course. The course administrator uses the system to reply to enquiries on place availability and course
requirements and to manage the take-up of course places. Candidate students are offered conditional
places on either course, which both have an upper limit on total places in any academic year. A
waiting list is used for additional students who cannot be offered places immediately. Students on the
waiting list have first option on any places which become available due to cancellations. The diagram
for this system is given in Figure 2(b).

Figure 2. Context diagrams for the Course Administation and Theatre
booking Systems

Figure 2(a) Context diagram for the Theatre Reservation System

Transfer thcat~-gocr fi'om waiting

c, n~t;,,, v [Rese rva t ion I ~ =..._lCustomer
. ~, System / ~ " , ~ k System / tickets]

Add theatre-gcer ~ ~ _ f f
to waiting list

Figure 2(b) Context diagram for the Course Administration System

student from waiting
lace

- - ' - - - - - - - - - ' ~ Administration] offer - - I
~ ~ System /

Add student
to waiting list

Student

293

The two context diagrams (Figures 2(a) and 2(I))) demonstrate the potential reuse which can be
exploited from this analogy. Reuse is also possible during more detailed analysis, between processes
(e.g. reservation of theatre seat~ourse place), data stores (e.g. theatre seat~ourse place) and external
agents (theatregoerkstudent). Although in different domains, the two systems share significant surface
features (e.g. reservations, waiting lists, places) which assist analogical recognition and
understanding. A common abstraction links the two domains, involving a resource (seats, places)
being allocated to clieats (theatregocrs, student applicants).

Further analogies with the theatre reservation and course administration examples can be identified,
for instance car rental and airline seat reservation share significant similarities which make
specification reuse possible. Analogy enables mapping between domains, although to be effective a
set of domain abstractions is required. Reuse of generic templates has been suggested by several
authors [6,10], however templates have a limited reuse value because details have to be omitted
whereas implemented specifications contain additional domain knowledge which can be reused. We
therefore see analogy and domain abstractions are a mechanism for facilitating reuse of matching
specifications rather than providing reusable components per se.

3. Schema and models of domain knowledge.

The analogy matching process utilises partial domain knowledge to reason about the links between
applications. A set of domain abstractions have been devised to support this process. The set of
abstractions, so far, has been targeted on information system rather than real time domains. The
approach is based upon the following propositions:

(i) Application domains are organised into classes sharing general features. Each class level adds more
specialised features to differentiate it.

(ii) Domain classes are distinguished by a small number of key determining features.

(iii) Most software engineering problems can be ascribed to one of a tractably small set of domain
classes.

Domain knowledge is modelled as classes which are specialised by addition of further knowledge to
achieve appropriate targeting in new domains. The schema of knowledge types, as shown in figure
3, is used to define a set of abstract domain models. Currently seven types of knowledge structure
are used:

(a) The structure of the domain. This is knowledge of the objects within domains and the sets they
naturally fall into. The prediction is that people will perceive sets which pertain to physical
structures in the real world. Hence the term 'containment' may be a familiar cue for domain structure,
e.g. stock objects are-contained-in warehouse; students am-contained-in a school.

The system structure describes the object sets implicated in input and output (i.e. changes in object
status across the system boundary) and any major physical entity sets within the system itself.

(b) State transitions which cause objects to change set membership with respect to the domain
structure. Any event which causes an object to change its set membership is a key determining
feature. Inter-domain class differences are critically determined by these state transitions more than
any other feature.

(c) Events: these trigger state transitions. Internal and external events (with an origin outside the
system) are recognised. This enables description of the scope or boundaries of the system.

(d) Object properties. High level properties of an object, focusing in particular on their role within
the system (e.g. resource, mechanism), movement, and other abstract or concrete qualities. Properties
are essentially a type definition of objects, which although currently not formalised, are amenable to
such treatment.

294

Figure 3. Meta-schema of knowledge types and their relationships

Propertics States

c h a n g e /

Transform-
ations

initiate

Even~

L.

have

I

State

areexprcs.~as

are contained in

Goals

expressed with I
respect to

Domain
Stmclme ,v I (Sets)

bership

~ ~ Constraints
, v] transitions 1-" res~ict [

I ale
auached
to

Conditions

The schema is not intended to be a formal representation of domain knowledge, instead it
represents the organisation of predicates which describe facts about a domain model.

I I = schema primitives

= relationships between primitives, the arrow denotes the locus of effect.
(e) Purpose of the system: This is the goal or solution state that the system exists to achieve. Goals
and statements of purpose are difficult to describe formally because thcy are expressed in natural
language, differ between users and may be expressed at a variety of levels and with different degrees
of precision. Consequently goals are expressed as the system state which must be achieve to satisfy a
linguistically expressed goal.

(f) Constraints: Tbese are 'negative rules' which define the object states which the system must
prohibit or prevent from happening, i.e. future states which must not happen

(g) Conditions: Stative information or values held in attributes of an object and other non-object
states (e.g. time, duration) which are evaluated before a state transition can occur.

295

(h) Transformations: Procedures and algorithms which cause a state change in the system.
Transformations are triggered by events and may result in a state transition of an object in the domain
structure.

The components of the schema and their relationships is summarised in figure 3.

Using this schema abstract domain models are defined as an inter-related set of facts, i.e. goals are
linked to states, conditions to transitions, transitions to objects and domain structure. The abstract
domain classes are differentiated by actions leading to state changes of objects with respect to parts of
the system structure. System structure is a set theoretic concept of object-set membership linked to
the transactional purpose of the system. To illustrate the concept, in a renewable resource
management abstraction, of which stock control is a concrete example; sets of objects (products) are
held by suppliers, in an inventory (stock) and with customers (delivered products). A non-renewable
resource management abstraction, of which library loons is an example, can be distinguished from a
renewable resource management abslruction (e.g. stock control) by the key transition of return. An
informal representation of the object-structare-wansition semantics of two abstract domain models is
shown in figure 4. The return action causes the object (library book) to change state from on-loon to
a resource-available state whereas returu in the stock control abstraction is an infrequent and non
mandatory action (see fig 4).

Within each abstract domain class specialisation occurs by addition of schema components. For
instance non renewable resource management applications are specialised by further transformations
to differentiate between booking and hiring systems. Other schema components are used to
corroborate differences between sub classes. Object types, which have been promoted as determinants
of analogical reuse by [6], are categorised according to their role in the domain, for instance stock
items and amine seats both act as resources. This provides another determinant for analogical
matching and similarity evaluation.

System purpose has been identified as important determinant of abstract models [11], so goal related
semantics are defined in terms of states which the system attempts to achieve or maintain. Returning
to the example domains, the stock control system attempts to maintain a minimum quantity of
items-in-stock, while the library system attempts to maintain stock constancy so all the books-on-
loon are returned. Activities (i.e. a set of actions, or algorithms) leading to key state transitions are
determined by system purpose.

Transformations'are a set of operations leading to a state change of objects within a single procedure.
In other words transformations are composed of operations must execute in a single uninterrupted
sequence to change the object's state. Transformations may result in state transitions in set
membership in the system structure; however, conceptually they alter an object's status. Events
caused by the status change may then result in object transition in the system structure. To illustrate
the concept, common transformations in information systems are, scheduling, allocation by
constraint satisfaction, searching for objects, reservation, etc. These result in conceptuai-stative
changes to objects such as 'reserved, found, sorted, scheduled.' Transformations are similar to
'methods' in object oriented specifications or procedures in structured methods.

Other knowledge types (triggers, conditions) play a supplementary role in differentiating domain
classes. Equivalent state transitions can be distinguished by their triggering events. Each transition is
either triggered by the information system or by events beyond that system, which have important
influences on the information system. For instance, an allocation actioo in the airline booking
domain can be differentiated from allocation of stock to orders hi a warehouse domain because the
former allocation is triggered by the information system while the latter is not.

Users are predicted to recognise objects and purpose as the most 'natural' descriptors of domains,
hence these features should be more easy to elicit [12]. However, given the ambiguity inherent in
many teleological descriptions, system structure and state transitions are predicted to be the most
reliable determinants of domain identity. A composite of system structure and related transitions
could be taken as the domain/class 'key' in database terms. Matching rules and heuristics enable
selection of the appropriate domain abstraction for a set of predicates describing a new application.
Use of multiple heuristics and a rich schema for the knowledge base enables sophisticated search
strategies to be generated thus avoiding the computational inefficient, and often intractable,
approach of linear searching multi variate sets of properties, typified by faceted classifieation.

296

Fig 4 Abstract Domain Models: Object Allocation and Object Hiring Abstractions

~rchive Remove

I D

%
[]

Objects pool

(a) Object allocation, e.g Stock control

Delivery

[]
Return

essential difference
-return Iransition-
linked to system goal

Add new
objects "~k

T

Essential actions which result in state transitions
requests<client, obj-pool, object>
requests<system, source, object>
sends<system, client, object>
sends<source, obj-pool, object>
contains< obj-pool, object>

(b) Object Hiring- e.g. Library loans

Loan

aia
Objects pool

Essential actions which result in state transitions:

loan-hiring <system, client, object >
return <client, system, object>
addition <source, obj-pool, object >
remove <obj-pool, archive, objects >

The domain abstractions are represented semi-formally as sets of typed Prolog predicates. This
enables semantic networks to be constructed to store each abstraction a composite knowledge
structure of facts, as defined by the schema, and relationships between those facts. The matching
engine then searches on the fact primitives in the models, their f'wst order and second order

297

relationships with powerful algorithms which utilise the syntactic and semamic properties of the
models.

Effective specification reuse requires intelligent tool-based support for the matching process in large
scale repositories. However successful reuse also requires an intelligent reuse advisor to prevent
specification copying and enhance understanding of both the analogy and the reusable domain [13].
The intelligence of this advisor is based upon cognitive task models of how software engineers do and
should reuse specifications. The intelligent reuse advisor (Ira) has three major components which are
examined daring the remaiqder of this paper.

4. T h e R e u s e A d v i s o r

Specification reuse involves three processes: categorisation of a new problem, selection of candidate
specifications belonging to the same category and customisation of the selocted analogous
specification to the new domain. Ira has three main components which support these processes (see
figure 5):

Figure 5 - overview of interaction of the three components
which constitute Ira (darkened indicates implemented in the prototype)

explanations &

diagrams of [::.;:,,: :~ ~:: : iii:i::.::i:~.:~i~iii:!:::i:D~tdligeni~e~:.iiiz
abstractconcepts I~ I

[.I Problem ~::-ttT: ~+t-:!t 7--=:~ttt:?:~:::~t Analogy t.,~i
identifter engine If=:

(description

I
~,..~ificatiOnexplanations of ~ SP aad~ii~~ iiiiiiiiiiiii~iiiiiiiii ::ii!iii::iil

analogous mappings ~: !
& guidance during I" :::: : : : : : ::.:.: ::.mappings::::: i:. : . : : ::::i:::::i

reuse

* The problem identifier obtains a description of a new target problem from the software
engineer then explains retrieved abstract domain models so that the categorisation of the new problem
can be validated.

* The specification advisor controls interaction between Ira and the software engineer during
selection and customisation of an analogous specification. The diagnostic module attempts to identify
software engineers' misconceptions about the analogy so that appropriate support can be given.
These misconceptions are inferred from a catalogue of error types derived from empirical study
[12,13]. The explanatory module acts as the analyst's guide and teacher during specification reuse.
The analyst is led to reuse a specification by strategies which encourage understanding and transfer of
the analogy, and assisted with explanations of analogous mappings of the reusable specification
inferred by Ira.

* The analogy engine reasons with critical problem features to match new problems to
abstract domain models, retrieves analogous specifications of the same category and reason alongside
the software engineer daring specification customisation. The role of the analogy engine is
constrained by the domain "knowledge available to iL There have been a number computational
models of analogical and case-based reasoning [14,15,16,17], however they assume perfect and
complete "knowledge of the domains. The analogy engine can reason about many domains because it

298

is equipped with partial domain knowledge in an abstract form, although it is limited by the critical
problem features represented in the abstract domain models which it possess (see section 3).

The problem identifier, specification advisor and analogy engine components are described in more
detail to demonstrate how analogous specifications are retrieved and reused by Ira.

4.1 The Problem Identifier

The problem identifier supports elicitation of a new problem description and explanation of abstract
domain models retrieved by the analogy engine. We view matching of new applications to domain
abstractions as an iterative process of retrieval and unders~lding involving:

elicitation of facts about the new problem,
retrieval of abstract domain models to match those facts by the analogy engine, and
explanation of the abstract domain models to the software engineer.

Initial interaction with the software engineer aims to elicit key problem features which map to
critical features of abstract domains. The problem identifier provides a predefined set of predicates to
model relationships between domain objects, so the software engineer is required to partially abstract
their model of the domain during description. Descriptions, justifications and examples are used to
explain retrieved abstractions so that the software engineer can select or reject them as representative
of the new problem, as illustrated in fig 6 which shows a sample dialogue session. Explanation
strategies help the software engineer understand and abstract concepts which critically determine an
analogy, while the specification advisor explains analogous mappings between the new problem and
the selected analogous specifications.

4.2 The Analogy Engine

Currently the analogy engine employs structure-matching [18] and heuristic-based reasoning to
identify analogical matches between a problem description and a set of "known domain abstractions
[12]. Stracture-matching identifies an interrelated network of analogical mappings [9] between a
problem description and candidate domain abstractions using a structural coherence algorithm similar
to the Structure-Mapping [18] and Analogical Constraint Matching Engines [19]. The analogical
matcher maps semantically-equivalent predicates representing critical knowledge structures identified
by our model of software engineering abstractions, including state transitions and object structural
knowledge (see Figure 3). The outcome from this process is retrieval of one or more candidate
abstract domains for the new problem.

The analogy engine also employs heuristics which discriminate between abstract domain models.
Hierarchical structuring of the abstract domain models ensures that the analogy engine only attempts
to match likely abstractions for a new problem. The fact acquisition dialogue requests fact-types
motivated by the theory to help discriminate between domains, e.g. critical state transitions and
object set membership. Search is thus driven by predicted attributes of superordinate classes in the
abstract domain hierarchies and then refine down a selected hierarchy to match an appropriate domain
model as further facts are acquired from the user. Each domain model in the hierarchy inherits all the
features of its parent and speeialises it to represent a sub-type of that software engineering problem.
Practical experience with the analogy engine revealed that the similarities between abstract domain
models at lower levels in the hierarchy indicated the need for a more finely-toned retrieval mechanism.
The abstraction selector differentiates between candidate abstractions using a set of heuristics which
identify critical differences between abstract domain models at each sub-level in the hierarchy. The
heuristics calculate the degree of difference between two abstract domains as a percentage of the total
differences possible.

Successful eategorisation of the target problem is followed by retrieval of reusable specifications
belonging to the same domain abstraction using similar analogical matching techniques. The result
of this matching process is the retrieval of one or many candidate reusable specifications ranked by
their similarity with the target problem. Ranking is achieved by matching analogous features shared
by the new and reusable domains, for example, similarities between the physical structure of both
domains.

2 9 9

Figure 6 Explanation windows representing a retrieved abstract domain class for a stock control
system. The three windows, from top to bottom, represent: the critical abstraction for the analogy;

a likely physical application for the domain; an alternative, analogical example of the domain

q~ File [d l t Search Windows Fonts EUeI Objects Other Inputs Coolrel 4 :3

Explaln Structured Resource Mgml Problem
Tim Strucblred Non-l'p~evable R~sourv~

~ m e n t Problem t~.MP'I

T~e ~ n - ~ m ~qlb~ RMP ~p~vJ~lsts pmbkms
~wlw4 In z r l l l n ~ �9 s~ of obJ~c~. TMs s ~ B
d/vM*4 m~o m ~ sm~ slots, ew~ o~ which r
oS~s,

~, obJec~ lesve etch smudl slot 1~ go lnlo 1he ~ M
lep~t~b~be4 b~ objects f~om �9 dilfemn~ soulc~.
rhich heave ~e sm~ slot ~ beyond ~he

usocinte4 Inform~on =]~.=~
~e~ of obkcU In ~ny sm~ slot r~cbe~ �9
~ u n q uan~ity of ob~ec~) tt~ s}uSem

S ~=t of obf*c~ [mm t~ ~ r ~ ~ ~ t
t . l ~ a t ewlm 2bit It rl~t]l Ilo~S
r

~t~e f ~ e o n s y ~ b lo e~im

1] -
m ,

~ ~ . F i l e Edit Search Windows Fonts Evol ObJects I tber lnputs Coni) 'n l :

pmbbm. A ~ho~r coo~z~ s~k ~ is USed

~ ~ d from s lo t s t o r e I

~ . d~ough ~'~ ~ - ~ ~h~r* s p e c e w o r l d ~ - ' ~ J
It ~ d . It is~w~ t~e w t ~ o u s e ~0 t ~ s m a t ,n ~1
~ y . . T ~ _ _- ? ~1
lnforn~on s~sSem mOmtocs ~ of stockln the bins The folio

* S~ock ~ ~o Objects,
* W m b ~ s � 9 m~pS tO ~ ,
* StoCk I n m~ps to S~l~ot,
*Suppb mapSto S p i e l ,

S~:ock I~tldin ~ t a b

m Structured Non-renemable Resource Problem--'Help W|ndow = ~ ~

- v l ee

M a r ~ z e m e n t P r o b l e m f l~AP~ I J

The r ~ r r z l n e ~ h b RMP ~epmsents ~ types of r sl0ck consul I I
plobkms. The foHovh~ example desc/Ibes one ~s~nce of LbLq stock ~ I
coa~l plob)em; ~llf~is~ a s tack of otf~ce s ~6onozy. I I
A Im~e ol~anlsilion ~aes an ~ormA~n system lo eonm~l use of its] I
StAtfOl~-y. When leWIS of elch i~u~ (e.g. blms) lunch a glvell ~Mt a l~w I I
quantity of ~t Ibm is onl Jn~ from b~ relevant Vho]u~rs.] I
5t~ff in b~e oW:attt~1~on use stleomcy from the r ~ necessiuT,] I
sod once �9 week ~e staUov~yls chec~d to ideally cuaeot isveis of ~ J

I ~ t t ~ and prmts supp)lor oldlm.

The fo~win~ m a p p ~ s exbc
*Sto~mzy maSSto Objects, J]
* ~lot maps t 0 0 c g a ~ a s ~ o , J I
* Smldlolot ~tpS ln C o n t ~ L ~ e r o f e ~ h S t t ~ j p e , l I
* Spscel mnpsto ~tsdomuySupplisc L ~ I
* Sp~e2 maps Io Fn~plo~Rs,] J

" ~ ' - I ~ " ~ �9 i l

i .~....ock

300

4.3 The Specification Advisor

This work is currently in the specification stage, so it is reported to give an overall picture about
how the reuse assistant may function. Implementation may change some of the details. The
specification advisor must support the software engineer during two tasks: (i) specification selection
from several candidates, and (ii) specification customisation to fit the new domain. Both tasks require
the software engineer to have a good understanding of the specifications, so the specification advisor
will explain relevant analogies to the software engineer. In addition, during specification selection,
the differences between candidate analogies will be described. Tutoring strategies to support the
analyst during both tasks are being developed, although only strategies which support understanding
and reuse of a single specification are described in this paper.

The specification advisor will explain and guide the software engineer during analogical
comprehension and transfer using strategies derived from eanpirical studies of expert software
engineers during successful reuse of mmlogous specifications [20,21]. The system employs plan-
based, context-independent reuse strategies to ensure that it has control over its environment. A
single, prescribed strategy guides inexperienced analysts to reuse specifications, while explanatory
and error-correcting tactics support analyst's individual differences within each step of the reuse
strategy.

Prior to specification reuse the software engineer will be encouraged to develop a basic analogical
understanding necessary to enhance and maximise effective customisadon of the specification. This
analogical understanding concentrates attention on critical domain objects, functional goals and the
boundaries of the problem, and builds on software engineer's understanding of the abstract domain
developed during problem categodsation. The software engineer is assisted by explanatory dialogues
and Imrrative descriptions of the reusable problem, and diagramming aids are provided to graphically
represent the analogy. Software engineers mappings can be evaluated by using analogical mappings
inferred by the analogy engine and the empirically-based error library [22]. Subsequent feedback from
the tool can be used to generate a correct understanding of the analogy.

The specification advisor will control the software engineers' access to the specification to encourage
further analogical understanding and inhibit mental laziness. Mental laziness is discouraged by
consideration of all reusable components and by exposing only the relevant, analogous components
in the specification. Learning of individual analogical components is iterative following other studies
[23,24,25,26] which suggest an itcrative approach promotes more effective problem understanding.
Coupling the explanatory dialogue with gradual exposure of the specification seems to be the most
effective strategy to encourage analogical understanding.

To summarisu, the specification advisor attempts to guide and assist the software engineer by
dialogues based on cognitive models of successful reuse behaviour. It employs intelligent tutoring
techniques to assist software engineers to overcome the problem of understanding an unfamiliar
specification, and uses context-independent strategies to lead the analyst through the complex transfer
and testing stages.

5. I m p l e m e n t a t i o n o f t h e P r o t o t y p e R e u s e A d v i s o r

A partial prototype of Ira as shown in Figure 6 has been implemented in LPA Prolog on an Apple
Macintosh FX. The problem identifier and analogy engine components were evaluated during several
studies. The analogy engine was populated with 10 hierarchically-sffuctnred abstract domain models
supported by approximately 30 heuristics identifying critical differences between them. It has proved
effective at retrieving abstractions given only partial or ambiguous problem descriptions. User studies
with the problem identifier revealed the need for visuaiising critical problem features, so the problem
elicitation dialogue was modified to encourage more problem visuallsation. Subsequent studies
indicated that greater problem visualisation enhanced problem description and permitted Ira to retrieve
the correct domain abstractions in 75% of trials.

6. D i s c u s s i o n

Specification level reuse can help to overcome the considerable difficulties experienced by
inexperienced software engineers during the early stages of software development [27,28]. Formation
of mental models is necessary to understand a domain, however as Young [29] and Sein [30] have
reported, mental model formation can be error-prone and hard. In addition Sutcliffe and Maiden. [20]

301

found that initial problem scoping was important in determining success for inexperienced software
engineers. Reusable specifications could reduce the analyst's menial load during model formation.
Evaluating candidate designs in new scenarios is a key element in successful software development
[31,32], hence analogy may help development of alternative scenarios. Reusing specifications will
inevitably encourage a more prototypical approach to requirements analysis, as suggested by Luqi
[33] and Balzer et al. [34]. Prototyping in turn may encourage more and frequent evaluation of
requirement specifications, implying more indirect benefits from specification reuse.

Successful reuse can also enrich the software engineer's own knowledge base, providing experience
necessary to solve similar problems or explain further analogous reusable specifications. Viewing
CASE environments as both problem solving and learning tools may ease the skills shortage,
providing knowledge gained from experienced software developers to help less experienced software
developers practice reuse and requirements engineering. However tool support for matching, retrieval
and understanding is vital. Analogical based matching enables reuse to effected across domains at the
problem level, whereas generic application frames [8] are restricted to evolutionary style reuse within
a domain. It also enables active support for matching which can not be achieved by faceted
classification schemes [35,36].

However a cautionary note should be sounded. Dependence on specification reuse could discourage
innovation, and bring about the mental laziness which we are seeking to avoid. The reuse advisor
tool is designed to discourage such practices, based on extensive empirical studies of software
engineering's behaviour and reasoning during reuse [13,27]. These studies have proved invaluable in
anticipating problems such as mental laziness, as well as providing models and strategies to
encourage good design practice. Another open question is the effectiveness of transfer in analogically
mediate, or other reuse. Our current system matches on structural knowledge combined with other
attributes of what could be expected from the semantics of conceptual models in development
methods (e.g. event, entity, relationship, etc. primitives). So far we can achieve matching and
transfer of specifications which approximate to a medium sized entity relationship diagram. However
transfer of the more dynamic aspects of systems is more problematic [37] so further investigation is
required to support transfer of different types of knowledge contained within specifications. We intend
to elaborate our model of domain abstraction to deal with matching at different levels of granularity
and for different conceptual model components.

Future research directions are two-fold. First, the matching process is dependent on the set of domain
abstractions. The completeness and validity of known abstract domain models must be evaluated
through case studies of software engineering problems encountered in industrial organisations.
Further validation will be achieved by formal representation of the models in a suitable language, e.g.
Z [38] to test for isomorphism, consistency and redundancy. The coverage of the current set of 10
domain abstractions is being increased by study of new system types (e.g. real time, process control
applications). Secondly, further evaluation of the problem identifier is necessary to assess its
usability when eliciting complex application descriptions from inexperienced software engineers.
Finally, the specification advisor must be implemented to assess the effectiveness of explanation
tactics and reuse strategies described in this paper. Evaluation of such a prototype will provide an
important feedback of a collaborative assistant approach to specification reuse, with implications for
future research directions.

Acknowledgements

Neil Maiden is a SERC supported research student. The authors wish to thank students on the MSc
in Business Systems Analysis and Design who helped evaluate the Reuse Advisor.

References

[1]. Ryan K., 1988, Capturing and classifying the software developers expertise, Proceeding of the
International Workshop on Knowledge-based Systems in Software Engineering. UMIST, March
1988.

[2]. Finkelstein A., 1988, Re-use of formatted requirements specifications, Software Engineering
Journal, September 1988, pp 186 - 197.

[3]. Karakostas V., 1989, Requirements for CASE tools in early software reuse, ACM SIGSOFT
Software Engineering Notes, Vol 14, No 2, pp 39 - 41.

302

[4]. Arango G., 1987, 'Evaluation of a Reuse-based Software Construction Technology', internal
document, Department of Information and Computer Science, University of California, Irvine.

[5]. Prieto-Diaz R. and Freeman P, 1987, Classifying software for reusability, IEEE Software,
January 1987, pp 6 - 16.

[6]. Harandi M.T. and Lee M.Y., 1991, Acquiring Software Design Schema: A machine learning
perspective. In Proceedings of 6th Conference on Knowledge Based Software Engineering, pp239-
250, Syracuse, NY, Sept 1991.

[7]. Reubenstein H.B., 1990, 'Automated Acquisition of Evolving Informal Descriptions', Ph.D.
Dissertation (A.I.T.R. No. 1205), Artificial Intelligence Laboratory, Massachusetts Institute of
Technology.

[8]. Constantopoulos P., Jarke M., Mylopoulos J., Vassiliou Y. (1991) Software Information Base:
A Server for Reuse. Submitted for Publication. Technical Report, FORTH Rea Inst, Univ of
Heraklion, Crete.

[9]. Gentner D., 1983, Structure-mapping: a theoretical framework for analogy, Cognitive Science 7,
pp 155 - 170.

[10]. Russel S.,1988, Analogy By Similarity, Analogical Reasoning, Kluwer
Academic Publishers, 1988

[11]. Maiden N.A.M., 1991, Analogy as a paradigm for specification reuse, Software Engineering
Journal 6(1), pp 3 - 15.

[12]. Maiden N.A.M. & Sutcliffe A.G., in press, Analogous matching for specification reuse. To
appear in CACM

[13]. Sutcliffe A.G. and Maiden N. (1990); Specification reusability: Why tutorial support is
necessary. In Proceeding SE 90, BCS Conference on Software Engineering. Ed Hall P.A.V., pp 489-
509, Cambridge Univ Press.

[14]. Alterma,i R., 1986, An adaptive planner, Proceedings of AAAI-86, 5th National Conference on
Artificial Intelligence, Philadelphia, pp 65 - 69.

[15]. Hammond KJ., 1986, CHEF: A model of case-based planning, Proceedings of AAAI-86, 5th
National Conference on Artificial Intelligence, Philadelphia, pp 267 - 271.

[16]. Hall R.P., 1989, Computational approaches to analogical reasoning: a comparative analysis,
Artificial Intelligence 39, pp 39 - 120.

[17]. Schank R.C. and Leake D.B., 1989, Creativity and learning in a case-based explainer, Artificial
Intelligence 40, pp 353 - 385.

[18]. Falkenheimer B., Forbus K.D. & Gentner D., 1989, The slracture-mapping engine: algorithm
and examples, TR No. UIUCDCS-R-87-1361, Dept Computer Science, University of Illinois at
Champaign.

[19]. Holyoak K.J. & Thagard P., 1989, Analogical mapping by constraint satisfaction, Cognitive
Science, pp 295 - 355.

[20]. Sutcliffe A.G. and Maiden N. (in press); Analysing the Analyst: Cognitive models in software
engineering. To appear in Intemational Journal of Man machine Studies.

[21]. Maiden N.A.M. & Sutcliffe A.G., manuscript in preparation(b), Cognitive models of expert
software reusers.

[22]. Johnson W.L., 1990, Understanding and debugging novice programs, Artificial intelligence

303

42(1), pp 51 - 97.

[23] Lewis M.W. and Anderson J.R., 1985, Discrimination of operator schemata in problem solvers,
Journal of Experimental Psychology: Learning, Memory and Cognition, Vol 8, No 5, pp 484 - 494.

[24]. Miyake N, 1986, Constructive interaction and the iterative process of understanding, Cognitive
Science 10, pp 151 - 177.

[25]. Burstein M.H., 1988, Incremental learning from multiple analogies', in Analogica (Research
Notes in Artificial Intelligence), edited by A.E. Prieditis, Pitman, London, pp 37 - 62.

[26]. Jansweiller W., Elshout J.J., and Wielinga B3., 1989, On the multiplicity of learning to solve
problems, in "Learning and Instruction. European Research in an International Context. Vol II &
III", ed. by H. Mandel, E. de Corte, N. Bennet and H.F. Friedrich, Oxford: Pergamon.

[27]. Sutcliffe A.G. and Maiden N.A.M. (1991), Analogical software reuse: Empirical investigations
of analogy based reuse and software engineering practices. Acta Psychologica 78(1-3), pp 173-197.

[28]. Maiden N.A.M and Suteliffe A.G. (in press); Analogously based reusability, to appear in
Behaviour and Information Technology.

[29]. Young R.M., 1983, Surrogates and Mappings: two kinds of conceptual mappings for
interactive devices, in "Menial Models", ed. by D. Gentuer and A.L. Stevens, Lawrence Erlbaum
Associates, pp 35 - 52.

[30]. Sein M.W., 1988, Conceptual models in training novice users of computer systems:
effectiveness of abstract vs analogical models and influence of individual differences, Ph. D.
Thesis, School of Business, Indiana University, January 1988.

[31]. Abelson B. and Soloway E., 1985, The role of domain experience in software design, IEEE
Transactions on Software Engineering, Vol SE-I 1, No 11, November 1985, pp 1351 1360.

[32]. Guindon R. & Curtis B., 1988, Control of cognitive processes during software design: What
tools are needed ?, Proceedings of CHI '88 conference: Human Factors in Computer Systems, edited
by E. Soloway, D. Frye and S.B. Sheppard, pp 263 - 269, ACM Press.

[33]. Luqi, 1989, Knowledge-based support for rapid software prototyping, IEEE Expert, Winter
1988, 9-18.

[34]. Balzer R., Cheatham T.E. and Green C., 1983, Software technology in the 1990s: using a new
paradigm, IEEE Computer, November 1983, pp 39 - 45.

[35]. Boldyref, C., Elzer, P., Hall, P,, Kabber, U., Keilman, J. and Witt J.,. 1990.
'PRACTITIONER: Pragmatic support for the reuse of concepts in existing software'. In Proceedings
SE 90, BCS Conference on Software Engineering. Ed Hall P.A.V., pp 574-591, (Cambridge Univ
Press. 1990)

[36]. Prieto-Diaz R., 1991, 'Implementing Faceted Classification for Software Reuse',
Communications of the ACM 34(5), 88-97.

[37]. Sutcliffe A.G. (1991), Object oriented systems analysis: The abstract question. In proceedings
of IFIP working group 8.1. Conference on Object oriented approaches in Information System
Development. Eds Van Assche F., Moulin B., and Rolland C., pp 23-37, North Holland

[38]. Spivey, J.M.,1988, The Z notation: a Reference Manual. Prentice-Hall International,
Englewood Cliffs, NJ

