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Abstract. For a d~_tabase application, conceptual design methods such as fact- 
oriented modelling and entity-relationship modelling are commonly used to 
specify a conceptual schema, which may then be mapped to a structure in a 
chosen data model (e.g. a relational ,J_~t~base schema). Since conceptual data 
models support a rich variety of constraints, and these constraints may impact on 
one another, the task of ensuring that the constraints expressed in a conceptual 
schema are consistent is non-trivial. Moreover, because different constraint 
patterns may be equivalent, some optimization may be needed to select the best 
constraint pattern for explicit assertion. With reference to conceptual schemas 
expressed in FOrML (an enhanced version of NIAM) this paper discusses meta- 
rules for strong satisfiability and constraint preference, and outlines an efficient 
algorithm for validating four main types of constraints. Complexity analyses and 
benchmarks of the implemented algorithm are included. 

1 Introduction 

The use of workbenches to provide automated support for the development of database 
applications is becoming widespread. For the modelling phase, it is becoming 
increasingly common for the data-perspective to be first specified in a human-oriented 
conceptual notation, which is then mapped to the appropriate logical data model 
(typically relational). Although most workbenches support a variant of EER (Enhanced 
Entity Relationship modelling), fact-oriented modelling arguably has several advantages 
(stronger linguistic basis, more constraint types, and its conceptual schema diagrams 
are more stable and easier to populate). Fact-oriented modelling (FORM) comes in 
various flavours, under various names (e.g. NIAM, Binary-Relationship Modelling), 
and is supported by various CASE tools; some of these tools are well known (e.g. 
RIVL* from IntelliBase) while others are due for release this year (e.g. rrI's Conceptual 
Designer, and ServerWare's InfoViews). 

Research at the University of Queensland is extending the fact-oriented 
modelling method, including automated support via a prototype known as WISE (Work- 
bench for Information System Engineering). A detailed overview of WISE is given in 
Halpin (1991b). To place the topic of  this paper (constraint validation) in perspective, 
a brief sketch of this project is now given. Conceptual schema editors are used to enter 
or modify conceptual schemas in graphical or textual form (with automatic layout). 
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Most syntax errors in the schema are detected at the entry stage since the editors 
incorporate most of the knowledge in the meta-conceptual schema. The output from 
this stage is fed to the Quality Checker: this performs further constraint validation, 
then checks for derivability and splittability of fact types (Zhang & Orlowska 1991). 

The checked schema is then passed to the conceptual schema optimizer, which 
transforms it to an optimal version using formal equivalence and implication theorems, 
and heuristic guidelines (Halpin 1989, 1991a, 1991c, 1992). The designer may interact 
with this module to over-ride defaults, provide better identifiers and allow information 
loss or gain. The optimized schema is then mapped to the appropriate data model (e.g. 
relational), generated, tested and tuned for a given DBMS. Other aspects under 
investigation include extending the schema languages and mapping algorithms, 
facilitating schema evolution and incorporating other object-oriented features. Only 
some of the phases just described have been implemented. This paper focusses on 
constraint validation. 

Since conceptual data models support a rich variety of constraints, and these 
constraints may impact on one another, the task of ensuring that the constraints 
expressed in a conceptual schema are consistent is non-trivial. Moreover, because 
different constraint patterns may be equivalent, some optimization may be needed to 
select the best constraint pattern for explicit assertion. Section 2 defines the notion of 
strong satisfiability used for constraint consistency, and lists a number of results 
following from this definition. In section 3, various constraint implication theorems are 
cited, which indicate how some constraints may be implied by others, and guidelines 
are set out for explicit display of constraints. Section 4 specifies an algorithm for 
validating four kinds of constraint on lists of single roles. A similar algorithm is cited 
for lists of role-sequences. Complexity analyses and prototype benchmarks for these 
algorithms are included in section 5. The final section identifies some related problems 
for further research. 

2 Strong Satisrmbility of Conceptual Schemas 

It is assumed that the reader has a basic grounding in logic and database theory. While 
much of our discussion can be translated into popular EI~ notions, we use fact-oriented 
modelling here since it facilitates work with constraints. For the reader who is 
unfamiliar with this method, we briefly discuss an example conceptual schema (see 
Figure 1). Entity types are denoted by named ellipses (e.g. Country). Value types 
(e.g. Number or CharString types) are shown as named broken ellipses (e.g. 
CountryName). Simple reference schemes for entity types are parentheisized (e.g. each 
Country is identified by its country code); a "+" on a reference mode indicates 
numeric reference (e.g. nr). Predicates are shown as named box-sequences (one box 
for each role); for example, the binary predicate plays_for has two roles. Predicates 
are ordered, with their name written in or beside their first role-box. 

A bar across a sequence of one or more roles specifies a tmiqueness constraint 
(instantiating object sequences may not be duplicated); arrow tips may be added to the 
bar (and must be if the roles are non-contiguous). For example, each team plays for 
only one country but a country may field many teams; the shirt relationship between 
Playing Country and Colour is many:many but the pants relationship is 1:1. 
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Fig. 1 An example of a fact-oriented conceptual schema diagram 
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Predicates which are completely spanned by a uniqueness constraint may be 
objectified; this nesting is shown as a frame (e.g. plays_in). A dot where n role-ares 
connect to an object type indicates the disjunction of the n roles is mandatory or total 
(each object in the population of that type must play at least one of those roles). For 
example, each country must have a name, and supplies either one or two judges. An 
| symbol connecting role-sequences indicates mutual exclusion between the 
populations of these role-sequences. For example, a player cannot be both a male and 
female member of a team, and a country may not have a shirt colour which is the 
same as its pants colour. A dotted arrow from one role-sequence to another denotes a 
subset constraint (i.e. the population of the source is a subset of the target). A subset 
contraint in both directions is an equality constraint, and is shown as a dotted line with 
arrow-heads at both ends (e.g. a team has a male player if and only if it has a female 
player). A solid arrow from one object type to another indicates the former is a proper 
subtype of the latter; subtype definitions are specified at the bottom of the diagram 
(e.g. Playing_Country). Value-list constraints are shown in braces beside the relavent 
object type (e.g. WinKind). For a detailed background on fact-oriented modelling, see 
Nijssen & I-Ialpin (1989); a recent overview is provided in Halpin & Orlowska (1992). 

A conceptual sehema diagram is mappable to a set of sentences in first order 
logic (l-Ialpin 1989). An interpretation of a conceptual schema is then defined in the 
usual first-order way. An interpretation I of a conceptual schema cs is a model of CS 
iff each sentence of cs is true for I. A conceptual schema is satisfiable iff it has a 
model. In practice this notion of satisfiability is too weak, since it permits schemas 
with constraint patterns that are satisfiable only because these patterns are not 
populated. For example, a role with a uniqueness constraint and a frequency constraint 
of 2 generates a contradiction only if the role is populated: such constraint patterns are 
only trivially satisfiable. 

The unsatisfactory nature of trivial models in relation to constraints has been 
noted in the literature. For example, Meyer, Weigand and Wieringa (1988, p. 13) 
attempt to avoid the problem by demanding that all models are non-empty. However, 
this is still too weak since it allows non-empty models with some empty predicates that 
are only trivially satisfiable. To demand that a cs must have a model in whieh all its 
predicates are non-empty is too strong, since legitimate exclusion and eardinality 
constraint patterns are rejected (Halpin 1989 pp. 6-3,4). We propose the following 
definition: 

A conceptual schema CS is strong/y satisfiable (or population-consistent) if and 
only if: (a) for each of its predicates, there is a model of CS in which that 
predicate is instantiated; and (b) for each inter-predicate role-sequence which 
is an argument to an explicit constraint, there is a model in which that role- 
sequence is instantiated. 

An inter-predicate role-sequence is an ordered list of roles, at least two of 
which occur in different predicates. Halpin (1989) proved various metarules using part 
(a) of this definition to avoid various cases of trivial satisfiability. We extend this work 
by considering some new cases which underpin the constraint validation algorithms 
discussed later. 
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The first rule is NXS (No eXclusion with a Subset constraint). In the diagram, 
rsl and rs2 are each sequences of n roles (n > 1). The constraint arguments are rsl 
and rs2 (not just subsequences). The exclusion constraint (denoted by ~)) means there 
is no model in which both rsl and rs2 are populated. On the left, a subset constraint 
from rs2 to rsl is shown as a broken arrow from rs2 to rsl: in all models, each 
instance in the population of rs2 is also an instance in the population of rsl. Similarly, 
a subset constraint from rsl to rs2 is shown on the right. 

NXS Any schema with both an exclusion constraint and a subset constraint 
between the same two role-sequences is population-inconsistent (i.e. not 
strongly satisfiable). 

r s l  I } r s l l  I 

| 
: 

rs2 I t rs2 I I 

t | : 

Illegal combinations (constraints apply between whole role-sequences) 

The proof of NXS is trivial. Consider the left-hand version. Assume strong 
satisfiability and both constraints hold. By strong satisfiability there is a model in 
which rs2 is populated. Let an instance in its population be a. The subset constraint 
implies that a occurs in the population of rsl. So a populates both rsl and rs2, which 
contradicts the exclusion constraint. So the original assumption is wrong, i.e. the 
constraints are not strongly satisfiable. By swapping rs 1 and rs2 the right-hand version 
follows. The constraint pattern is trivially satisfiable (there in a model where both rsl 
and rs2 are empty, both constraints do hold), i.e. although the pattern is consistent it is 
population-inconsistent. 

In the unlikely event that a designer explicitly enters both exclusion and subset 
constraints between the same role-sequences, this will be rejected by the editor. 
However, as discussed later, it is still necessary to check whether such a constraint 
combination is implied by other constraints on the schema. 

As a related issue, the editor should be provided with knowledge as to where 
constraints may be meaningfully asserted on the schema. Apart from the obvious 
restrictions captured by graphic constraints on the meta-conceptual schema, further 
textual constraints at the meta-level must be specified and enforced. In this paper we 
restrict our attention essentially to MSF_.X constraints: Mandatory roles, Subset 
constraints, Equality constraints and eXclusion constraints. Recall that a role is 
mandatory (or total) for an object type if and only if each population instance of that 
type must play that role. Our approach bears some similarities to the "set constraint 
consistency analysis" performed by RIDE* (De Troyer et al. 1988, p. 398), but there 
are some significant differences. 
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To begin with, the "total union" and exclusion constraints commonly asserted 
between subtypes in RIDL* are unlikely to be ever used explicitly in our approach, 
since they are typically implied by the subtype definitions in conjunction with 
constraints on the fact types used in these definitions. For example, if Person has a 
mandatory functional association with Sexcode {'m', 'f '), and Man and Woman are 
defined as having Sexcode 'm', 'f' respectively then exhaustion (total union) and 
exclusion constraints for Man and Woman are implied. 

Our treatment of subtypes is somewhat stricter than that of RIDL*. We demand 
that subtypes be definable in terms of roles played by their supertype(s), and give these 
definitions formal significance. If the designer ever tried to explicitly assert an 
exclusion or exhaustion constraint between subtypes this would be checked for 
consistency with the definitions and relevant constraints (see Halpin 1989 pp. 6-14,15 
for relevant theroems), and typically allowed only as an implied constraint. In addition, 
subtypes are introduced only if they have a specific role to play. We feel this is a safer 
approach, as well as leading to less cluttered diagrams. 

In some cases one might vacillate over whether to introduce a subtype or not 
(e.g. see Nijssen & Halpin 1989, p. 178). We resolve such cases by the following 
recursive subtype introduction procedure (sip): 

If an optional role is plaYed only by a well-defined subtype, then specify the 
subtype definition. 
If the subtype definition is stronger than "[not] playing a role directly attached 
to [one of its] supertype[s]" then introduce the subtype (and apply siP to it). 
If the subtype definition can be expressed instead as a subset or exclusion 
constraint then do so, unless there are several roles which bear equality or 
subset constriants to the candidate subtype role (in which case introduce the 
subtype and apply siP to it). 

It is clear that subset, equality and exclusion constraints are allowed between 
role-sequences only if these are compatible (same corresponding host object types). 
Also exclusion constraints between exclusive subtypes, as well as subset constraints 
from subtype roles to mandatory supertype roles, are implied and hence omitted. 
Mainly as a consequence of the sip procedure, other meta-rules follow which further 
restrict the explicit depiction of such constraints. In particular: 

Consider two  different object types B and C, with the same host supertype, 
and let �9 and s be roles attached to B and C. 
�9 An explicit subset constraint from �9 to s is allowed only if �9 and s are 

optional and B is (directly or indirectly) a subtype of C. 
�9 An explicit exclusion constraint between �9 and s is allowed only if �9 and 

s are optional and either B is a subtype of C or C is a subtype of B. 

The significance of such rules is twofold: they allow such rule violations to be 
rejected at the schema entry stage; knowing these rules are now obeyed simplifies the 
working of the constraint validation checking applied later. 
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3 Constraint Impfication and Display 

Let CS be any well formed conceptual schema, and C be any well formed static 
constraint to be added to CS. Then CS implies C iff C is true in all models of CS. 
Using formal logic, Halpin (1989) proved several constraint implication theorems for 
fact-oriented schemas. We cite without proof the following results: 

If roles �9 and s are mandatory and optional for the same object type, then a 
subset constraint is implied from s to r. 

Let rs l  and rs2 be compatible role-sequences (of 1 or more roles). Then: 
A subset constraint from rs2 to rs l  implies a subset constraint from each 
subsequence in rs2 to the corresponding subsequence of rs 1. 
An exclusion constraint between rs l  and rs2 implies an exclusion constraint 
between all compatible supersequences of rs I and rs2. 

Let rs l ,  rs2 and rs3 be compatible role-sequences. A subset constraint from 
rs l  to rs2 combined with a subset constraint from rs2 to rs3 (transitively) 
implies a subset constraint from rs l  to rs3. 

An exclusion constraint between n role-sequences is equivalent to the 
exhaustive conjunction of n(n-l)/2 binary exclusion constraints between all 
possible pairs of these role-sequences. 

An equality constraint between two  role-sequences is equivalent to subset 
constraints in both directions. 

If a single equality constraint between n role-sequences is allowed, it is 
equivalent to equivalent to the n-1 binary equality constraints between 
adjacent role-sequences. 

If the disjunction of roles �9 and s is mandatory, and a subset constraint exists 
from s to r, then �9 is mandatory. In this case �9 should be displayed separately 
as mandatory. 

Many other examples of constraint implication and display preferences are given 
in Halpin (1989), dealing with uniqueness, frequency, cardinality, subtype, asymmetry 
etc. constraints. However those results cited here provide sufficient background for the 
constraint validation algorithms which follow. We restrict ourselves to the following 
problem: 

Given a conceptual schema output from the cs editor, is the pattern of its 
MSEX constraints strongly satisfiable? If not, specify the violation(s) (and ideally 
interact with the designer to correct the schema). If it is strongly satisfiable, 
then optimize the display by hiding implied constraints except that mandatory 
roles are always to be depicted as mandatory. 

For example, consider the constraint pattern of Figure 2. Each box denotes a 
single role. The exclusion constraint applies between the left-hand roles, but the subset 
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constraint (by connecting the role-junction points) applies between the role-pairs. The 
pair-subset constraint implies subset constraints between the left-hand roles (and 
between the right-hand roles). From theorem NXS, this conflicts with the exclusion 
constraint and the schema is not strongly satisfiable. Note that because subset 
contraints are implied through all subsequences, we merely had to look for an implied 
subset constraint on the explicit exclusion constraint: we did not have to derive the 
supersequence exclusion constraints. 

6 t 

Fig. 2 This constraint pattern is not strongly satisfiable 

As a simple example of optimizing constraint display, consider the left-hand 
diagram in Figure 3. Object types are depicted by ellipses. A dot connected to one or 
more roles means the disjunction of these roles is mandatory for the dotted object type. 
The pair-subset constraint implies subset constraints from the lower roles to the roles 
directly above them, which combined with the disjunctive mandatory role constraints 
imply that the top roles are mandatory and hence must be displayed as shown on the 
right. 

,11 

r3 r4 r3 z4 

Fig. 3 The left-hand version should be converted to the right-hand version 

The basic ideas underlying MSEX constraint validation (checking for constraint 
satisfiability, and optimizing the constraint display) have now been covered, so that an 
intelligent designer would normally be able to carry out this procedure manually. 
However, with large schemas this is both tedious and open to error (because of the 
large numbers of implied constraints). Hence it is desirable to have this validation 
performed automatically. The rest of the paper specifies algorithms for doing this 
efficiently. 
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4 MSEX Constraint Validation 

We believe the algorithms presented here for validating MSEX constraints offer 
advantages such as efficiency and completeness compared with those used by other 
systems. For portability the algorithms have been coded in C. Basically, we perform a 
"populability check" of conceptual schemas, which focusses on potential schema 
populations, indicating any predicates which cannot be populated as well as any 
redundant subset constraints. 

The basic principle of the algorithm is to build a series of graphs such that each 
graph represents a "population scenario" (possible world). A directed arc between two 
vertices u, v in a graph is equivalent to the subset constraint: every instance of an 
object-type which plays role u in this scenario also plays role v. 

The population graphs are a series of directed graphs which represent possible 
populations of the schema, and are defined as either unary (compare single roles) or n- 
ary (compare sequences of at least 2 roles). Although, the unary case is just a special 
case of the n-ary, the algorithms are treated differently as they typically have to be 
implemented separately. 

For simplicity, the main algorithms assume that exclusion and subset constraints 
span only two role-sequences. All constraints not of this form are pre-processed to 
give a series of binary constraints. All equality constraints are then pre-processed to 
form two subset constraints. The details of the pre-processing are as follows. 

Pre-proeessing: 

If  n-ary equality constraints are allowed, each equality constraint of the form 
=(rsl  ..... rsn) is transformed into (n-l) binary equality constraints between adjacent 
pairs: rsl = rs2 . . . .  rsn-I = rsn. For example, =(rsl,rs2,rs3) becomes: rsl = rs2, 
rs2 = rs3. 

Each n-ary exclusion constraint of the form | ..... rsn) is transformed 
into n(n-1)/2 binary constraints by exhaustive pairing: rsl | rs2 ..... rsl | rsn, rs2 
| rs3 . . . . .  rs2 | rsn . . . . .  rsn-I x rsn. For example, | becomes: rsl | 
rs2, rsl | rs3, rs2 | rs3. 

All equality constraints of the form rsl = rs2 are transformed into two subset 
constraints of the form rsl - ,  rs2, rs2 -* rsl (using "-'-" to denote "is a subset of"). 
For example, rsl = rs2 becomes: rsl ~ rs2, rs2 -~ rsl. 

Finally, all subset constraints between sequences of n roles (n > 1) have the 
implied subset constraints generated for each of their subsequences. Thus a single such 
constraint is expanded to 2~-1 subset constraints. For example, ( rs l l ,  rsl2,rsl3) 
(rs21,rs22,rs23) is expanded to the 7 constraints: 

unary: 
binary. 

ternary: 

rsl 1 ~ rs21; rs12 --* rs22; rs13 --* rs23 
(rsl 1 ,rsl  2) --, (rs21 ,rs22); (rsl 1 ,rsl 3) --, (rs21 ,rs23); 
(rsl 2,rsl 3) ~ (rs22,rs23) 
(rsl 1 ,rsl 2,rsl 3) -* (rs21 ,rs22,rs23) 

This final expansion is used to optimize constraint display. If  only a consistency check 
is needed, subset constraint generation can be limited by existing exclusion constraints. 
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Unary validation (constraints which compare single roles): 

We construct a directed graph G = (V,E), where V is a set of vertices and E is a set 
of edges. All v E V are roles whose connecting object-typos have the same root in 
their subtype-graph, i.e. a population graph around some object-type O (with no super- 
types) has as its vertices all of the roles played by O (directly connected to O) or any 
subtypes of O. All e E E are edges of the form (u E V ->  v E V) where it can be 
shown that any instance of O playing role u must play role v. 

The algorithm must be run for each subtype graph (possibly trivial) in the 
sehema. A sub-type graph is identified by its root. From this point onwards, a role 
refers not only to the role within the schema but also to that role's corresponding 
vertex in the graph. An overview of the algorithm is now given. 

Step 1: 
The initial step in the algorithm is to add the vertices to the graph. Each vertex 

in the graph corresponds to a role which is directly connected to an object-type in the 
subtype graph of interest. All such roles are represented in the graph. 

All edges in the graph are directed and have an extra attribute which records the 
constraint from which the edge was derived. This is useful for reporting redundant 
subset and exclusion constraints. 

Step 2: 
The next step adds to the graph the edges which are derived from non- 

disjunctive mandatory role constraints. Put simply this is: "For all such constraints 
which span a role r in the graph where r is connected to some object-type O, add 
directed edges to r from all other roles connected to either O or subtypes of O. Mark 
these edges as being derived from the relevant mandatory role constraint." At this 
point, the base-graph has been formed. Before any checking can be done, edges 
produced by subset and disjunctive mandatory role constraints are added to the graph. 

Next a sequence of possible non-empty populations is built up from the 
disjunctive mandatory role constraints which span roles in the graph. Basically, we 
form the power-set and subtract the null set. 

For example, suppose there are two disjunctive mandatory role constraints el 
and c2 which impact on the graph, where el spans roles rl ,  r2 and c2 spans roles r3, 
r4. The possible (non-empty) populations of roles 1 and 2 are pl = {{1},{2},{1,2}}, 
i.e. either role 1 may be populated and not role 2, role 2 may be populated and not 
role 1, or both may be populated (there are 2"-1 of these "population scenarios"). 

Similarly, the possible populations of roles 3 and 4 are p2 = {{3},{4}, {3,4}}. 
The total possible set of schema populations around the roles influenced by cl and c2 
is M = { {1,3}, {1,4}, {1,3,4}, {2,3}, {2,4}, {2,3,4}, {1,2,3}, {1,2,4}, {1,2,3,4} }. 
The size of this set is #pl * #p2, the product of the eardinalities of pl and p2. 

Step 3. 
Using the base-graph as a starting point, apply the following algorithm to each 

m E M .  
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Step 3.1 (add disjunctive-mandatory role constraints): 
For all roles r E m, add edges to the graph using the same procedure as that 

used for non-disjunctive mandatory roles, i.e. if r is connected to some object-type O, 
add directed edges from all other roles connected to either O or subtypes of O to r. 
Mark these edges as being derived from the relevant mandatory role constraint. 

Step 3.2 (add the subset constraints): 
For each subset constraint r ~ s such that r E V and s E V, if no path from r 

to s exists in the graph, add an edge from r to s to the graph and mark it as being 
derived from the relevant subset constraint. 

Step 3.3 (check the exclusion constraints): 
For each exclusion constraint of the form r | s such that r E V and s E V if 

a path exists from r to s in the graph, the constraint is invalid since role r cannot be 
populated; if a path exists from s to r in the graph, the constraint is invalid since role s 
cannot be populated. 

Step 3.4 (cheek the subset constraints): 
For each subset constraint r ~ s such that r E V and s E V, if the path from r 

to s in the graph is not a single edge which has been derived from the subset constraint 
currently being checked, the constraint is redundant in this population scenario. If  a 
subset constraint is redundant in all population scenarios ( for all m in M ) the 
constraint is redundant in the schema. 

Step 3.5 (check for implied mandatory role constraints) 
For each role r in the graph where it is possible to get from all other roles in 

the graph to r, r is mandatory for this population scenario. If  a role is mandatory in all 
population scenarios, the role is mandatory in the schema. Note that the information 
needed for this check can be built up while adding the subset and mandatory role 
constraints. 

As an example of the unary check, consider the incomplete schema fragment 
depicted in Figure 4. In this graph there are 13 roles labelled "r l" . ." r l3"  connected 
directly (or indirectly via subtypes) to the object type named "Target OT". 
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Fig. 4 A schema fragment used to illustrate unary validation 

For  this example,  the algorithm is executed thus. The vertices V = {rl .. r13}. 
Add directed edges added for non-disjunctive mandatory roles: r l  --, r2, r3 --, r2, r4 --, 
r2, r S - *  r2, r6 -* r2, r7 --, r2, r 8 - *  r2, r9 -> r2, r l 0 - - ,  r2, r l l - , r 2 ,  r 1 2 - ,  r2, r13-- ,  
r2, r l  -~ r7 ,  r2 ~ r7, r3 --, r7, r4 --, r7, r5 - ,  rT, r6 -~ r7, r 8 - ~  r7, r9 -~ rT, r l 0 - - ,  rT, 
r l l  - ,  r7, r12 - ,  r7, r13 -~ r7, r12 - ,  r13, r l l  -* r13. Hence in the base graph G, all 
vertices have edges to r2 and rT, and there are edges f rom r12 to r13 and r l l  to r13. 

M = { {r3, r9}, {r3, r lO}, {r3, r9, r lO }, {r4, r9}, 
{r4, r lO},  {r4, rg, r lO }, {r3, r4, rg}, {r3, r4, r lO}, 

,{r3' r4, r9, r lO } } 



457 

Now consider iteration 1 of step 3. Add disjunctive mandatory roles. All 
vertices now have edges to r2, r3, r7, and r9. Adding subset constraints causes the 
following edges to be added: r2 - ,  r3, r3 --, r2, r6 --, r7, r7 --, r6, r l  --, r2, r8 --, r7, 
r12 --, r l l ,  r2 --, r3, r3 - ,  r2, r6 - ,  r7, r7 --, r6, r12 --, r13, r l l  --, r13. The results of 
iteration 1 are: el  marked as redundant; e2 can be replaced by a subset constraint to 
R2; c4 can be replaced by a subset constraint; c5 is redundant 

The results of the complete execution of the algorithm are: cl  tagged as 
redundant; e2 can be replaced by a subset constraint to R2; c3 tagged as invalid since 
R4 cannot be populated; c4 can be replaced by a subset constraint; c5 is redundant; e6 
is valid; c7 is valid. 

Note that the algorithm detects all errors but makes a default assumption 
regarding the best way to remove the error. An improvement would be to interact with 
the designer to determine which error correction option is best (for example, another 
possible error correction with the current example is that r3 should have been 
mandatory, leaving e2 as implied. 

N-ary validation (constraints comparing sequences o f  2 or more roles): 

An n-ary check checks all n-ary subset, equality and exclusion constraints in the 
schema ( see Figure 4 ). Again G = (V,E) is a directed graph. A "population node" is 
derived from a role-sequence of two or more roles in a constraint. For example, in 
Figure 5 the pair-subset constraint from the role-pair (rl,r2) to the role-pair (r3,r4) has 
the population nodes rl#r2 and r3#r4. 

A population node n is "population equivalent" to role-sequence rs iff  all roles 
occurring in n occur in the same order in rs. A population node n is the 

corresponding" population node to population node m within constraint c iff c is made 
up of  rsl and rs2, and n is population equivalent to rsl and m is population equivalent 
to rs2, or vice-versa. 

Given a binary constraint made up of rsl = (rl,r2) and rs2 = (r4,r5) the 
population node n = rl#r2 is population equivalent to rsl,  and the convaponding 
population node in rs2 of  rl#r2 in the constraint is r4#r5. 

Having described the n-ary form of the population graph, we now give an 
overview of  the n-ary validation algorithm. This is similar in principle to the unary 
algorithm. Vertices in the graph used in the n-ary ease represent sequences of  n roles. 
For a given N, the algorithm must be run on every n-ary constraint in the schema. 

For each n-ary constraint ce of the form pl subset p2 or pl  exclude p2, where 
pl  and p2 are the n-ary population nodes which represent the n-length role-sequences 
in ee, add the vertices pl  and p2 to the graph (V = { pl,p2}) and proceed as follows: 
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Changed = true; 
C = {}; ( C is the set of constraints which have been processed ) 

while changed do 
for all subset constraints c where c spans some v E V and c is not in C 

c is of the form pa subset pb 
C = C + c  
if pa is not in V 

V = V + p a ;  
Changed -- true 

if pb is not in V 
V = V + pb; 
Changed -- true 

If no path form pa to pb exists in the graph 
Add an edge from pa to pb 
Mark the edge as being derived from c 

if cc is a subset constraint and the path from pl  to p2 in the graph is not a 
single edge which is derived from cc, cc is redundant. 

if cc is an exclusion constraint and there is a path from pl  to p2 in the graph, 
cc is invalid since p l  cannot be populated. 

if cc is an exclusion constraint and there is a path from p2 to pl  in the graph, 
cc is invalid since p2 cannot be populated 

As an example, consider the schema fragment shown in Figure 5. Intuitively, 
there is a problem since a pair-subset constraint is implied from (rl,r2) to (r3,r4), which 
is population-inconsistent with the exclusion constraint cl .  

The algorithm checks the exclusion constraint c l as follows. Initially V = 
{rl#r2,r3#r4} and E = {}. Adding c2 adds the vertex r5#1"6 and the edge rS#r6 - ,  
r3#r4. Adding c3 adds the vertex rT#r9 and the edge rT#r9 --, rS#r6. Adding c4 adds 
the edges rl#r2 -* rT#r9 and rT#r9 -* rl#r2. The final graph for the check of the 
exclusion constraint is as shown. Since there is a path from rl#r2 to r3#r4, the 
exclusion constraint is invalid because rl#r2 cannot be populated (by theorem Nxs). 

r l # r2  r3#r4 

r5#r6 ~ ,, r7#r9 
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A' 

o , / ' l  ~ I .......... 

c3 

B' ~ I C 

Fig. 5 A schema fragment used to illustrate n-an/validation 

As a final example consider the first schema shown in Figure 3. The set of 
population scenarios for the (trivial) subtype graph with root A is M = { {rl}, {r3}, 
{rl, r3} }. Each of the 3 resultant graphs has an arc from r3 to rl added due to the 
subset constraint. 
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G1 r l  ~ r3 ( r l  is mandatory ) 

G2 r l  ~ ; r3 ( both are mandatory ) 

G3 r l  ~ ~ r3 ( both are mandatory ) 

Since rl  is mandatory in all 3 population scenarios, r l  is mandatory in the 
schema and the disjunctive mandatory role constraint over roles rl and r3 can be 
replaced by a single mandatory role conatraint over r l .  

Similarly the disjunctive mandatory role constraint over r2 and r4 can be 
replaced by a single mandatory role constraint over r2. 

The n-ary case has two nodes - rl#r2 and r3~4 and one edge from r3#r4 to 
r l ~ 2 .  There are no redundancies or errors. 

When the schema is re-assembled with the new mandatory role constraints the 
schema takes the more correct form of the second schema shown in Figure 3. 

5 Complexity Analysis 

The complexity analysis ignores the pre-processing step. Complexity of a unary check 
on a single subtype graph is determined as follows. Let R be the number of roles in 
the subtype graph. Let C be the number of subset, equality, exclusion and non- 
disjunctive mandatory role constraints constraints which impact on the subtype graph. 
Let NM be the number of non-disjunctive mandatory role constraints which impact on 
the subtype graph. Let P be the number of elements of the set M (the set of possible 
schema populations). P is exponential in the arity of the largest disjunctive mandatory 
role constraint which impacts on the subtype graph. 

Step 1 is clearly O(R). Step 2 has a worst case complexity of O(R * NM). Step 
3 is performed P times. Step 3.1 takes O(R * the number of elements in m). Step 3.2 
takes O(R * R * the number of subset constraints involved in the graph) if an 
algorithm such as Dijkstra's is used to check for the path. Step 3.3 takes O (R * R * 
the number of subset constraints involved in the graph) if  an algorithm such as 
Dijkstra's is used to check for paths. Step 3.4 also takes O(R * R * the number of 
subset constraints involved in the graph). Since the number of elements in m is never 
greater than the number of vertices in the graph, Steps 3.1 - 3.4 are O(#constraints * 
R * R). Hence the complexity of checking one subtype graph is O(R * R * P * C). 

Let OTS = the number of object-types in the schema. Let RS = the number of 
roles in the schema. Let CS = the number of subset, equaliity, exclusion and non- 
disjunctive mandatory role constraints in the schema. Let DMS = the number of 
disjunctive mandatory role constraints in the schema. 
Let SLDM = the size (arity) of the largest disjunctive mandatory role constraint in the 
schema. Let PS = the number of elements involved in the largest "possible world set " 
(M). This is O(DMS * 2Sla~). 
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Each object-type may only occur in one subtype graph. Each role may only 
occur in one subtype-graph. Hence the complexity of the entire schema is O(RS * RS 
�9 CS * PS). 

We now analyse the complexity of the n-ary case. Let C = the number of n-ary 
subset and exclusion constraints involved in the current graph. The complexity of 
checking a single n-ary constraint is is O(C 3) since testing for an existing path between 
nodes is is O(C2). Hence, for a complete schema the complexity is: O (CS 4) where CS 
= the number of n-ary subset, and exclusion constraints in the schema. 

Although the complexity analysis for the unary algorithm yeilds a result which 
is exponential in the size of the disjunctive mandatory roles within the schema, the 
number of large disjunctive mandatory roles constraints is typically small. As a result 
of this the performance of the algorithm is not adverseley affected by the exponential 
complexity. 

Furthermore, if the schema is only to be checked for strong-satisfiability, only 
those subtype graphs containing exclusion constraints need be checked for the wary 
case and only exclusion constraints need be checked for the nary case. 

The preceding algorithms have been implemented, and produced the following 
results when run on a schema containing in excess of 250 object-types, 300 predicates, 
400 mandatory role constraints, 6 non-trivial subtype graphs, 30 subtype & equality 
constraints and 10 exclusion constraints. On a SUN SparcStation 2 the full check (unary 
and wary) completed in 3 seconds. On an BM compatable 16 MHz 80386-SX the same 
check completed in 68 seconds. 

6 Conclusion 

This paper has examined the notions of constraint satisfiability and implication for four 
important classes of constraints in fact-oriented modelling, and specified efficient 
algorithms for their checking and display optimization. Since these constraints are at 
least partially supported by various versions of EER modelling, the work has wider 
implications. While validation procedures have been developed for other classes of 
constraints (e.g. uniqueness), there are several other constraints in fact-oriented 
modelling which require a similar set of validation algorithms (e.g. frequency, 
asymmetry). The development and implementation of efficient validation algorithms for 
such constraints is a topic for future research. 
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