
Automated Validation of Conceptual Schema Constraints

T.A. Halpin and J.I. MeCormaek

Key Centre for Software Technology
Department of Computer Science

University of Queensland. Australia 4072
email: halpin@cs.uq.oz.au

Abstract. For a d~_tabase application, conceptual design methods such as fact-
oriented modelling and entity-relationship modelling are commonly used to
specify a conceptual schema, which may then be mapped to a structure in a
chosen data model (e.g. a relational ,J_~t~base schema). Since conceptual data
models support a rich variety of constraints, and these constraints may impact on
one another, the task of ensuring that the constraints expressed in a conceptual
schema are consistent is non-trivial. Moreover, because different constraint
patterns may be equivalent, some optimization may be needed to select the best
constraint pattern for explicit assertion. With reference to conceptual schemas
expressed in FOrML (an enhanced version of NIAM) this paper discusses meta-
rules for strong satisfiability and constraint preference, and outlines an efficient
algorithm for validating four main types of constraints. Complexity analyses and
benchmarks of the implemented algorithm are included.

1 Introduction

The use of workbenches to provide automated support for the development of database
applications is becoming widespread. For the modelling phase, it is becoming
increasingly common for the data-perspective to be first specified in a human-oriented
conceptual notation, which is then mapped to the appropriate logical data model
(typically relational). Although most workbenches support a variant of EER (Enhanced
Entity Relationship modelling), fact-oriented modelling arguably has several advantages
(stronger linguistic basis, more constraint types, and its conceptual schema diagrams
are more stable and easier to populate). Fact-oriented modelling (FORM) comes in
various flavours, under various names (e.g. NIAM, Binary-Relationship Modelling),
and is supported by various CASE tools; some of these tools are well known (e.g.
RIVL* from IntelliBase) while others are due for release this year (e.g. rrI's Conceptual
Designer, and ServerWare's InfoViews).

Research at the University of Queensland is extending the fact-oriented
modelling method, including automated support via a prototype known as WISE (Work-
bench for Information System Engineering). A detailed overview of WISE is given in
Halpin (1991b). To place the topic of this paper (constraint validation) in perspective,
a brief sketch of this project is now given. Conceptual schema editors are used to enter
or modify conceptual schemas in graphical or textual form (with automatic layout).

446

Most syntax errors in the schema are detected at the entry stage since the editors
incorporate most of the knowledge in the meta-conceptual schema. The output from
this stage is fed to the Quality Checker: this performs further constraint validation,
then checks for derivability and splittability of fact types (Zhang & Orlowska 1991).

The checked schema is then passed to the conceptual schema optimizer, which
transforms it to an optimal version using formal equivalence and implication theorems,
and heuristic guidelines (Halpin 1989, 1991a, 1991c, 1992). The designer may interact
with this module to over-ride defaults, provide better identifiers and allow information
loss or gain. The optimized schema is then mapped to the appropriate data model (e.g.
relational), generated, tested and tuned for a given DBMS. Other aspects under
investigation include extending the schema languages and mapping algorithms,
facilitating schema evolution and incorporating other object-oriented features. Only
some of the phases just described have been implemented. This paper focusses on
constraint validation.

Since conceptual data models support a rich variety of constraints, and these
constraints may impact on one another, the task of ensuring that the constraints
expressed in a conceptual schema are consistent is non-trivial. Moreover, because
different constraint patterns may be equivalent, some optimization may be needed to
select the best constraint pattern for explicit assertion. Section 2 defines the notion of
strong satisfiability used for constraint consistency, and lists a number of results
following from this definition. In section 3, various constraint implication theorems are
cited, which indicate how some constraints may be implied by others, and guidelines
are set out for explicit display of constraints. Section 4 specifies an algorithm for
validating four kinds of constraint on lists of single roles. A similar algorithm is cited
for lists of role-sequences. Complexity analyses and prototype benchmarks for these
algorithms are included in section 5. The final section identifies some related problems
for further research.

2 Strong Satisrmbility of Conceptual Schemas

It is assumed that the reader has a basic grounding in logic and database theory. While
much of our discussion can be translated into popular EI~ notions, we use fact-oriented
modelling here since it facilitates work with constraints. For the reader who is
unfamiliar with this method, we briefly discuss an example conceptual schema (see
Figure 1). Entity types are denoted by named ellipses (e.g. Country). Value types
(e.g. Number or CharString types) are shown as named broken ellipses (e.g.
CountryName). Simple reference schemes for entity types are parentheisized (e.g. each
Country is identified by its country code); a "+" on a reference mode indicates
numeric reference (e.g. nr). Predicates are shown as named box-sequences (one box
for each role); for example, the binary predicate plays_for has two roles. Predicates
are ordered, with their name written in or beside their first role-box.

A bar across a sequence of one or more roles specifies a tmiqueness constraint
(instantiating object sequences may not be duplicated); arrow tips may be added to the
bar (and must be if the roles are non-contiguous). For example, each team plays for
only one country but a country may field many teams; the shirt relationship between
Playing Country and Colour is many:many but the pants relationship is 1:1.

447

has
male

I I
I l has

female

I
play~ for

{'actual',
'expected'}

7"

ii'

[CountryName
\ /

supplies judge1

|

supplies judge2

I I t winso~
~ should win

I ,1 events in

Playing_country =df Country where exists Team playing for (~ountry

Fig. 1 An example of a fact-oriented conceptual schema diagram

448

Predicates which are completely spanned by a uniqueness constraint may be
objectified; this nesting is shown as a frame (e.g. plays_in). A dot where n role-ares
connect to an object type indicates the disjunction of the n roles is mandatory or total
(each object in the population of that type must play at least one of those roles). For
example, each country must have a name, and supplies either one or two judges. An
| symbol connecting role-sequences indicates mutual exclusion between the
populations of these role-sequences. For example, a player cannot be both a male and
female member of a team, and a country may not have a shirt colour which is the
same as its pants colour. A dotted arrow from one role-sequence to another denotes a
subset constraint (i.e. the population of the source is a subset of the target). A subset
contraint in both directions is an equality constraint, and is shown as a dotted line with
arrow-heads at both ends (e.g. a team has a male player if and only if it has a female
player). A solid arrow from one object type to another indicates the former is a proper
subtype of the latter; subtype definitions are specified at the bottom of the diagram
(e.g. Playing_Country). Value-list constraints are shown in braces beside the relavent
object type (e.g. WinKind). For a detailed background on fact-oriented modelling, see
Nijssen & I-Ialpin (1989); a recent overview is provided in Halpin & Orlowska (1992).

A conceptual sehema diagram is mappable to a set of sentences in first order
logic (l-Ialpin 1989). An interpretation of a conceptual schema is then defined in the
usual first-order way. An interpretation I of a conceptual schema cs is a model of CS
iff each sentence of cs is true for I. A conceptual schema is satisfiable iff it has a
model. In practice this notion of satisfiability is too weak, since it permits schemas
with constraint patterns that are satisfiable only because these patterns are not
populated. For example, a role with a uniqueness constraint and a frequency constraint
of 2 generates a contradiction only if the role is populated: such constraint patterns are
only trivially satisfiable.

The unsatisfactory nature of trivial models in relation to constraints has been
noted in the literature. For example, Meyer, Weigand and Wieringa (1988, p. 13)
attempt to avoid the problem by demanding that all models are non-empty. However,
this is still too weak since it allows non-empty models with some empty predicates that
are only trivially satisfiable. To demand that a cs must have a model in whieh all its
predicates are non-empty is too strong, since legitimate exclusion and eardinality
constraint patterns are rejected (Halpin 1989 pp. 6-3,4). We propose the following
definition:

A conceptual schema CS is strong/y satisfiable (or population-consistent) if and
only if: (a) for each of its predicates, there is a model of CS in which that
predicate is instantiated; and (b) for each inter-predicate role-sequence which
is an argument to an explicit constraint, there is a model in which that role-
sequence is instantiated.

An inter-predicate role-sequence is an ordered list of roles, at least two of
which occur in different predicates. Halpin (1989) proved various metarules using part
(a) of this definition to avoid various cases of trivial satisfiability. We extend this work
by considering some new cases which underpin the constraint validation algorithms
discussed later.

449

The first rule is NXS (No eXclusion with a Subset constraint). In the diagram,
rsl and rs2 are each sequences of n roles (n > 1). The constraint arguments are rsl
and rs2 (not just subsequences). The exclusion constraint (denoted by ~)) means there
is no model in which both rsl and rs2 are populated. On the left, a subset constraint
from rs2 to rsl is shown as a broken arrow from rs2 to rsl: in all models, each
instance in the population of rs2 is also an instance in the population of rsl. Similarly,
a subset constraint from rsl to rs2 is shown on the right.

NXS Any schema with both an exclusion constraint and a subset constraint
between the same two role-sequences is population-inconsistent (i.e. not
strongly satisfiable).

r s l I } r s l l I

|
:

rs2 I t rs2 I I

t | :

Illegal combinations (constraints apply between whole role-sequences)

The proof of NXS is trivial. Consider the left-hand version. Assume strong
satisfiability and both constraints hold. By strong satisfiability there is a model in
which rs2 is populated. Let an instance in its population be a. The subset constraint
implies that a occurs in the population of rsl. So a populates both rsl and rs2, which
contradicts the exclusion constraint. So the original assumption is wrong, i.e. the
constraints are not strongly satisfiable. By swapping rs 1 and rs2 the right-hand version
follows. The constraint pattern is trivially satisfiable (there in a model where both rsl
and rs2 are empty, both constraints do hold), i.e. although the pattern is consistent it is
population-inconsistent.

In the unlikely event that a designer explicitly enters both exclusion and subset
constraints between the same role-sequences, this will be rejected by the editor.
However, as discussed later, it is still necessary to check whether such a constraint
combination is implied by other constraints on the schema.

As a related issue, the editor should be provided with knowledge as to where
constraints may be meaningfully asserted on the schema. Apart from the obvious
restrictions captured by graphic constraints on the meta-conceptual schema, further
textual constraints at the meta-level must be specified and enforced. In this paper we
restrict our attention essentially to MSF_.X constraints: Mandatory roles, Subset
constraints, Equality constraints and eXclusion constraints. Recall that a role is
mandatory (or total) for an object type if and only if each population instance of that
type must play that role. Our approach bears some similarities to the "set constraint
consistency analysis" performed by RIDE* (De Troyer et al. 1988, p. 398), but there
are some significant differences.

450

To begin with, the "total union" and exclusion constraints commonly asserted
between subtypes in RIDL* are unlikely to be ever used explicitly in our approach,
since they are typically implied by the subtype definitions in conjunction with
constraints on the fact types used in these definitions. For example, if Person has a
mandatory functional association with Sexcode {'m', 'f '), and Man and Woman are
defined as having Sexcode 'm', 'f' respectively then exhaustion (total union) and
exclusion constraints for Man and Woman are implied.

Our treatment of subtypes is somewhat stricter than that of RIDL*. We demand
that subtypes be definable in terms of roles played by their supertype(s), and give these
definitions formal significance. If the designer ever tried to explicitly assert an
exclusion or exhaustion constraint between subtypes this would be checked for
consistency with the definitions and relevant constraints (see Halpin 1989 pp. 6-14,15
for relevant theroems), and typically allowed only as an implied constraint. In addition,
subtypes are introduced only if they have a specific role to play. We feel this is a safer
approach, as well as leading to less cluttered diagrams.

In some cases one might vacillate over whether to introduce a subtype or not
(e.g. see Nijssen & Halpin 1989, p. 178). We resolve such cases by the following
recursive subtype introduction procedure (sip):

If an optional role is plaYed only by a well-defined subtype, then specify the
subtype definition.
If the subtype definition is stronger than "[not] playing a role directly attached
to [one of its] supertype[s]" then introduce the subtype (and apply siP to it).
If the subtype definition can be expressed instead as a subset or exclusion
constraint then do so, unless there are several roles which bear equality or
subset constriants to the candidate subtype role (in which case introduce the
subtype and apply siP to it).

It is clear that subset, equality and exclusion constraints are allowed between
role-sequences only if these are compatible (same corresponding host object types).
Also exclusion constraints between exclusive subtypes, as well as subset constraints
from subtype roles to mandatory supertype roles, are implied and hence omitted.
Mainly as a consequence of the sip procedure, other meta-rules follow which further
restrict the explicit depiction of such constraints. In particular:

Consider two different object types B and C, with the same host supertype,
and let �9 and s be roles attached to B and C.
�9 An explicit subset constraint from �9 to s is allowed only if �9 and s are

optional and B is (directly or indirectly) a subtype of C.
�9 An explicit exclusion constraint between �9 and s is allowed only if �9 and

s are optional and either B is a subtype of C or C is a subtype of B.

The significance of such rules is twofold: they allow such rule violations to be
rejected at the schema entry stage; knowing these rules are now obeyed simplifies the
working of the constraint validation checking applied later.

451

3 Constraint Impfication and Display

Let CS be any well formed conceptual schema, and C be any well formed static
constraint to be added to CS. Then CS implies C iff C is true in all models of CS.
Using formal logic, Halpin (1989) proved several constraint implication theorems for
fact-oriented schemas. We cite without proof the following results:

If roles �9 and s are mandatory and optional for the same object type, then a
subset constraint is implied from s to r.

Let rs l and rs2 be compatible role-sequences (of 1 or more roles). Then:
A subset constraint from rs2 to rs l implies a subset constraint from each
subsequence in rs2 to the corresponding subsequence of rs 1.
An exclusion constraint between rs l and rs2 implies an exclusion constraint
between all compatible supersequences of rs I and rs2.

Let rs l , rs2 and rs3 be compatible role-sequences. A subset constraint from
rs l to rs2 combined with a subset constraint from rs2 to rs3 (transitively)
implies a subset constraint from rs l to rs3.

An exclusion constraint between n role-sequences is equivalent to the
exhaustive conjunction of n(n-l)/2 binary exclusion constraints between all
possible pairs of these role-sequences.

An equality constraint between two role-sequences is equivalent to subset
constraints in both directions.

If a single equality constraint between n role-sequences is allowed, it is
equivalent to equivalent to the n-1 binary equality constraints between
adjacent role-sequences.

If the disjunction of roles �9 and s is mandatory, and a subset constraint exists
from s to r, then �9 is mandatory. In this case �9 should be displayed separately
as mandatory.

Many other examples of constraint implication and display preferences are given
in Halpin (1989), dealing with uniqueness, frequency, cardinality, subtype, asymmetry
etc. constraints. However those results cited here provide sufficient background for the
constraint validation algorithms which follow. We restrict ourselves to the following
problem:

Given a conceptual schema output from the cs editor, is the pattern of its
MSEX constraints strongly satisfiable? If not, specify the violation(s) (and ideally
interact with the designer to correct the schema). If it is strongly satisfiable,
then optimize the display by hiding implied constraints except that mandatory
roles are always to be depicted as mandatory.

For example, consider the constraint pattern of Figure 2. Each box denotes a
single role. The exclusion constraint applies between the left-hand roles, but the subset

452

constraint (by connecting the role-junction points) applies between the role-pairs. The
pair-subset constraint implies subset constraints between the left-hand roles (and
between the right-hand roles). From theorem NXS, this conflicts with the exclusion
constraint and the schema is not strongly satisfiable. Note that because subset
contraints are implied through all subsequences, we merely had to look for an implied
subset constraint on the explicit exclusion constraint: we did not have to derive the
supersequence exclusion constraints.

6 t

Fig. 2 This constraint pattern is not strongly satisfiable

As a simple example of optimizing constraint display, consider the left-hand
diagram in Figure 3. Object types are depicted by ellipses. A dot connected to one or
more roles means the disjunction of these roles is mandatory for the dotted object type.
The pair-subset constraint implies subset constraints from the lower roles to the roles
directly above them, which combined with the disjunctive mandatory role constraints
imply that the top roles are mandatory and hence must be displayed as shown on the
right.

,11

r3 r4 r3 z4

Fig. 3 The left-hand version should be converted to the right-hand version

The basic ideas underlying MSEX constraint validation (checking for constraint
satisfiability, and optimizing the constraint display) have now been covered, so that an
intelligent designer would normally be able to carry out this procedure manually.
However, with large schemas this is both tedious and open to error (because of the
large numbers of implied constraints). Hence it is desirable to have this validation
performed automatically. The rest of the paper specifies algorithms for doing this
efficiently.

453

4 MSEX Constraint Validation

We believe the algorithms presented here for validating MSEX constraints offer
advantages such as efficiency and completeness compared with those used by other
systems. For portability the algorithms have been coded in C. Basically, we perform a
"populability check" of conceptual schemas, which focusses on potential schema
populations, indicating any predicates which cannot be populated as well as any
redundant subset constraints.

The basic principle of the algorithm is to build a series of graphs such that each
graph represents a "population scenario" (possible world). A directed arc between two
vertices u, v in a graph is equivalent to the subset constraint: every instance of an
object-type which plays role u in this scenario also plays role v.

The population graphs are a series of directed graphs which represent possible
populations of the schema, and are defined as either unary (compare single roles) or n-
ary (compare sequences of at least 2 roles). Although, the unary case is just a special
case of the n-ary, the algorithms are treated differently as they typically have to be
implemented separately.

For simplicity, the main algorithms assume that exclusion and subset constraints
span only two role-sequences. All constraints not of this form are pre-processed to
give a series of binary constraints. All equality constraints are then pre-processed to
form two subset constraints. The details of the pre-processing are as follows.

Pre-proeessing:

If n-ary equality constraints are allowed, each equality constraint of the form
=(rsl rsn) is transformed into (n-l) binary equality constraints between adjacent
pairs: rsl = rs2 rsn-I = rsn. For example, =(rsl,rs2,rs3) becomes: rsl = rs2,
rs2 = rs3.

Each n-ary exclusion constraint of the form | rsn) is transformed
into n(n-1)/2 binary constraints by exhaustive pairing: rsl | rs2 rsl | rsn, rs2
| rs3 rs2 | rsn rsn-I x rsn. For example, | becomes: rsl |
rs2, rsl | rs3, rs2 | rs3.

All equality constraints of the form rsl = rs2 are transformed into two subset
constraints of the form rsl - , rs2, rs2 -* rsl (using "-'-" to denote "is a subset of").
For example, rsl = rs2 becomes: rsl ~ rs2, rs2 -~ rsl.

Finally, all subset constraints between sequences of n roles (n > 1) have the
implied subset constraints generated for each of their subsequences. Thus a single such
constraint is expanded to 2~-1 subset constraints. For example, (rs l l , rsl2,rsl3)
(rs21,rs22,rs23) is expanded to the 7 constraints:

unary:
binary.

ternary:

rsl 1 ~ rs21; rs12 --* rs22; rs13 --* rs23
(rsl 1 ,rsl 2) --, (rs21 ,rs22); (rsl 1 ,rsl 3) --, (rs21 ,rs23);
(rsl 2,rsl 3) ~ (rs22,rs23)
(rsl 1 ,rsl 2,rsl 3) -* (rs21 ,rs22,rs23)

This final expansion is used to optimize constraint display. If only a consistency check
is needed, subset constraint generation can be limited by existing exclusion constraints.

454

Unary validation (constraints which compare single roles):

We construct a directed graph G = (V,E), where V is a set of vertices and E is a set
of edges. All v E V are roles whose connecting object-typos have the same root in
their subtype-graph, i.e. a population graph around some object-type O (with no super-
types) has as its vertices all of the roles played by O (directly connected to O) or any
subtypes of O. All e E E are edges of the form (u E V -> v E V) where it can be
shown that any instance of O playing role u must play role v.

The algorithm must be run for each subtype graph (possibly trivial) in the
sehema. A sub-type graph is identified by its root. From this point onwards, a role
refers not only to the role within the schema but also to that role's corresponding
vertex in the graph. An overview of the algorithm is now given.

Step 1:
The initial step in the algorithm is to add the vertices to the graph. Each vertex

in the graph corresponds to a role which is directly connected to an object-type in the
subtype graph of interest. All such roles are represented in the graph.

All edges in the graph are directed and have an extra attribute which records the
constraint from which the edge was derived. This is useful for reporting redundant
subset and exclusion constraints.

Step 2:
The next step adds to the graph the edges which are derived from non-

disjunctive mandatory role constraints. Put simply this is: "For all such constraints
which span a role r in the graph where r is connected to some object-type O, add
directed edges to r from all other roles connected to either O or subtypes of O. Mark
these edges as being derived from the relevant mandatory role constraint." At this
point, the base-graph has been formed. Before any checking can be done, edges
produced by subset and disjunctive mandatory role constraints are added to the graph.

Next a sequence of possible non-empty populations is built up from the
disjunctive mandatory role constraints which span roles in the graph. Basically, we
form the power-set and subtract the null set.

For example, suppose there are two disjunctive mandatory role constraints el
and c2 which impact on the graph, where el spans roles rl , r2 and c2 spans roles r3,
r4. The possible (non-empty) populations of roles 1 and 2 are pl = {{1},{2},{1,2}},
i.e. either role 1 may be populated and not role 2, role 2 may be populated and not
role 1, or both may be populated (there are 2"-1 of these "population scenarios").

Similarly, the possible populations of roles 3 and 4 are p2 = {{3},{4}, {3,4}}.
The total possible set of schema populations around the roles influenced by cl and c2
is M = { {1,3}, {1,4}, {1,3,4}, {2,3}, {2,4}, {2,3,4}, {1,2,3}, {1,2,4}, {1,2,3,4} }.
The size of this set is #pl * #p2, the product of the eardinalities of pl and p2.

Step 3.
Using the base-graph as a starting point, apply the following algorithm to each

m E M .

455

Step 3.1 (add disjunctive-mandatory role constraints):
For all roles r E m, add edges to the graph using the same procedure as that

used for non-disjunctive mandatory roles, i.e. if r is connected to some object-type O,
add directed edges from all other roles connected to either O or subtypes of O to r.
Mark these edges as being derived from the relevant mandatory role constraint.

Step 3.2 (add the subset constraints):
For each subset constraint r ~ s such that r E V and s E V, if no path from r

to s exists in the graph, add an edge from r to s to the graph and mark it as being
derived from the relevant subset constraint.

Step 3.3 (check the exclusion constraints):
For each exclusion constraint of the form r | s such that r E V and s E V if

a path exists from r to s in the graph, the constraint is invalid since role r cannot be
populated; if a path exists from s to r in the graph, the constraint is invalid since role s
cannot be populated.

Step 3.4 (cheek the subset constraints):
For each subset constraint r ~ s such that r E V and s E V, if the path from r

to s in the graph is not a single edge which has been derived from the subset constraint
currently being checked, the constraint is redundant in this population scenario. If a
subset constraint is redundant in all population scenarios (for all m in M) the
constraint is redundant in the schema.

Step 3.5 (check for implied mandatory role constraints)
For each role r in the graph where it is possible to get from all other roles in

the graph to r, r is mandatory for this population scenario. If a role is mandatory in all
population scenarios, the role is mandatory in the schema. Note that the information
needed for this check can be built up while adding the subset and mandatory role
constraints.

As an example of the unary check, consider the incomplete schema fragment
depicted in Figure 4. In this graph there are 13 roles labelled "r l" . ." r l3" connected
directly (or indirectly via subtypes) to the object type named "Target OT".

456

:"c2

cl

oE

c4

, ,511 " 1 1 " ' l i "~

Y

\

/

Fig. 4 A schema fragment used to illustrate unary validation

For this example, the algorithm is executed thus. The vertices V = {rl .. r13}.
Add directed edges added for non-disjunctive mandatory roles: r l --, r2, r3 --, r2, r4 --,
r2, r S - * r2, r6 -* r2, r7 --, r2, r 8 - * r2, r9 -> r2, r l 0 - - , r2, r l l - , r 2 , r 1 2 - , r2, r13-- ,
r2, r l -~ r7 , r2 ~ r7, r3 --, r7, r4 --, r7, r5 - , rT, r6 -~ r7, r 8 - ~ r7, r9 -~ rT, r l 0 - - , rT,
r l l - , r7, r12 - , r7, r13 -~ r7, r12 - , r13, r l l -* r13. Hence in the base graph G, all
vertices have edges to r2 and rT, and there are edges f rom r12 to r13 and r l l to r13.

M = { {r3, r9}, {r3, r lO}, {r3, r9, r lO }, {r4, r9},
{r4, r lO}, {r4, rg, r lO }, {r3, r4, rg}, {r3, r4, r lO},

,{r3' r4, r9, r lO } }

457

Now consider iteration 1 of step 3. Add disjunctive mandatory roles. All
vertices now have edges to r2, r3, r7, and r9. Adding subset constraints causes the
following edges to be added: r2 - , r3, r3 --, r2, r6 --, r7, r7 --, r6, r l --, r2, r8 --, r7,
r12 --, r l l , r2 --, r3, r3 - , r2, r6 - , r7, r7 --, r6, r12 --, r13, r l l --, r13. The results of
iteration 1 are: el marked as redundant; e2 can be replaced by a subset constraint to
R2; c4 can be replaced by a subset constraint; c5 is redundant

The results of the complete execution of the algorithm are: cl tagged as
redundant; e2 can be replaced by a subset constraint to R2; c3 tagged as invalid since
R4 cannot be populated; c4 can be replaced by a subset constraint; c5 is redundant; e6
is valid; c7 is valid.

Note that the algorithm detects all errors but makes a default assumption
regarding the best way to remove the error. An improvement would be to interact with
the designer to determine which error correction option is best (for example, another
possible error correction with the current example is that r3 should have been
mandatory, leaving e2 as implied.

N-ary validation (constraints comparing sequences o f 2 or more roles):

An n-ary check checks all n-ary subset, equality and exclusion constraints in the
schema (see Figure 4). Again G = (V,E) is a directed graph. A "population node" is
derived from a role-sequence of two or more roles in a constraint. For example, in
Figure 5 the pair-subset constraint from the role-pair (rl,r2) to the role-pair (r3,r4) has
the population nodes rl#r2 and r3#r4.

A population node n is "population equivalent" to role-sequence rs iff all roles
occurring in n occur in the same order in rs. A population node n is the

corresponding" population node to population node m within constraint c iff c is made
up of rsl and rs2, and n is population equivalent to rsl and m is population equivalent
to rs2, or vice-versa.

Given a binary constraint made up of rsl = (rl,r2) and rs2 = (r4,r5) the
population node n = rl#r2 is population equivalent to rsl, and the convaponding
population node in rs2 of rl#r2 in the constraint is r4#r5.

Having described the n-ary form of the population graph, we now give an
overview of the n-ary validation algorithm. This is similar in principle to the unary
algorithm. Vertices in the graph used in the n-ary ease represent sequences of n roles.
For a given N, the algorithm must be run on every n-ary constraint in the schema.

For each n-ary constraint ce of the form pl subset p2 or pl exclude p2, where
pl and p2 are the n-ary population nodes which represent the n-length role-sequences
in ee, add the vertices pl and p2 to the graph (V = { pl,p2}) and proceed as follows:

458

Changed = true;
C = {}; (C is the set of constraints which have been processed)

while changed do
for all subset constraints c where c spans some v E V and c is not in C

c is of the form pa subset pb
C = C + c
if pa is not in V

V = V + p a ;
Changed -- true

if pb is not in V
V = V + pb;
Changed -- true

If no path form pa to pb exists in the graph
Add an edge from pa to pb
Mark the edge as being derived from c

if cc is a subset constraint and the path from pl to p2 in the graph is not a
single edge which is derived from cc, cc is redundant.

if cc is an exclusion constraint and there is a path from pl to p2 in the graph,
cc is invalid since p l cannot be populated.

if cc is an exclusion constraint and there is a path from p2 to pl in the graph,
cc is invalid since p2 cannot be populated

As an example, consider the schema fragment shown in Figure 5. Intuitively,
there is a problem since a pair-subset constraint is implied from (rl,r2) to (r3,r4), which
is population-inconsistent with the exclusion constraint cl .

The algorithm checks the exclusion constraint c l as follows. Initially V =
{rl#r2,r3#r4} and E = {}. Adding c2 adds the vertex r5#1"6 and the edge rS#r6 - ,
r3#r4. Adding c3 adds the vertex rT#r9 and the edge rT#r9 --, rS#r6. Adding c4 adds
the edges rl#r2 -* rT#r9 and rT#r9 -* rl#r2. The final graph for the check of the
exclusion constraint is as shown. Since there is a path from rl#r2 to r3#r4, the
exclusion constraint is invalid because rl#r2 cannot be populated (by theorem Nxs).

r l # r2 r3#r4

r5#r6 ~ ,, r7#r9

459

A'

o , / ' l ~ I

c3

B' ~ I C

Fig. 5 A schema fragment used to illustrate n-an/validation

As a final example consider the first schema shown in Figure 3. The set of
population scenarios for the (trivial) subtype graph with root A is M = { {rl}, {r3},
{rl, r3} }. Each of the 3 resultant graphs has an arc from r3 to rl added due to the
subset constraint.

460

G1 r l ~ r3 (r l is mandatory)

G2 r l ~ ; r3 (both are mandatory)

G3 r l ~ ~ r3 (both are mandatory)

Since rl is mandatory in all 3 population scenarios, r l is mandatory in the
schema and the disjunctive mandatory role constraint over roles rl and r3 can be
replaced by a single mandatory role conatraint over r l .

Similarly the disjunctive mandatory role constraint over r2 and r4 can be
replaced by a single mandatory role constraint over r2.

The n-ary case has two nodes - rl#r2 and r3~4 and one edge from r3#r4 to
r l ~ 2 . There are no redundancies or errors.

When the schema is re-assembled with the new mandatory role constraints the
schema takes the more correct form of the second schema shown in Figure 3.

5 Complexity Analysis

The complexity analysis ignores the pre-processing step. Complexity of a unary check
on a single subtype graph is determined as follows. Let R be the number of roles in
the subtype graph. Let C be the number of subset, equality, exclusion and non-
disjunctive mandatory role constraints constraints which impact on the subtype graph.
Let NM be the number of non-disjunctive mandatory role constraints which impact on
the subtype graph. Let P be the number of elements of the set M (the set of possible
schema populations). P is exponential in the arity of the largest disjunctive mandatory
role constraint which impacts on the subtype graph.

Step 1 is clearly O(R). Step 2 has a worst case complexity of O(R * NM). Step
3 is performed P times. Step 3.1 takes O(R * the number of elements in m). Step 3.2
takes O(R * R * the number of subset constraints involved in the graph) if an
algorithm such as Dijkstra's is used to check for the path. Step 3.3 takes O (R * R *
the number of subset constraints involved in the graph) if an algorithm such as
Dijkstra's is used to check for paths. Step 3.4 also takes O(R * R * the number of
subset constraints involved in the graph). Since the number of elements in m is never
greater than the number of vertices in the graph, Steps 3.1 - 3.4 are O(#constraints *
R * R). Hence the complexity of checking one subtype graph is O(R * R * P * C).

Let OTS = the number of object-types in the schema. Let RS = the number of
roles in the schema. Let CS = the number of subset, equaliity, exclusion and non-
disjunctive mandatory role constraints in the schema. Let DMS = the number of
disjunctive mandatory role constraints in the schema.
Let SLDM = the size (arity) of the largest disjunctive mandatory role constraint in the
schema. Let PS = the number of elements involved in the largest "possible world set "
(M). This is O(DMS * 2Sla~).

461

Each object-type may only occur in one subtype graph. Each role may only
occur in one subtype-graph. Hence the complexity of the entire schema is O(RS * RS
�9 CS * PS).

We now analyse the complexity of the n-ary case. Let C = the number of n-ary
subset and exclusion constraints involved in the current graph. The complexity of
checking a single n-ary constraint is is O(C 3) since testing for an existing path between
nodes is is O(C2). Hence, for a complete schema the complexity is: O (CS 4) where CS
= the number of n-ary subset, and exclusion constraints in the schema.

Although the complexity analysis for the unary algorithm yeilds a result which
is exponential in the size of the disjunctive mandatory roles within the schema, the
number of large disjunctive mandatory roles constraints is typically small. As a result
of this the performance of the algorithm is not adverseley affected by the exponential
complexity.

Furthermore, if the schema is only to be checked for strong-satisfiability, only
those subtype graphs containing exclusion constraints need be checked for the wary
case and only exclusion constraints need be checked for the nary case.

The preceding algorithms have been implemented, and produced the following
results when run on a schema containing in excess of 250 object-types, 300 predicates,
400 mandatory role constraints, 6 non-trivial subtype graphs, 30 subtype & equality
constraints and 10 exclusion constraints. On a SUN SparcStation 2 the full check (unary
and wary) completed in 3 seconds. On an BM compatable 16 MHz 80386-SX the same
check completed in 68 seconds.

6 Conclusion

This paper has examined the notions of constraint satisfiability and implication for four
important classes of constraints in fact-oriented modelling, and specified efficient
algorithms for their checking and display optimization. Since these constraints are at
least partially supported by various versions of EER modelling, the work has wider
implications. While validation procedures have been developed for other classes of
constraints (e.g. uniqueness), there are several other constraints in fact-oriented
modelling which require a similar set of validation algorithms (e.g. frequency,
asymmetry). The development and implementation of efficient validation algorithms for
such constraints is a topic for future research.

References

Bry, F. & Manthey, R. 1986, 'Checking Consistency of Database Constraints: a
Logical Basic', Proc. Twelfth Int. Conf. on Very Large Data Bases, VLDB,
Kyoto, pp. 13-20.

De Troyer, O., Mecrsman, R. & Verlinden, P. 1988, 'RIDL* on the CRIS Case: a
Workbench for NIAM', Computerized Assistance during the Information
Systems Life Cycle: Proc. CRI$88, eds T.W.Olle, A.A. Verrijn-Stuart & L.
Bhabuta, North-Holland, Amsterdam.

462

De Troyer, O. 1989, 'RIDL*: A Tool for the Computer-Assisted Engineering of Large
Databases in the Presence of Integrity Constraints', Proc. ACM-SIGMOD Int.
Conf. on Management of Data, Oregon.

De Troyer, O. 1991, 'The OO-Binary Relationship Model: a truly object-oriented
conceptual model', Advanced Information Systems Engineering: Proc. CAiSE-
91, Springer-Verlag Lecture Notes in Computer Science, no. 498, Trondheim.

Halpin, T.A. 1989, 'A Logical Analysis of Information Systems: static aspects of the
data-oriented perspective', PhD thesis, University of Queensland.

Halpin, T.A. 1991a, 'Optimizing Global Conceptual Schemas', Databases in the
1990s: 2, eds B. Srinivasan & J. Zeleznikov, World Scientific, Singapore.

Halpin, T.A. 1991b, 'WISE: a Workbench for Information Systems Engineering',
Proc. 2nd Workshop on Next Generation of CASE Tools, Trondheim.

Halpin, T.A. 1991c, 'A Fact-Oriented Approach to Schema Transformation', Proc.
MFDBS-91, Springer-Verlag Lec. Notes in Computer Science, no. 495,
Rostock.

Halpin, T.A. 1992, 'Fact-oriented schema optimization', to appear in Proc. CISMOD-
92, India, July 1992.

Halpin, T.A. & Orlowska, M. E. 1992, 'Fact-Oriented Modelling for Data Analysis',
Journal of Information Systems, vol. 2, no. 2, Blaclcwell Scientific, Oxford.

Halpin, T.A. & Ritson, P.R. 1992, 'Fact-Oriented Modelling and Null Values',
Research and Practical Issues in Databases: Proc. 3rd Australian Database
Conf., eds B. Srinivasan & J. Zeleznikov, World Scientific, Singapore.

Lundberg, B. 1983, 'On Correctness of Information Models', Information Systems,
vol. 8, no. 2, pp. 87-93, Pergamon Press.

Meyer, J., Weigand, H. & Wieringa, R. 1988, 'Specifying Dynamic and Deontic
Integrity Constraints', Rapport IR-175, Vrije Universiteit, Amsterdam.

Nijssen, G.M. & Halpin, T.A. 1989, Conceptual Schema and Relational Database
Design: a fact-oriented approach, Prentice Hall, Sydney.

Qian, X. & Wiederhold, G. 1986, 'Knowledge-based Integrity Constraint Validation',
Proe. Twelfth lnt. Conf. on Very Large Data Bases, Kyoto, pp. 3-12.

Rajagopalan, P. & Ling, T.W. 1987, 'A method for semantic validation of a class of
integrity constraints', Tech. Report, Uni. of Singapore.

Zhang, Y. & Orlowska, M.E. 1991, 'Synthesizer+: an automatic tool for relational
database design', Proc. I4th Australian Computer Science Conf., Sydney.

