
OASIS: An Object-oriented 
Specification Language 

Oscar Pastor Lopez 1 
Fiona Hayes 2 

Stephen  Bear 2 

1 Departamento de Sistemas Informaticos y Computacion (DSIC) 
Universidad Politecnica de Valencia 

Camino de Vera S/N 
Apartado 22012 

46071 Valencia.- Spain 
phone: +34 6 3877350 

fax: -t-34 6 3877359 
email: plo@dsic.upv.es 

2 Hewlett Packard Labs.- Bristol 
Filton Road, Sotke Gifford 

Bristol UK 
BS12 6QZ 

emaih fmh~hplb.hpl.hp.com 
email: sb@hplb.hpl.hp.com 

Abstract 
This paper introduces Oasis, a language for specifying object-oriented 

information systems using a deductive (temporal) approach ([3]). Oasis 
extends first versions of OBLOG ([17]) and MOL([12]), a trace based 
specification languages, with: 

1. triggered relationships which enable specification of active objects 
2. supporting rapid prototyping by generating the First Order Theory 

formally equivalent to a specification. 
3. introducing class operators within an algebraic formal environment 

to deal with object reification. 

1 I n t r o d u c t i o n  

Object-oriented approaches are increasingly popular as a useful paradigm cov- 
ering the classical software development steps of analysis, design and program- 
ming. Several notations and methods are provided for object-oriented analy- 
sis and design[4],[2],[12],[15] in addition to a well-known collection of object- 
oriented programming languages such as C++[18] and Smalltalk-80 [7]. 

The object-oriented specification language MOL[12] defines the object-oriented 
paradigm by combining general system theory adapted to information systems[8], 
abstract object types of OBLOG[16] and clausal or equational logics. The op- 
erational semantics of the underlying logics provides an environment in which 
specifications of passive Information Systems can be executed by generating the 
Logic Program that represents the First Order Theory equivalent to a Specifica- 
tion ([12]). However, MOL cannot deal with the specification of active objects. 

This paper presents Oasis, a language for the specification of open and active 
information systems with the following most relevant properties: 



349 

�9 extends MOL by defining triggered relationships, a new kind of active re- 
lationship between objects. 

�9 uses a declarative approach for specifying Information Systems. 

�9 defines class operators in an formal algebraic environment to deal with 
object reification 

�9 allows rapid prototyping by generating and manipulating the First Order 
Theory equivalent to an Oasis Specification, as shown in [14]. 

In this paper, we focus on the set of notations that Oasis provides for developing 
specifications of object-oriented information systems. It is intended as the basis 
of an automated object-oriented software production environment. 

2 The Object-oriented Model  

Our objective is to develop an environment for specifying o p e n  ac t ive  infor-  
m a t i o n  sy s t ems .  

First we define our terms. According to IFIP WG 8.1 definitions[8], a system 
is a collection of elements called the s y s t e m  d o m a i n  which has at least one 
systematic property in relation to the environment that is not possessed by any 
of the elements. A s y s t e m  view is the set of elements of the system domain, 
the domain of the environment and the relationships between these elements 
which are necessary to explain the system. 

The task of the analyst in object-oriented system specification is to specify 
a system view of the object system in order to produce the c o n c e p t u a l  m o d e l  
speci f ica t ion .  This approach is useful as object-oriented concepts can closely 
model real-world phenomena. Using object-oriented approaches, the semantic 
gap between what the system is and how it is to be represented is narrowed. 

An object is a self contained operational unit, which has properties called 
a t t r i b u t e s .  It has a state that is the state of the set of its attributes. Each 
object has a name that identifies it during its existence. 

Change of state is a fundamental concept. Objects may change state. The 
creation and destruction of objects change the state of the system. Individual 
objects may also change their state i.e. the value of their attributes. A p roce s s  
causes changes of state in an object. It is limited in time. The elementary parts 
of a process responsible for a single unified change of state are called even ts .  An 
event is an abstraction of a change of state in the object system. It is discrete, 
has no duration and occurs at a certain point in time. 

An object may be active or passive. We say that an object is ac t ive  if is 
seen as involved as necessary for a change of state to take place. A pass ive  
object is one that cannot be seen as active within a relevant period of time. 

A t r i g g e r  is a relationship between an event and one or more other events 
that on a certain level of abstraction expresses the cause for the proper agents 



350 

to carry out the execution of such other events. Potentially, every condition on 
events and/or  attributes may serve as a trigger. 

D e h a v i o u r  is the dynamic manner of an object. The object exists during 
a temporal period, its life, that has a limited duration. Events happen at a 
certain point of time. 

Objects belong to types .  A type is a set of objects composed by the universe 
of objects of a class. A class is a set of properties which characterises the 
structure and behaviour that a collection of objects share. 

In this environment, the linguistic operator 'instance of' works on a class 
and yields a member of the corresponding type as the result. The operator 
'population of' yields the type for a class. We may have classes and subclasses 
denoting types and subtypes. Subtype populations are subsets of the supertype 
populations. Subclasses are defined by adding more properties from the super- 
classes. We define generalisation/specialisation as relations between classes and 
subclasses at the same abstraction level. 

In the following section, we describe the language (OASIS) ,  intended for 
the executable specification of open and active information systems. 

3 Object-oriented Representation of Informa- 
tion Systems 

3.1 Introduct ion 

An object has two aspects; structure and behaviour. The structural aspect 
defines the object composition. A simple object's structure is given by the 
corresponding typed attributes. In complex classes built using class operators, 
the structure is defined by the composition of component class structures. The 
behavioural aspect alludes to the object life represented by the set of events and 
admissible traces. An observation function relates both aspects. The structure 
of an object is expressed as a function of its behaviour. 

3.2 Class definition 

An object class may be formalised as a 4-tuple (X,A,T,ob) where: 

�9 X is the event set, including private and shared events. Private events are 
declared in only one class and participate in the traces of objects of only 
this class. Shared evenls must be declared in more than one class. They 
will form part of the traces of objects of all the classes in which they are 
declared. 
Events have parameters. In particular private events have always as the 
first parameter a surrogate value which identifies the object to which the 
event belongs. The parameters of a shared event must include a surrogate 
value for each object which shares the event. 



351 

�9 A is the typed attributes set, including cons tant  a t tr ibutes  (those whose 
values do not change during the object life) and variable at tr ibutes  (those 
that change depending on event occurrence) 

Every object instance has to have its own and unique surrogate identifying 
it during its life. This surrogate will be assigned once the object is created, 
by means of the corresponding object class creation event occurrence. The 
surrogate or key is defined as a combination of constant attributes. 

Each attribute has a parameter representing the object owner class. The 
parameter is a value of the surrogate data space. Attributes are typed: 
every attribute takes its actual value from its type. 

�9 TC X* is the lifecycle set, equivalent to the admissible event sequences. 
They will represent the possible object instances. 

Every object trace will be made up of events of the event set X of its 
corresponding class. The precise specification of the correct traces for a 
class characterises behaviour. 

Each trace representing an object instance will be composed by an initial 
creation event, assigning to the object its surrogate and constant attributes, 
an adequate sequence of object class event occurrences and finally, a (op- 
tional) deletion event finishing its existence. All the events composed in 
an object trace will have as one argument the corresponding object key 
surrogate. Moreover, each event of the trace has the same key surrogate. 

The statement of what we mean by adequate for traces will describe, as 
said before, the object behaviour. 

�9 ob : T --~ obs (A)  is the observation function. Using it we will obtain for a 
given trace representing an object its corresponding set of pairs attribute- 
value obs(A) giving us the object attribute values as a function of the event 
sequences. 

Classes are built over domains. Domains contain a set of values and a set 
of operations on these values. The domain type is the carrier set of the corre- 
sponding abstract data type. Domains denote data subspecification for classes 
and are used for object surrogates and attribute types. Their instances always 
exist, they are neither created nor destroyed and they do not have a changing 
state. Examples include the class Nat and Bool with obvious types {0,1,2...}, 
{true,false}. 

If a class has events and attributes, and it is not built using class operators, 
it is an elementary class. Complex classes are built by combining elementary 
classes using the given class operators. 

A conceptual schema for an information system can be incrementally built 
by combining classes. It is defined as the resultant class given by parallel com- 
position of all the objects in the system. Its corresponding 4-tuple definition 
will have as A the set of all attributes of all defined classes, as X the set of all 



352 

events, as T the interleaving of the object traces representing all the system life 
and as ob the observation in a given instant of the state of the object society. 

An object is represented by a set of observable at tr ibutes over a life made 
up of its event trace. We can describe its structure in terms of its set of events 
and attributes, and its behaviour by its trace. The trace can be expressed in 
process algebra[5],[10], using petri nets or by specifying preconditions of events. 

The link between structure and behaviour is given by the o b s e r v a t i o n  
f u n c t i o n  1 ob which defines the set 'obs' of object attributes-value pairs in the 
observed state. An observation indicates values for some of the attributes. An 
attr ibute has an unique value, so it may appear at most once in an observation. 
If an at tr ibute value is undefined, it does not appear. The empty observation 
thus expresses that all attributes are undefined. An empty trace e expresses 
that  the object remains nonexistent. The observation of a nonexistent object  is 
always empty. 

For each at tr ibute ai, we assume a data type type(ai) which determines the 
values ai can have. Since object universes are always represented by domain 
values (due to its corresponding data  type key surrogate space), the case of 
object-valued attr ibutes is included. 

The observation function can be implemented in two ways. In a query- 
oriented system, the occurrence of an event triggers a change of state of the IS. 
The event occurrence triggers changes in a forward inference style. In an event- 
oriented system, event occurrences are stored and the observation function is 
evaluated by backward inference. 

4 An Example: Alarm Clock System 

Consider an alarm clock system composed by three object  classes: an a l a r m ,  a 
w i n d o w  and a c lock as our example. An alarm can open and close a window. 
When the alarm rings it opens a window. When the alarm is not ringing the 
window is closed (iconised). The alarm checks the clock for the actual time. 
When the alarm time is reached, the alarm causes the bell window to be opened. 
If the alarm is not stopped, the bell window is closed after a fixed duration. 

Every change of the system state is due to an event occurrence. For example, 
in order for an alarm to move from quiet to ringing an o p e n w i n d o w  event must 
be activated. 

An alarm is initially off and can be set. Once set by means of a se t  event 
it may be cancelled with a cance l  event occurrence. In the ringing state the 
window is closed after a fixed duration which causes a c l o s e w i n d o w  event 
occurrence. A user can stop the alarm by explicitly activating a s t o p  event. An 
alarm must be in a quiet state before an alarm setting can be cancelled. Each 

lWe haven ' t  studied the extension of our model  to observat ion relations. This  is an inter- 
esting issue to explore. 



353 

event occurrence has an associated precondition that must be satisfied in order 
to activate it. 

Each clock instance is related to a set of alarm instances, giving them the 
actual time continously. This time is represented by a t i m e  variable at tr ibute 
that gives us the 'now'. The passing of time is represented by t i m e _ u n i t  event 
occurrences. 

Window instances will be identified by a bell identifier value. They may con- 
tain text written by repeated t y p e  events. Their o p e n w i n d o w  and c losewin-  
d o w  events shared with alarm instances will respectively open and iconise the 
window. 

Next, we present the provided interaction mechanisms between objects. We 
will use and develop this example in the rest of the paper. 

5 Interaction between Objects 

There are two interaction mechanisms between objects: 

1. e v e n t  shar ing:  Shared events are those belonging to more than one class 
event set. They participate in the life cycles of the classes sharing them. 
When a shared event happens, it is added to all the traces of the relevant 
class instances sharing it. 

In our example we will have two events o p e n w l n d o w  and c l o s e w i n d o w  
shared between the a l a r m  and w i n d o w  classes. Each occurrence of them 
will appear in the traces of objects of both the alarm and window. 

Shared events will have as first arguments the identifiers of all the objects 
that  are sharing the given event. 

2. t r i g g e r e d  re la t ions :  Objects in our object society can have active re- 
lationships between them. A typical case is when an event occurrence 
is the cause of others event occurrences. We state these ~riggered events 
by declaring the so-called triggered relationships, that  will show us which 
events occur in an automatic way when another event (the trigger) is ac- 
tivated. 

Any event belonging to a class can trigger events of any other class if 
some optional stated preconditions holds. For example, in the alarm clock 
system, a c l o s e w i n d o w  shared event occurrence is triggered when the 
alarm is stopped by a s t o p  event occurrence, As c l o s e w i n d o w  is a shared 
event between the alarm and window classes, triggering it adds it to both 
the relevant alarm and window traces. 

Triggering relationships are expressed by 

el /e2[if  pc2] 

meaning that an event el  occurrence will trigger an event e2 if the precon- 
dition pc2 (if present) is satisfied. 



354 

A similar notion of triggers is used (in a Data Base environment) in OZ+ 
([19]), an Object-Oriented Database System that introduces the concept of 
self-triggering rules as parameterless rules that execute whenever all their 
statements are executable. 

Also in a Data Base context, Ode ([6]) declares triggers in a class specifi- 
cation, by defining conditions and its related actions. In terms of Oasis, 
conditions are event's occurrences and the subsequent action is the trig- 
gered event. 

In both cases, a main difference lies in the declarative and deductive speci- 
fication style used by Oasis contrasting the dynamic approach used in OZ+ 
and Ode. 

These two mechanisms of interaction between objects will give us the key for 
expressing the traces defining the active behaviour of a system. 

6 Representat ion of the Observation Function 

The last component of our object class definition is the observation function oh. 
Given a trace t E T, oh(t) will map the attribute names of the object represented 
by t into attribute values of their types. 

The observation function defines the values of constant and variable at- 
tributes. The constant attributes take their values when the creation event 
happens. An object's variable attributes values depend on the events of the 
object. 

The observation function can be representcd using first-order Horn clause 
logic. In this case the semantic observation function will be represented in the 
logic as a set of functions2(one for each attribute). The resulting language is 
called l~lational-0ASIS. The observation function can be defined using equa- 
tional logic for Functional-OASIS. The two approachs can also be combined. 
These language versions will differ only in the variable attribute definition. The 
executability of the Oasis language is derived from the representation of the 
observation function. 

7 Types  of classes 

The specification of a society of interacting objects is based on three main 
constructs; domains, elementary classes and complex classes. 

Each construct is defined in this section and is illustrated in the Oasis lan- 
guage. The alarm clock system presented in section 4 and in [1] illustrates the 
ideas. Other examples are presented in [11]. 

2modelled by relations 



355 

7 .1  D o m a i n s  

Domains denote the data subspecification and are used as object surrogates 
and attributes classes. Our object society will be built taking them as the basic 
data types upon which elementary classes are declared. They give us the set 
of unchanging 'platonic' entities that will be used for object identification (via 
object surrogates), and attribute types in our class definition. 

The domains used in the object society will be declared at the beginning of 
the specification. The syntactic form is as below; 

d o m a i n s  nat,bool,time,string 

7 .2  E l e m e n t a r y  c l a s s e s  

Elementary classes are primitive and built only from the data  domains. Each 
one has 

1. a set of constant and variable attributes. A subset of the constant at- 
tributes define the surrogate. 

2. a set of private and shared events, 

3. a set of traces, describing the object behaviour 

4. and an observation function, defining every object state as a function of 
its relevant event occurrences. 

The syntactic elementary class representation will follow the template: 

class name 

attributes 

constant 
~  

variables 

~  

events 

private 

. , .  

shared 

~  

preconditions 

[event : pc] 
t r igger ing  

eventl/event2 [ i f  condition] 
end  class .  

The two first components of our formal class definition are given by the 
attribute and event declarations. The adequate set of traces is expressed by 
means of the preconditions paragraph which associates to each event the pre- 
condition that must hold for an event occurrence. The observation function is 



356 

represented in the variable attribute definition, defining with a deductive style 
every variable attribute in terms of their relevant events. 

The triggering paragraph will allow us to establish active relationships be- 
tween objects/  

For example, the clock specification is 

elementary class clock 

attributes 
constant 

code : string key 

variable 

** the 'now', giving us the actual time value ** 

time? (clock) :time 

clauses: c:clock, t:time, sa:alarmsets 
time?(c)=t :- time_unit(c,sa,t). 

events 

private c : c l ock ,  t : t i m e  
newclock (c, t). 

delclock (c ,t). 

setclock (c ,t). 
shared c:clock, sa:alarmsets, t:time 

time_unit (c,sa,t). 

precondit ions 
ne wc lo ck (c , t ) : -  not c l o c k ( c , t ) .  
d e l c l o c k ( c , t )  : -  c l o c k ( c , t ) .  
time_unit (c ,sa,t) :- clock(c,t). 

triggering c:clock, sa:alarmsets, a:alara, t:time 
time_unit(c,sa,t)/time_o~_alarm_clock(a,t) if a in sa. 

end class clock 

The clock class has one constant attribute code used as key surrogate, and 
one variable attributc time?. The time? definition in terms of its relevant 
event tlme_unit constitutes the observation function representation. Three 
events are declared: newclock and delclock are the private creation and dele- 
tion events, time_unit is a shared event between clock and a complex class 
aJarmsets, which groups individual instances of alarm class 3. Each tlme_unit 
occurrence is shared between an instance of class clock and an instance of the 
alarn~ets complex class (representing a set of individual alarm instances). 

The triggering paragraph states the active clock class behaviour. Each 
time_unit occurrence will activate a time_of_alarmclock occurrence in ev- 
ery alarm clock belonging to the alarmsets grouping object denoted by sa. 

The event time_of_alarmclock is an alarm class event. 

3Complex classes construction is explalncd later. In particular, wc will formally define the 
grouping composition. 



357 

7 .3  C o m p l e x  c l a s s e s  

Complex classes are those defined by class operators. They provide a construc- 
tive way for specifying an information system. Complex classes are built by 
composing other classes using one of four operators; 

�9 aggregation/projection 

�9 generalisation/specialisation, 

�9 grouping 

�9 and parallel composition. 

We now state how each of the class operators is defined in terms of our 4-tuple 
class representation. 

7.3.1 Aggregration and Projection 

The aggregation class operator combines component classes. The resultant com- 
plex class has a constant attribute corresponding to the cartesian product of 
the component class surrogates. It also has its own set of attributes and events. 
Aggregation is used to abstract the shared behaviour of components. The ap- 
proach is similar to aggregation as presented in static General Semantic Models 
(in particular, tile Extended Entity-Relationship Model). 

Given two classes CI={X1,A~,TI,obl} and C2={X2,A2,T~,ob2} the defini- 
tion of the aggregated class C={X,A,T,ob} is as follows: 

�9 the set X will be composed of: 

1. the set of shared events between the component classes, declared as 
private events in the complex class and identified by taking the inter- 
section of the component class event sets 

2. its own set of declared private and shared events 

�9 the set A of attributes declared in the complex class: one constant attribute 
of the aggregate class will be the cartesian product of the component class 
keys. 

�9 the set T of traces is built over the class events, but with the following 
constraint. Given C an aggregated class and (31 one of its component 
classes, we have that  

Vt E T, 3tl E T1 such that the projection of tl on those of its shared event 
that  are private in C, is equal to the projection of t on these events. And 
also, the key of the object represented by tl is just the projection of the 
key of the object represented by t on its C1 component. 

and the corresponding converse condition: 

Vtl E T1,3t E T such that the projection of t on its private events that 
are shared in C1, is equal to the projection of Q on these events. And the 



358 

projection of the key of the object represented by t on its C1 component 
is just  the key of the object represented by tl 

This two conditions state that you cannot have a situation in which an 
event e of class C that is also a shared event between classes C1 and C2 
occurs without satisfying the preconditions stated for e in everyone of these 
classes. It also states that if the precondition for a shared event is satisfied 
in one component class, it must be satisfied in all components that share 
it in the aggregate. 

�9 the observation function is given as usual. There is no relation between the 
observation function of the aggregate class and the observation function of 
the component classes as they have no common variable attributes. 

An aggregated class C of two classes C1,C2 is declared as C=CI*C2.  We 
can break it down by means of the projection operator, resp. C[1], C[2]. It 
will give us the class surrogates of the components (C1 and C2 class surrogates 
respectively). 

In this example, the alarm and window classes can be aggregated into a 
complex class icon representing their shared behaviour. Icon is defined by 

I C O N = A L A R M * W I N D O W  

Each icon class instance is an aggregation of the alarm instance activating an 
o p e n w i n d o w  event and the window instance being opened. Once again, we 
will have a constant attribute composed by the aggregation of its component 
class keys. The icon class may have an independent set of attributes (such as 
the time of the window opening etc.). The o p e n w i n d o w  and c l o s e w i n d o w  
shared events between alarm and window classes are private events of icon. 

7.3.2 G e n e r a l i s a t i o n  a n d  Spec ia l i sa t ion  

A generalised class is one built over a set of classes by abstracting their common 
features. Its corresponding inverse operator, the specialisation, allows us to de- 
fine specialised classes from a parent class, by adding new events and attributes, 
or by redefining any of the inherited from the parent class. 

The generalisation/specialisation operators are used to represent inheritance 
in Oasis. 

An specialised complex class from another 'parent'  class is intended to have 
the following interpretation: 

�9 the set of events will be composed of: 

1. the set of events of the parent class, now owned by the specialised class 

2. newly ( private or shared) defined events. 

�9 the set of attributes contains all the parent attributes. New attributes 
may be added. The key of the specialized class is composed of at least the 
parent key constant attributes. 



359 

�9 the set T of traces, built as usual but with one constraint. When an event 
is triggered in the parent it must also be triggered in the specialisation. 
This means that for P a parent class with a child class C, and tp and tc 
two traces of their respective set of traces having the same key surrogate 
value, if an event e E Tp occurs and is relevant to the trace tp, then it will 
be also relevant for the child trace to. 

�9 the observation function, represented as in elementary classes. No special 
restriction is required on the relationships between the involved observa- 
tion functions, to allow for the free redefinition of any inherited variable 
attribute definition. 

The 4-tuple definition of a generalised class can be obtained in a similar 
way. The generalisation C of two classes C1 and C2 is defined by the following 
4-tuple: 

�9 A = A l f 3 A 2 .  
The generalised class key is the non empty intersection of C1 and C2 key 
constant attributes. 

�9 X = X113 )(2 respecting the change in surrogate keys. 

�9 T built as usual over X, with the same constraint stated when dealing 
when specialisation: an occurrence of any event E X will be a member of 
both the generalised and the component class traces. 

�9 ob = obl restricted to the attributes E A (the intersection attributes set). 
We are assuming that we have the same observation function definition for 
the common attributes. 

Syntactically, a generalised class C is declared by C=C1+C2.  The inverse 
operation (specialisation) is allowed by means of the 'using' clause. So, we 
define: class C1 using C defines a specialised class C1. 

For example, a specialised round_window class can be defined by inheriting 
events and attributes from window. 

class R O U N D _ W I N D O W  using WINDOW 

Or inversely, assuming defined two classes r o u n d _ w l n d o w  and s q u a r e d _ w i n d o w  
with the same surrogate keys, a generalised class window is defined by 

WINDOW=ROUND_WINDOW+SQUARED_WINDOW 

The surrogates of the generalisation are the common key attributes of the 
component classes. In this simple example, if we assume that the key attribute 
of round_window and squared_window is a bellid, the WINDOW generalised 
class would have as key the bellid constant attribute. 



360 

7.3.3 Grouping and Ownersh ip  

Complex classes can be defined using the grouping operator as in 'collection' 
classes. The complex classes instances comprise a collection of instances of the 
grouped class. 

The component instances of a grouping class can be given an ordered struc- 
ture, as lists, queues or slacks or an unordered structure such as sets or bags. 

The complex grouping class has two special features; 

�9 It has a variable attribute members which is a generic type such as set, 
list, queue, stack of X where X is the surrogate type of the component 
class. Oasis provides syntactic constructs for defining a grouped class as 
desired. The definition of this members attribute is given as a function 
of the corresponding events of element addition and deletion, commented 
below. 

�9 they will always have two specific events: 

1. insertion of new components to the grouped class instance. This in- 
sertion event is equivalent to the classical push for stacks or insert for 
the rest. 

2. deletion of existent components. Deletion corresponds to pop for stacks 
and delete for the others. 

This insertion and deletion events will change the members attribute value, 
including or removing a component from the grouped class instance. They 
are implicitly declared in the complex grouping class. 

The corresponding 4-tuple definition has: 

�9 the set X of events declared in the new complex class, plus the two of 
insertion and deletion of components in grouping instances. 

�9 the set A of attributes declared in the complex class, plus a variable at- 
tribute members as stated earlier. 

�9 the set T of traces, built as usual. 

�9 the observation function, represented as usual. 

Grouping classes can be defined using the following explanatory keywords; 
setof, bagof, listof, queueof and stackof. A grouping class may also be defined 
by a clause 'group by'+condition, where condition defines the criteria for the 
grouping operation. The condition has the general form 

attribute [ O P  value] 

, where O P  is a comparison operator of the attribute type. The use of the 
comparison operators (<, >) will be allowed only if we have a partially ordered 
attribute type, 

Component classes may be grouped by attribute. In this case, the complex 
class defines instances as collections of the component class with the same value 



361 

for the attribute. We can build more complex grouping conditions using the 
classical logical operators and, or, not. 

As an example, alarms may be grouped by by the maximum duration they 
may ring, the finish attribute. A complex grouping class ringing_alarm is de- 
fined as 

class R I N G I N G _ A L A R M =  SETOF(ALARM) grouped by finish. 

R ing ing_a la rm is a class with potential instances setof(alarm) with finish=50, 
. . . ,  setof(alarm) with finish=60 and so on if we assume finish is a natural 
numb er. 

7.3.4 Para l le l  C o m p o s i t i o n  

Finally, the parallel composition class operator allows us to define a whole Con- 
ceptual Schema as a composition of previously defined classes. 

For CI-{X1,A1,T~,obl} and C2={X2,A~,T2,ob2} two classes, we define the 
parallel composed class C={X,A,T,ob} (C-CI[[C2). An instance of such a class 
will denote an element of the set of all the possible subsets of the union of the 
surrogate spaces of its component classes. So, if C1 has a key kl of type tl ,  and 
C2 has a key ks of type t 2 ,  a n  instance of C can be made up of ol of type t l ,  or 
{Ol :tl,o2:t2}, o r  {ol :tl,oll:tl ,o21:t~}, etc. 

The 4-tuple definition for C will have: 

�9 a set X of events, the union of event sets of the component classes, all of 
them viewed as private events, plus its own creation and deletion events. 
The new and destroy events of the component classes are interpreted as 
private events of the composed class. They have a new parameter which 
represents the surrogate of the parallel composed class. 

For example, if we build a parallel composed class a l a r m s y s t e m  from 
a la rm,  window,  clock and a grouping class a la rmse ts ,  the alarm com- 
ponent class n e w a l a r m  event, creator of alarm instances, is regarded as a 
private event newalarm(s:alarmsystem,a:alarm) of the alarmsystem. 

�9 a set A of attributes, the union of those (constant and variables) of the 
component classes. The key attributes of the component classes are con- 
stant attributes of the composed class. Each attribute is tagged with the 
new complex class surrogate. 

For example, in our Alarm Clock System, the bel l id  string constant at- 
tribute of the w i n d o w  component class is a constant attribute bel l id  of 
the alarmsystem and is tagged by the alarmsystem surrogate. 

bellld(w:window,t:string) ---, bellid(s:alarmsystem,w:window,t:string) 

�9 a set T of traces, composed by interleavings components traces, respecting 
the synchronisation constraints for shared events and triggered relation- 
ships. 



362 

A further requirement for a parallel composed class is that events of the 
composed class are activated if and only if their preconditions are satisfied 
in each relevant component class. 

�9 an observation function which is the 'sum' of the components' observation 
functions. 

The syntax for the parallel operator is 11. Our alarm clock system conceptual 
schema alarmclock is defined by the parallel composition of the elementary 
classes alarm, clock and window and the grouping class alarmsets. 

ALARMCLOCK=ALAR,  MIIWINDOW[ICLOCKIIALAR, MSETS. 

An alarmclock trace will be composed of any correct sequence of events of 
the component classes as defined in [1]. 

8 C o n c l u s i o n  

This paper presents an object-oriented specification language Oasis which ex- 
tends notions from OBLOG[17] and MOL[12] to enable the specification of active 
systems. 

Oasis provides the basis for a complete object-oriented software production 
environment. The operational semantics is based on clausal or equational logic 
which support the validation of specifications by software prototyping. Spec- 
ifications can be animated using logic programming or by algebraic rewriting 
techniques. The development of an environment consisting of graphical tools, 
validation and code generation tools is now in progress. 

R e f e r e n c e s  

[1] S.Bear,P.Allen,D.Coleman,F.Hayes. 'Graphical Specification of Object Ori- 
ented Systems'. OOPSLA 90. 

[2] G.Booch 'Object Oriented Design with applications' Benjamin/Cummings 
1990 

[3] Bubenko,J.A.:Olive,A. Dynamic or Temporal Modelling? An Illustrative 
Comparison SYSLAB Working Paper l17,Nov.1986 

[4] Coad,P.,Yourdon, E. 'Object Oriented Analysis' Englewood Cliffs Prentice- 
tIall 1990 

[5] C.A.R. Hoare. 'Communicating Sequential Processes, Prentice-Hall Inter- 
national, 1985. 

[6] Gehani,N.:Jagadish,H.V. Ode as an Active Database:Constraints and Trig- 
gers Proceedings of the 17th International Conference on Very Large Data 
Bases,VLDB 1991, Barcelona. 



363 

[7] A.Goldberg, D.Robson 'Smalltalk:The language and its implementation' 
Addison Wesley 1983 

[8] P.Lindgreen ed. 'A framework of Information System Concepts'.FRISCO 
Interim Report. IFIP WG8.TG.90. 

[9] J.W.Lloyd 'Foundations of Logic Programming' Springer-Verlag 1987 

[10] R.Milner. 'A Calculus of Communicating Systems' Lecture Notes in Com- 
puter Science, vol 92,Springer-Verlag, 1980 

[11] O.Pastor 'OASIS:Open and Active Specification of Information Systems' 
Internal Technical Memo. HP-Labs.Bristol. 

[12] I.Ramos. 'Logics and OO-Data Bases:a declarative approach.' DEXA 90 

[13] I.Ramos et al. 'A Conceptual Scheme Specification for Rapid Prototyping' 
XII IASTED Conference on Applied Informatics. Insbruck 90. 

[14] Ramos,I:,Pastor,O.:Casado,V. O0 and Active Formal Information System 
Specification In Proc, of DEXA-91, Springer-Verlag,Berlin,1991 

[15] Rumbaugh,J.:Blaha,M.:Premerlani,W.:Eddy, F.:Lorensen,W. 
Object-Oriented Modelling and Design Prentice Hall 1991. 

[16] A.Sernadas et al. 'Abstract Object Types: a temporal perspective' Collo- 
quium on Temporal Logic and Specification. 

[17] Sernadas,A.:Sernadas,C:Ehrich,H.D. Object Oriented Specification of 
Databases: An Algebraic Approach. Proc. 13th Int.Conf. on Very Large 
Data Bases VLDB'87,Brighton,1987. Morgan-Kaufmann, Palo Alto, 1987, 
pp. 107-116. 

[18] B.Stroustrup 'The C++ Programming Language' Addison-Wesley 1987 

[19] Weiser,S.P.:Lochovsky, F. OZ+:An Object Oriented Database System Ob- 
ject Oriented Concepts, Databases and Applications, ACM-Press 1989 


