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Abst rac t .  We present a method for symbolic model checking of /t- 
Charts, a Statecharts dialect with instantaneous broadcast communi- 
cation. Due to this communication concept,/t-Charts satisfy the perfect 
synchrony hypothesis. The well-known causality conflicts that arise un- 
der instantaneous feedback from negative trigger conditions are resolved 
semantically through oracle signals. We have implemented a prototypi- 
cal tool that translates/t-Charts specifications into p-calculus formulae. 
These formulae are checked against temporal specifications using a #- 
calculus verifier. 

1 I n t r o d u c t i o n  

Statecharts [4] are a visual specification language for reactive systems. They 
extend conventional state transition diagrams with structuring and communica- 
tion mechanisms. Since there is also tool support through several providers like 
r-active or i-Logix (Statemate [7]), Statecharts have become quite successful in 
industry. 

However, the semantics of Statecharts as used in Statemate is based on a 
delayed broadcast, which leads to a very operational, implementation-level spec- 
ification style. For a modeling language for abstract requirements specifications 
more abstract  approaches are desirable. These concepts are introduced in [12], 
where we present a dialect of Statecharts called p-Charts.  This dialect features a 
formal semantics for nondeterministic Statecharts with instantaneous feedback. 
It is an extension of Mini-Statecharts as presented in [11, 17]. Specification with 
instantaneous feedback fulfill the perfect synchrony hypothesis [1]. As noted in 
previous works on the semantics of Statecharts [5~ 14], or Statechart-like lan- 
guages like Argos [9, 10], instantaneous feedback can lead to causality conflicts 
when trigger events with negation are allowed. 

Nevertheless, we prefer this kind of broadcasting, since delayed broadcast 
as used in Statemate is not a suitable communication concept for behavioral 
refinement. When refining a subchart to a set of more concrete subcharts, addi- 
tional delays are introduced. Thus, the I /O-behavior of the Statechart  changes. 

* This work is partially funded by the German Federal Ministry of Education and 
Research (BMBF) as part of the compound project "KorSys'. 
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Refinement rules would have to be more complex to compensate the additional 
delays. As observed in [6], this is not the case for instantaneous feedback. 

If conflicts because of negated trigger conditions occur, they are handled 
semantically through oracle signals [12]. This is in contrast to Argos, which 
requires a static analysis to reject those Statecharts where a conflict might occur. 

In this contribution, we demonstrate how to use the semantic model intro- 
duced in [12] as starting point for efficient formal verification, based on symbolic 
model checking techniques. We model chain reactions caused by instantaneous 
feedback as the least flxpoint of a transition relation. This chain of transitions is 
embedded in the outer transition relation that describes the observable behavior. 
As far as we know, this is apart from [13] the only work that deals with model 
checking of a specification formalism based on instantaneous broadcasting. The 
semantics presented in this paper is implemented in a prototypical tool that 
generates a set of it-calculus formulae from a given specification. These relations 
can immediately be used as input for the model checking tool #-cke [3]. 

This paper is organized as follows. In the sequel, we present our running 
example, a central locking system for cars. In Section 2 we introduce the Stat- 
echarts dialect used throughout this paper and give an abstract syntax for it. 
Section 3 shows how the formal semantics of it-Charts can be described using 
p-calculus formulae. In Section 4 we show some results of symbolic verification. 
Section 5 summarizes some experiences gained in this work. 

Example: A Central Locking System 

As running example we use a simplified specification of the central locking system 
for cars. This example was inspired by a case study from the local car indus- 
try. The corresponding it-Chart is pictured in Figure 1; it specifies the locking 
system of a two-door car. Table 1 shows the signals used for the specification. 
We distinguish between signals that are input from the environment, so-called 
external signals, and signals that are generated by the  system itself (internal 
signals). Notice that ellipses denote basic states of sequential automata while 
boxes denote states that are decomposed by other p-Charts. Double frames 
denote default states. 

Our central locking system consists essentially of three main parts: the 
CONTROL and the two door motors. These parts are composed in parallel. 
Locking and unlocking the doors leads to complex signal interactions. The de- 
fault configuration of the system is that all doors are unlocked (UNLD) and both 
motors are OFF. Now the driver can lock the car either from outside by turning 
the key or from inside by pressing a button. Both actions generate the external 
signal c. The CONTROL generates the internal signals Idn and rdn and enters 
its locking state LOCKG, which is decomposed by the automaton in Figure 2. 

Instantaneously, influenced by Idn and rdn, respectively, both motors begin 
to lock the doors by entering their DOWN states. Those states are decomposed by 
the sequential automata pictured in Figure 3. Thus, the motors are additionally 
in their START states. As the speed of the motors depend on external influences 
like their temperature, each motor either needs one or two time units to finish 
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CONTROL 

NORMAL 

~ e / { l d n  ready UNLG 
, rdn} I 

o/{t~p, rup}J_ 
crash A ignition/ (lup, rup} ~ ~  

/{lup, rup} 

MOTORLEFT 

DOWN ~ UP 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

MOTORRIGHT 
DOWN ~ UP 

] ready ~ ready 

I {lup, ldn, lmr, rup, rdn, rmr, ready} 1 

F i g u r e  1. Central locking system 

the lowering process. Only when both have sent their ready messages lmr and 
rmr, the CONTROL enters the BOTH state and produces the signal ready. The 
effect of this signal is twofold: one the one hand the CONTROL terminates itself 
Immediately and enters the LOCKED state. On the other hand also both motors 
are triggered by this signal and are switched OFF. 

In our syntax communication is expressed by an explicit feedback operator.  
It is graphically indicated by the box sticked on the bot tom of Figure 1. 

Whenever the crash signal occurs and the ignition is on, the CONTROL 
changes from the NORMAL mode in the CRASH mode and generates the sig- 
nals lup and rup. In Section 4 we will show that  the crash signal indeed causes 
the doors to open. 

2 S y n t a x  

In this section, we formally define a textual syntax for #-Charts.  It corresponds 
to the graphical syntax used in the example. #-Charts  are based on Mini- 
Statecharts,  as first presented in [11] and later refined in [15, 16, 17]. We only 
repeat those concepts that  are a prerequisite for the extension to nondetermin- 
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rmr A ~lmr ~ lmr/{ready} 

F i g u r e  2. Decomposit ion of LOCKG and UNLG 

F i g u r e  3. Decomposit ion of DOWN and UP, x E {l, r} 

ism and assume the reader to be familiar with the principles of hierarchical, 
interacting s tate  machines. 

Throughout  this paper,  M denotes a set of signal names, States a set of s tate  
names, and Ident a set of identifier names for sequential au tomata .  For any 
chart,  only a finite number  of signal, state, and au toma ta  names can be used; 
p ( X )  denotes the set of finite subsets of some set X.  

In our dialect, the set of #-Char ts  S is defined inductively. A #-Char t  is 
either a sequential au tomaton,  a parallel composition of two #-Charts ,  the de- 
composit ion of a sequential au tomaton ' s  s tate  by another  #-Char t ,  or the result 
of a feedback construction for broadcasting. The inductive steps are motivated 
and defined in Sections 2.1 to 2.4. 

2.1 Sequential  A u t o m a t a  

Sequential a u t o m a t a  Seq (N, Z ,  ad, 5) are the basic elements of our Statecharts  
dialect. They consist of: 

1. N E Ident  is the  unique identifier of the automaton.  
2. Z E p(States) is a nouempty  finite set of all s tates of the automaton.  
3. O" d E ~ '  represents the default s t a t e .  

4. 5 : ~U x p ( M )  --+ p ( Z  x ~(M))  is the finite, total  s tate transit ion function 
tha t  takes a s tate  and a finite set of signals and yields a set of next states 
paired with a finite set of output  signals. If this set contains more than  one 
pair, the au tomaton  is nondeterministic; if the set is empty, the au tomaton  
cannot react to the current input when it is in state a. 

In our concrete syntax (see the example),  we use a. Boolean te rm t instead of a 
set of signals x E ~ (M)  as trigger. It  is straightforward to t ranslate  a partial  
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Signal 

crash 
0 

e 

ignition 
Imr 
rmr 
lup 
ldn 
rup 
rdn 
ready 

Meaning 

Crash sensor 
Opened with external key 
Closed with external key 
Ignition on 
Left motor ready 
Right motor ready 
Left motor up 
Left motor down 
Right motor up 
Right motor down 
Un-/Locking process ready 

Source 

External 
External 
External 
External 
Internal 
Internal 
Internal 
Internal 
Internal 
Internal 
Internal 

Tab l e  1. Signals used in the locking system 

transition function that  deals with arbitrary Boolean terms as trigger condition 
into a set-valued total function (see for example [17]). 
A transition takes place in exactly one time unit. In a specification with several 
au tomata  working in parallel, more than one automaton can make a transition; 
all transitions taken in parallel automata  are assumed to occur in the same time 
unit. Notice however that  every single sequential automaton only is allowed to 
make one transition in one instant. The set of all system actions in one time 
unit is called a step. 

2.2 P a r a l l e l  C o m p o s i t i o n  

If S1 and $2 are elements of the set S then their parallel composition denoted 
by the syntax And ($1, $2) is in S, too. There are no syntactic restrictions on 
this composition. In the graphic notation parallel components are separated by 
splitting a box into components using dashed lines [4]. 

In our framework, parallel composition does not imply broadcast communi- 
cation between the subcharts. Both subcharts operate independently; commu- 
nication is introduced by an explicit feedback operator  (see Section 2.4). 

Informally, the parallel composition of #-Charts behaves as $1 and $2 syn- 
chronously together. Generated signals of the parallel components are joined. 
The parallel composition is commutative and associative. We therefore write 
And (SI,..., Sn) to denote n C IN nested parallel p-Charts. 

2.3 H i e r a r c h i c a l  D e c o m p o s i t i o n  

The concept of hierarchically structuring the state space is essential for State- 
charts. In our Statecharts dialect, hierarchy is introduced by replacing states of 
a sequential automaton (the master) with arbitrary charts (the slaves). This 
replacement is expressed by a finite, partial function Q, which is defined for those 
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states a of the master that  are further decomposed. The decomposition function 
yields the refining slave-chart. Suppose that  Seq (N, Z,  ad, 5) is a sequential 

automaton, then hierarchical decomposition is denoted by 

Dec (N, ~, ad, 5) by ~o 

where Q : Z -+ S. Like other formal Statechart semantics [5, 9, 10], the approach 
presented here has no history states. It is possible to extend our semantics 
along the lines of [11]. Due to space limitations we omit this extension here. 
Throughout this paper, we assume that  the slave is always re-initialized when 
leaving it. 

Example 2.1 (Hierarchical Decomposition). As current system configuration, we 
assume that  CONTROL is in the LOCKG state and that  both motors are noti- 
fying the CONTROL that  they have locked the doors. Thus, the current set of 
internal signals is {lmr, rmr}. Instantaneously, the ready signal is generated. 
We furthermore presume that  exactly while all this happens, an external crash 
signal occurs. The overall signal set is then denoted by {lmr, rmr, ready, crash}. 
Hence, NORMAL changes its current state from LOCKG to LOCKED. In addition, 
the system moves from the NORMAL state to the CRASH state while generating 
the signal set {lup, rup} if the ignition is on. Note that  all actions come about 
instantaneously. Altogether, in the next instant, the CONTROL is in its CRASH 
mode and both motors are in their OFF states. The automaton NORMAL is 
"frozen" until it is re-entered. Thus, we say that  it has been interrupted. How- 
ever, NORMAL still was able to change its current state from LOCKG to LOCKED, 
i.e. has not been immediately interrupted: we say that  the crash signal has in- 
duced a non-preemptive interrupt. Notice however that  though the NORMAL 
state still changed to LOCKED, finally both motors will open the doors. This 
property could be proven to be a theorem using the model checker. By strength- 
ening the transitions in the slave chart with tests for the absence of signals, 
preemptive interrupts can be modeled as well. 

2.4 B r o a d c a s t  C o m m u n i c a t i o n  

Parallel composition is used to construct independent, concurrent components. 
To allow interaction of such components, our language provides a broadcast com- 
munication mechanism. In [4], for example, this mechanism already is integrated 
in the parallel composition of Statecharts. Broadcasting is achieved by feeding 
back all generated signals to all components. This means that  there exists an 
implicit feedback mechanism at the outermost level of a Statechart. Unfortu- 
nately, this implicit signal broadcasting leads to a non-compositional semantics. 
We avoid this problem by adding an explicit feedback operator. 

In the literature different semantic views of the feedback mechanism can be 
found [18]. For the deterministic version of our language [11, 15, 17], we provided 
different syntactic constructs with different communication timings. We believe 
that  for nondeterministic, abstract specifications instantaneous feedback is the 
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proper concept, since it is bet ter  suited for behavioral refinement. Hence, we 
present only this operator here. 

Suppose that  S C S is in an arbi t rary p-Chart  and L E fa(M) is the set of 
signals which should be fed back, then the construct Feedback (S, L) is also in 8.  
Graphically, the feedback construction is denoted with a box below the / , -Char t  
S. This box contains the signals L that  are fed back. 

Example 2.2 (Feedback). When the chart is in the state UNLD, and the driver 
locks the door with the car key, then NORMAL moves to state LOCKG and emits 
the signals Idn and rdn. Without  feedback, these signals would not be sent to 
the motor control subcharts. But since both signals are fed back, they are added 
to the input of the specification. Thus, both motors move to their DOWN states. 
This feedback is instantaneous, i.e. upon input of the signal c three transitions 
are taken, and at the same time the signals ldn and rdn are output.  

Instantaneous feedback follows the perfect synchrony hypothesis of Berry [1]; it 
demands that  an action and the event causing this action occur at the same 
instant of time. Therefore, the signals in z generated by chart S are instanta- 
neously intersected with the signals L to be fed back and then joined with the 
external signals x. This signal set x U (z A L) is passed to S at the same instant. 

3 S e m a n t i c s  

In this section we indroduce the transition relation for a p-Chart.  It is defined 
inductively following the syntactical structure of the language. The transition 
relations presented here are based on the semantics as presented in [12]. p-Charts 
are synchronized by a global, discrete clock. Each transition relation formally 
denotes the relationship between two system configurations, i.e. the set of all 
currently valid control states of all sequential au tomata  between two subsequent 
instants. 

3.1 Pre l iminar ies  

Avoiding Multiple Transitions in one Step. As we deal with instantaneous feed- 
back, more than one transition of different sequential au tomata  can fire simul- 
taneously. However, every single automaton only can make one step in one 
instant, i.e. no two consecutive transitions in a sequential automaton are taken 
in a step. This informal requirement has to be formalized in the automaton's  
transition relation. Fhrthermore, we have to ensure that  only one branch of a 
nondeterministic choice in an automaton is taken in a step. 

Both restrictions can be ensured using additional signals. For each sequential 
automaton Seq (N, •, ad,5) we introduce a signal @N" Informally, this is a 
copyright on transitions of the automaton signaling that  N already made a 
step. When the signal is not present, the automaton may yet make a transition, 
whereupon it will generate QN.  If it is already present, the automaton has to 
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stay in its current state. The need for this signal will become clearer when we 
later introduce broadcast communication. The copyright signals are introduced 
in the following way. Each transition c/y of N is modified such that: 

- The trigger condition c is strengthened by conjoining -~(s to it. 
-- The action set y is extended by @N. 

We assume all signals @N to be disjoint from signals in M and define M@ by 
M U {@N I N e Ident}. 

Negation in Trigger Expressions. Negation in trigger expressions can lead to 
some tricky causality problems. For example, what would be the semantics of a 
transition labeled -~a/a? Some Statecharts semantics simply disallow Statecharts 
with causality problems. They require a static analysis of the chart, which might 
reject charts that  do not really have causality conflicts. This is for instance the 
approach taken by Argos [9] or the reactive programming language Esterel [2]. 

We handle these conflicts semantically. In case of a causal conflict, the transi- 
tion is simply not taken. We accomplish this through oracle signals that  predict 
the presence or absence of a given signal in a step. For each signal a that  occurs 
negatively in the trigger of a transition, we introduce a new signal ~ that  replaces 
a in the trigger part of a transition label. We define M to be M U {al a C M}. 
However, oracle signals can cause the following two inconsistencies: 

- A signal a is generated by the system or input from the environment, al- 
though the oracle forecasts its absence. In other words, a is in the signal set, 
but not ~. 

- A signal a that  is predicted to be present, is neither input nor generated by 
the system. In other words, ~ is in the signal set, but not a. 

The requirement to avoid these inconsistencies is formally expressed by: 

Consistence(x, y, o) =_ (hsexuy s E o) A (Aseo s c x U y) 

where x, y, and o denote the sets of input, output, and oracle signals respec- 
tively. This technique is similar to that  used in the bottom-up evaluation of 
logic programs with negation as presented in [8]. For a detailed discussion of 
this topic the interested reader is referred to [12]. 

3.2 Configurations 

Configurations c E g are defined inductively. The configuration of a sequential 
automaton is simply its current state. To denote an And-chart's And ($1, $2) 
configuration we use a tuple (cl, c2), where Cl and c2 are the configurations of the 
parallel components $1 and $2, respectively. The configuration of Feedback (S, L) 
is simply the configuration of S. 

For hierarchical decomposition we need a slightly more subtle notation. The 
master is decomposed in n =de/ [ dora Q[ slaves, where dora ~ denotes the domain 
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of the partial function ~o. The configurations of these slaves are denoted by 
cl, .  �9 cn, whereas the configuration of the master is denoted by Cm. The overall 
configuration of Dec (N, Z,  ag, 5) by ~ is then the (n + 1)-tuple (c,~, C l , . . . ,  cn). 

In the sequel, we will formulate the transition relations for every single syn- 
tactic construct of the p-Charts  language. We have two different categories of 
predicates: one for initialization and one for the transition step from one config- 
uration to the following. These predicates have the type: 

I n i t s  : C -+ BooI 

T r a n s s  :C x g~(M@) x C x ~o(M@) x M --+ Bool 

for every /*-Chart S. A predicate T r a n s s ( c , x , c ' , y , o )  is true whenever the 
current configuration of S is c and S can, stimulated by the set of input signal set 
x, reach the subsequent configuration c I in exactly one instant while producing 
the output  signal set y. The set o includes those oracles that  are needed for the 
t reatment  of negative signals in S. 

3.3 Sequential Automata 

Initially, a sequential automaton S =~ef Seq (N, ~ ,  O'd, 5) is in its default state 
Cr d. For a set of input signals x coming from the environment, S generates a set 
of output  signals y and changes its configuration, i.e. its current state from c to 
C I:  

In i t s (c )  = (c = ad) 

Transs (c ,  x, c', y, o) - (c', y) C 5(c, x U o) 

3.4 Parallel Composition 

The tuple (cl, c2) is the initial configuration of chart S =de~ And ($1, $2) when- 
ever cl, c2 are the initial configurations of charts $1, $2, respectively: 

I n i t s  ((cl, c2)) = In i t& (cl) A In i t s :  (c2) 

The formal semantics is defined by the following case distinction, which yields 
three mutually exclusive cases. An And-chart can perform a step when at least 
one of the subcharts makes a step (notice that  in our setting also a self-loop is 
a step); one or even both may not react at all. 

Transs((Cl ,  c2), x, (c~, c~), y, o) - 
(3yl, y2.Trans& (cl, x, c'1, yl, o) A T r a n s &  (c2, x, c~, Y2, o) A y = Yl U Y2) V 

((2Y2, c.Transa2 (c2, x, c, Y2,0)) A T r a n s &  (cl, x, c~, y, o) A c~ = c2) V 

((~Yl, c .Trans& (Cl, x, c, Yl, o)) A Transs= (c2, x, c~, y, o) A c~ = Cl) 

The first conjunction represents the case when both charts $1 and $2 can react 
in their current configurations cl and c2 on the current signals x. In this case the 
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overall reaction is simply denoted by the logical conjunction of both transition 
predicates Transs~ and Transs2. The other two conjunctions are true whenever 
only one of S1 or $2 can react on the current stimuli in its current configuration. 
Should none of the three terms be true, the overall transition predicate Transs  
is false, i.e. S cannot react at all. 

3.5 Hierarchical Decompos i t ion  

A decomposed chart S =de/ Dec (N, Z,  crd, ~) by Q is in its initial configuration 
iff the master  A =def Seq (N, Z ,  ad, 6) and all existing slaves {$1 , . . . ,  S~} =d,/ 
dora ~ are in their initial configurations: 

Inits((Cm, c l , . . .  , Ca)) =- InitA(cm) A Ai~=l Ini ts ,  (ci) 

To define the step relation for the decomposition, we distinguish four mutually 
exclusive cases�9 The first case occurs whenever the current state Cm of the 
master is refined by a slave Si (in this case O(Cm) is defined, i.e. Cm 6 dora 
and Q(Cm) = Si), and both A and Si can react. All other, currently not active 
slaves keep their current configuration Aj#i  cj = c~. Generated signals of both 
master and active slave are collected: y = Ys U Ym. Notice that  whenever the 
transition predicate TransA of the master is true, the slave is initialized through 
the predicate Inits~ (c~). This first case is formally denoted by: 

Trans s((cm;cl,.. ' ' ' o ) -  �9 , (Cm, e l , . .  , c a ) ,  Y, 
3ym, Ys, c.Trans A (Cm, x, C'm, Ym, O) A 

cm 6 dora 0 A Si = ~(Cm) A Transs~ (ci, x, c, Y2, o) A 
v = y8 u v m  ^ z n i t s ,  A hjr = 

Here both master and slave can react on the current set of input stimuli. In 
this case, the master  interrupts the slave's reaction. Remember that  our seman- 
tics deals with non-preemptive interruption: so the slave still can terminate its 
current action, i.e. generate all output  signals y,. However, even then it will be 
re-initialized. 

Whenever the master 's current state Cm is not decomposed (Cm r dora e), 
all slaves stay in their current configurations (Ai~l ci = c~) and only the master 
itself reacts: 

Trans2s((Cm,Cl,.. cn),x, ' ' .. c' �9 , ( c m , c l , .  , - 
A n t ' o) A Cm q~ dom Ai=l ci = ci TransA (cm, x, Cm, y, Q 

If however a slave exists but  is not able to make a step, again only the master 
reacts but  now the current slave Si is initialized and all other slaves do not 
change their configuration: 

I I O )  ---~ Trans3((Cm, C l , . . . ,  cn), x, (Cm, c1 , . . .  , CIn), y, 
TransA(Cm,X, Cm; y,o) A cm 6 domQASi  =0(Cm) A 

~Ys, C's.Transsl (ci, x, c' s, Ys, o) A Inits~ (c~) A Ajr  cj = c~ 
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Finally, if the master  cannot react, but the current slave Si can, we have: 

. .  C ! T r a ~ s ~ ( ( e m ,  c , ,  � 9  en) ,  x,  ( m, e l , . . . ,  e ' ) ,  y, o) =- 
O /~y,~, C~m.TransA (c,~, x, cm, y,~, ) A 

Cm E dora ~ A Si = Q(Cm) A Aj~i  cj = e~ A Transs~ (ci, x, c~, y, o) 

Overall, the complete transit ion relation is the disjunction of these cases: 
! 

Transs( (em,  e l , . . .  , e,~), x, (e~, e l ,  . . . , C I n ) ,  y ,  O )  ---- 
I t ! Transls( (em, c l , . . .  , e~), x, (Cm, e l , . . .  , c,~), y, o)V 

Trans~((Cm, Cl , . . .  , en), x, (elm, e l , . . .  , Cln), y, o)V 
I I Tra~s~((em, e~ , . . . ,  e~), x, (e , ,  e~ , . . . ,  e',), y, o)V 

T ~ a ~ s ~ ( ( c , ~ ,  e~, . . .  , e , ) ,  x ,  (era,' e~,' . . .  , e ' ) ,  y, o) 

The predicate T r a n s s  is false iff neither master  nor slave can react to the current 
input. 

3.6 Broadcas t  C o m m u n i c a t i o n  

The initialization predicate for S = Feedback(R, L) is defined as: 

Ini ts(c)  =- Ini tn(c)  

The transit ion relation T r a n s s  is built up from a number  of auxiliary predicates. 
As we deal with a chain reaction when defining the semantics of the instantaneous 
feedback, we first have to fix the terminat ion of this reaction. I t  terminates  when 
in the current configuration c the chart S cannot react any more on the current 
input stimuli x: 

Terms(c ,  x, o) =-fly, c ' .TransR(c,  x, c', y, o) 

The predicate Cones  constructs the set of all intermediate points in the chain 
reaction by the p-calculus formula: 

Cones(e,  x, c', y, o) - 
p~. (TransR(e ,  x, c', y, o) V 

3x', y', y", e".e(c, x, c", y", o) A TransR(c" ,  x', c', y', o) A 
x' ---- x U  (y" N L) A y = y ' U y " )  

In order to verify whether Cones(c ,x ,e~,y ,o)  yields true we have to verify 
whether either of the two following possibilities is true. The first alternative 
is tha t  c and c' represent two subsequent configurations, i.e. are reachable in 
one step: TransR(c ,x ,  c ~, y, o). Otherwise, it has to be verified whether c and 
c' can be reached via an intermediate configuration c". All reachable configura- 
tions from c are computed by applying the least fixpoint operator  p on predicate 
~.  Notice tha t  the external stimuli x are available during the whole chain re- 
action and tha t  only those internal signals which occur in L can be fed back: 
x'  = x U (y n L). The overall transit ion relation of S is then defined as: 

Transs(c ,  x, c', y, o) -- 
Cones(e,  x, c', y, o) A Terms(c ' ,  x U (y" A L ), o) 
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4 S y m b o l i c  V e r i f i c a t i o n  

The transition relations defined in the previous section are partial. When a chart 
cannot react to its current input, the relation is undefined. Intuitively, in this 
case however the chart should stay in its current configuration. The execution 
of a chart S is therefore defined over the following, total, step relation: 

Steps(c,  x, c', y) =_ 
(3o.Trans s (  c, x, c', y, o)) V 
(Vc', y ' ,  o.-~Transs(c, x, c ' ,  y ' ,  o) A c = c' A y = ~ A 
Consis tence(x ,  y, o)) 

The oracle signals in o nondeterministically predict the absence or presence of 
signals in a step. This prediction is needed for the proper t reatment  of negative 
trigger expression in sequential automata.  Of course, such a guess might lead to 
inconsistencies, if in fact a signal predicted to be present is neither input from the 
environment, nor generated by the system, or vice versa. Such inconsistencies 
are detected with the predicate Consistence defined in Section 3.1. They can 
only occur with instantaneous feedback of a signal that  can be generated in 
one subchart,  and whose absence is checked in another subchart. If there is no 
consistent oracle guess, the chart will remain in its current configuration. 

Experimental Results 

Since all sets occurring in the formulae of the previous section are finite, it is 
stra!ghtforward to translate them into propositional it-calculus. We have devel- 
oped a prototypical  compiler that  translates a given textual it-Charts specifica- 
tion into a set of #-calculus formulae following the above mentioned semantical 
definitions. This first version of the compiler has been written in the language 
Perl 5.0 [19]. 

The it-calculus formulae generated by the compiler are the input for the 
#-calculus verifier #-cke [3]. 

We have tried to prove that  whenever the central locking system is not yet in  
its CRASH mode and a crash signal occurs while the ignition is on, both motors 
will ope n their doors: 

AG(-~in(CRASH) A crash A ignit ion A r 
AF(in(MOTORLEFT.UP)) A AF(in(MOTORRIaHT.UP))) 

where r is a predicate that  is true whenever all internal signals (see Table 1) are 
absent. 

However, this property turned out to be false for the specification in Figure 1. 
The reason is the following: Remember that  each motor can nondeterministically 
need either one or two steps to terminate whenever it is in its DOWN or UP state. 

Assume that  CONTROL is in its LOCKG state, both motors are in their DOWN, 
START configuration, and the crash signal occurs. If for instance the right motor 
needs two steps to lock the door and the left motor one step, the LOCKG changes 
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from NONE to LEFT. The overall signal set (including internal communication) 
now is {crash, ignition, lmr}. Although we allow non-preemptive interrupt,  
ready was not generated yet. The CONTROL changes to its CRASH mode and 
ready cannot be produced anymore. As a consequence, both motors will "starve" 
in their DOWN states and never will be triggered by lup or rup. 

This problem can be avoided by substituting ready by xmr and xmr (with 
x E {l ,r}),  respectively (see Figure 4). In this case the termination of the 
motors'  lowering process does not any longer depend on the existence of the 
signal ready but the motors can terminate themselves. 

D OWN 

xdn ~ ~ ,  xup  . 

x m r  ~ ~ / '  x m r  

UP 

F i g u r e  4. Motor version 2, x E {l, r} 

In case of an accident, unlocking the doors is a time critical task. However, 
notice that  though the motor version in Figure 4 eventually allows to open the 
central locking, it still may need four steps to do that.  This time is caused by 
is the nondeterministic behavior of the motors. When in OFF the left motor for 
instance can follow either edge because, if the current signal set is {lup, ldn}, 
both trigger conditions are valid. Hence, before following the opening command 
lup it first can decide to act upon the command ldn. In order to avoid this delay, 
we must give the signals lup and rup a higher priority than the signals Idn and 
rdn by additional negative triggers as shown in Figure 5. 

xdn A ~ x u p ~  xup . 

x m r " ~ "  x mr  

F i g u r e  5. Motor version 3, x E {l, r} 

In this case, each motor needs at most three steps to enter its UP state if it 
is in its DOWN state and exactly one step, if it is OFF. It may be interesting 
for the reader that  we started to prove at first the above mentioned property 
with the system specification as pictured in Figure 1 and only discovered later 
applying the model checking techniques presented in this paper that  our original 
specification could not keep this restriction. 

The step relation Steps for the overall specification requires 3877 BDD nodes; 
the initialization predicate requires another 21 nodes. We expect that  the num- 
ber of nodes can be further reduced with a different encoding of the configura- 
tions. For hierarchically decomposed charts, the configuration is the algebraic 
product  of the configurations of the master and all slaves. This is redundant,  
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since only one slave can be active at a time. The #-calculus verifier #-cke does 
not yet support the encoding of algebraic sums. In any case, however, the prod- 
uct encoding is necessary when slaves shall remember their configuration instead 
of being re-initialized when entered. 

In order to test the scalability of our approach we have recently verified a 
more complex version of the locking system. Its specification contains about 
three times as many states and transition as the one in Figure 1. However, 
it turned out that this larger example is already the limit for our prototypical 
tool. Since the critical factor in the verification turned out to be the size of the 
intermediate BDDs, we believe that this is because of the very general nature 
of the verifier #-cke. A dedicated, optimized implementation of the needed 
verification algorithms could alleviate this problem. 

5 C o n c l u s i o n  

The Statecharts dialect presented in this paper offers instantaneous feedback and 
nondeterminism. We have shown how to deal with both concepts formally and 
demonstrated that model checking for specifications with instantaneous chain 
reactions is possible. We demonstrated our approach by an example. Once more 
it turned out that formal verification is of great help in debugging specifications 
for time- and safety-critical reactive systems. The results presented in Section 4 
show that it is difficult to trust in a formal specification without proving central 
system properties. 

We expect that in our framework larger specifications can be verified than in 
approaches without instantaneous feedback. The reason is that in the feedback 
definition intermediate configurations that occur only during chain reactions are 
hidden through the fixpoint construction. With other communication mecha- 
nisms, these intermediate configurations remain visible. Moreover, we believe 
that specifications with instantaneous broadcasting are more concise than those 
written in e.g. the Statemate dialect. Future work will focus upon the treatment 
of larger case studies to examine whether these conjectures hold. 

Finally, it remains to be seen whether BDD-based symbolic verification tech- 
niques are indeed the best approach for model checking #-Charts. For instance, 
in our example only 22 configurations are reachable. It is possible that non- 
symbolic techniques are more efficient for #-Chart specifications. However, the 
high-level input language of #-cke turned out to be very helpful for rapid proto- 
typing of our language definition, semantics, and verification approach. 
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