
F o r m a l V e r i f i c a t i o n o f S t a t e c h a r t s w i t h
I n s t a n t a n e o u s C h a i n R e a c t i o n s *

Jan Philipps and Peter Scholz
{philipps,scholzp}@informatik.t u-m uenchen .de

Technische Universit~it Miinchen, Institut fiir Informatik
D-80290 Miinchen, Germany

Abst rac t . We present a method for symbolic model checking of /t-
Charts, a Statecharts dialect with instantaneous broadcast communi-
cation. Due to this communication concept,/t-Charts satisfy the perfect
synchrony hypothesis. The well-known causality conflicts that arise un-
der instantaneous feedback from negative trigger conditions are resolved
semantically through oracle signals. We have implemented a prototypi-
cal tool that translates/t-Charts specifications into p-calculus formulae.
These formulae are checked against temporal specifications using a #-
calculus verifier.

1 I n t r o d u c t i o n

Statecharts [4] are a visual specification language for reactive systems. They
extend conventional state transition diagrams with structuring and communica-
tion mechanisms. Since there is also tool support through several providers like
r-active or i-Logix (Statemate [7]), Statecharts have become quite successful in
industry.

However, the semantics of Statecharts as used in Statemate is based on a
delayed broadcast, which leads to a very operational, implementation-level spec-
ification style. For a modeling language for abstract requirements specifications
more abstract approaches are desirable. These concepts are introduced in [12],
where we present a dialect of Statecharts called p-Charts. This dialect features a
formal semantics for nondeterministic Statecharts with instantaneous feedback.
It is an extension of Mini-Statecharts as presented in [11, 17]. Specification with
instantaneous feedback fulfill the perfect synchrony hypothesis [1]. As noted in
previous works on the semantics of Statecharts [5~ 14], or Statechart-like lan-
guages like Argos [9, 10], instantaneous feedback can lead to causality conflicts
when trigger events with negation are allowed.

Nevertheless, we prefer this kind of broadcasting, since delayed broadcast
as used in Statemate is not a suitable communication concept for behavioral
refinement. When refining a subchart to a set of more concrete subcharts, addi-
tional delays are introduced. Thus, the I /O-behavior of the Statechart changes.

* This work is partially funded by the German Federal Ministry of Education and
Research (BMBF) as part of the compound project "KorSys'.

225

Refinement rules would have to be more complex to compensate the additional
delays. As observed in [6], this is not the case for instantaneous feedback.

If conflicts because of negated trigger conditions occur, they are handled
semantically through oracle signals [12]. This is in contrast to Argos, which
requires a static analysis to reject those Statecharts where a conflict might occur.

In this contribution, we demonstrate how to use the semantic model intro-
duced in [12] as starting point for efficient formal verification, based on symbolic
model checking techniques. We model chain reactions caused by instantaneous
feedback as the least flxpoint of a transition relation. This chain of transitions is
embedded in the outer transition relation that describes the observable behavior.
As far as we know, this is apart from [13] the only work that deals with model
checking of a specification formalism based on instantaneous broadcasting. The
semantics presented in this paper is implemented in a prototypical tool that
generates a set of it-calculus formulae from a given specification. These relations
can immediately be used as input for the model checking tool #-cke [3].

This paper is organized as follows. In the sequel, we present our running
example, a central locking system for cars. In Section 2 we introduce the Stat-
echarts dialect used throughout this paper and give an abstract syntax for it.
Section 3 shows how the formal semantics of it-Charts can be described using
p-calculus formulae. In Section 4 we show some results of symbolic verification.
Section 5 summarizes some experiences gained in this work.

Example: A Central Locking System

As running example we use a simplified specification of the central locking system
for cars. This example was inspired by a case study from the local car indus-
try. The corresponding it-Chart is pictured in Figure 1; it specifies the locking
system of a two-door car. Table 1 shows the signals used for the specification.
We distinguish between signals that are input from the environment, so-called
external signals, and signals that are generated by the system itself (internal
signals). Notice that ellipses denote basic states of sequential automata while
boxes denote states that are decomposed by other p-Charts. Double frames
denote default states.

Our central locking system consists essentially of three main parts: the
CONTROL and the two door motors. These parts are composed in parallel.
Locking and unlocking the doors leads to complex signal interactions. The de-
fault configuration of the system is that all doors are unlocked (UNLD) and both
motors are OFF. Now the driver can lock the car either from outside by turning
the key or from inside by pressing a button. Both actions generate the external
signal c. The CONTROL generates the internal signals Idn and rdn and enters
its locking state LOCKG, which is decomposed by the automaton in Figure 2.

Instantaneously, influenced by Idn and rdn, respectively, both motors begin
to lock the doors by entering their DOWN states. Those states are decomposed by
the sequential automata pictured in Figure 3. Thus, the motors are additionally
in their START states. As the speed of the motors depend on external influences
like their temperature, each motor either needs one or two time units to finish

226

CONTROL

NORMAL

~ e / { l d n ready UNLG
, rdn} I

o/{t~p, rup}J_
crash A ignition/ (lup, rup} ~ ~

/{lup, rup}

MOTORLEFT

DOWN ~ UP
.

MOTORRIGHT
DOWN ~ UP

] ready ~ ready

I {lup, ldn, lmr, rup, rdn, rmr, ready} 1

F i g u r e 1. Central locking system

the lowering process. Only when both have sent their ready messages lmr and
rmr, the CONTROL enters the BOTH state and produces the signal ready. The
effect of this signal is twofold: one the one hand the CONTROL terminates itself
Immediately and enters the LOCKED state. On the other hand also both motors
are triggered by this signal and are switched OFF.

In our syntax communication is expressed by an explicit feedback operator.
It is graphically indicated by the box sticked on the bot tom of Figure 1.

Whenever the crash signal occurs and the ignition is on, the CONTROL
changes from the NORMAL mode in the CRASH mode and generates the sig-
nals lup and rup. In Section 4 we will show that the crash signal indeed causes
the doors to open.

2 S y n t a x

In this section, we formally define a textual syntax for #-Charts. It corresponds
to the graphical syntax used in the example. #-Charts are based on Mini-
Statecharts, as first presented in [11] and later refined in [15, 16, 17]. We only
repeat those concepts that are a prerequisite for the extension to nondetermin-

227

rmr A ~lmr ~ lmr/{ready}

F i g u r e 2. Decomposit ion of LOCKG and UNLG

F i g u r e 3. Decomposit ion of DOWN and UP, x E {l, r}

ism and assume the reader to be familiar with the principles of hierarchical,
interacting s tate machines.

Throughout this paper, M denotes a set of signal names, States a set of s tate
names, and Ident a set of identifier names for sequential au tomata . For any
chart, only a finite number of signal, state, and au toma ta names can be used;
p (X) denotes the set of finite subsets of some set X.

In our dialect, the set of #-Char ts S is defined inductively. A #-Char t is
either a sequential au tomaton, a parallel composition of two #-Charts , the de-
composit ion of a sequential au tomaton ' s s tate by another #-Char t , or the result
of a feedback construction for broadcasting. The inductive steps are motivated
and defined in Sections 2.1 to 2.4.

2.1 Sequential A u t o m a t a

Sequential a u t o m a t a Seq (N, Z , ad, 5) are the basic elements of our Statecharts
dialect. They consist of:

1. N E Ident is the unique identifier of the automaton.
2. Z E p(States) is a nouempty finite set of all s tates of the automaton.
3. O" d E ~ ' represents the default s t a t e .

4. 5 : ~U x p (M) --+ p (Z x ~(M)) is the finite, total s tate transit ion function
tha t takes a s tate and a finite set of signals and yields a set of next states
paired with a finite set of output signals. If this set contains more than one
pair, the au tomaton is nondeterministic; if the set is empty, the au tomaton
cannot react to the current input when it is in state a.

In our concrete syntax (see the example), we use a. Boolean te rm t instead of a
set of signals x E ~ (M) as trigger. It is straightforward to t ranslate a partial

228

Signal

crash
0

e

ignition
Imr
rmr
lup
ldn
rup
rdn
ready

Meaning

Crash sensor
Opened with external key
Closed with external key
Ignition on
Left motor ready
Right motor ready
Left motor up
Left motor down
Right motor up
Right motor down
Un-/Locking process ready

Source

External
External
External
External
Internal
Internal
Internal
Internal
Internal
Internal
Internal

Tab l e 1. Signals used in the locking system

transition function that deals with arbitrary Boolean terms as trigger condition
into a set-valued total function (see for example [17]).
A transition takes place in exactly one time unit. In a specification with several
au tomata working in parallel, more than one automaton can make a transition;
all transitions taken in parallel automata are assumed to occur in the same time
unit. Notice however that every single sequential automaton only is allowed to
make one transition in one instant. The set of all system actions in one time
unit is called a step.

2.2 P a r a l l e l C o m p o s i t i o n

If S1 and $2 are elements of the set S then their parallel composition denoted
by the syntax And ($1, $2) is in S, too. There are no syntactic restrictions on
this composition. In the graphic notation parallel components are separated by
splitting a box into components using dashed lines [4].

In our framework, parallel composition does not imply broadcast communi-
cation between the subcharts. Both subcharts operate independently; commu-
nication is introduced by an explicit feedback operator (see Section 2.4).

Informally, the parallel composition of #-Charts behaves as $1 and $2 syn-
chronously together. Generated signals of the parallel components are joined.
The parallel composition is commutative and associative. We therefore write
And (SI,..., Sn) to denote n C IN nested parallel p-Charts.

2.3 H i e r a r c h i c a l D e c o m p o s i t i o n

The concept of hierarchically structuring the state space is essential for State-
charts. In our Statecharts dialect, hierarchy is introduced by replacing states of
a sequential automaton (the master) with arbitrary charts (the slaves). This
replacement is expressed by a finite, partial function Q, which is defined for those

229

states a of the master that are further decomposed. The decomposition function
yields the refining slave-chart. Suppose that Seq (N, Z, ad, 5) is a sequential

automaton, then hierarchical decomposition is denoted by

Dec (N, ~, ad, 5) by ~o

where Q : Z -+ S. Like other formal Statechart semantics [5, 9, 10], the approach
presented here has no history states. It is possible to extend our semantics
along the lines of [11]. Due to space limitations we omit this extension here.
Throughout this paper, we assume that the slave is always re-initialized when
leaving it.

Example 2.1 (Hierarchical Decomposition). As current system configuration, we
assume that CONTROL is in the LOCKG state and that both motors are noti-
fying the CONTROL that they have locked the doors. Thus, the current set of
internal signals is {lmr, rmr}. Instantaneously, the ready signal is generated.
We furthermore presume that exactly while all this happens, an external crash
signal occurs. The overall signal set is then denoted by {lmr, rmr, ready, crash}.
Hence, NORMAL changes its current state from LOCKG to LOCKED. In addition,
the system moves from the NORMAL state to the CRASH state while generating
the signal set {lup, rup} if the ignition is on. Note that all actions come about
instantaneously. Altogether, in the next instant, the CONTROL is in its CRASH
mode and both motors are in their OFF states. The automaton NORMAL is
"frozen" until it is re-entered. Thus, we say that it has been interrupted. How-
ever, NORMAL still was able to change its current state from LOCKG to LOCKED,
i.e. has not been immediately interrupted: we say that the crash signal has in-
duced a non-preemptive interrupt. Notice however that though the NORMAL
state still changed to LOCKED, finally both motors will open the doors. This
property could be proven to be a theorem using the model checker. By strength-
ening the transitions in the slave chart with tests for the absence of signals,
preemptive interrupts can be modeled as well.

2.4 B r o a d c a s t C o m m u n i c a t i o n

Parallel composition is used to construct independent, concurrent components.
To allow interaction of such components, our language provides a broadcast com-
munication mechanism. In [4], for example, this mechanism already is integrated
in the parallel composition of Statecharts. Broadcasting is achieved by feeding
back all generated signals to all components. This means that there exists an
implicit feedback mechanism at the outermost level of a Statechart. Unfortu-
nately, this implicit signal broadcasting leads to a non-compositional semantics.
We avoid this problem by adding an explicit feedback operator.

In the literature different semantic views of the feedback mechanism can be
found [18]. For the deterministic version of our language [11, 15, 17], we provided
different syntactic constructs with different communication timings. We believe
that for nondeterministic, abstract specifications instantaneous feedback is the

230

proper concept, since it is bet ter suited for behavioral refinement. Hence, we
present only this operator here.

Suppose that S C S is in an arbi t rary p-Chart and L E fa(M) is the set of
signals which should be fed back, then the construct Feedback (S, L) is also in 8.
Graphically, the feedback construction is denoted with a box below the / , -Char t
S. This box contains the signals L that are fed back.

Example 2.2 (Feedback). When the chart is in the state UNLD, and the driver
locks the door with the car key, then NORMAL moves to state LOCKG and emits
the signals Idn and rdn. Without feedback, these signals would not be sent to
the motor control subcharts. But since both signals are fed back, they are added
to the input of the specification. Thus, both motors move to their DOWN states.
This feedback is instantaneous, i.e. upon input of the signal c three transitions
are taken, and at the same time the signals ldn and rdn are output.

Instantaneous feedback follows the perfect synchrony hypothesis of Berry [1]; it
demands that an action and the event causing this action occur at the same
instant of time. Therefore, the signals in z generated by chart S are instanta-
neously intersected with the signals L to be fed back and then joined with the
external signals x. This signal set x U (z A L) is passed to S at the same instant.

3 S e m a n t i c s

In this section we indroduce the transition relation for a p-Chart. It is defined
inductively following the syntactical structure of the language. The transition
relations presented here are based on the semantics as presented in [12]. p-Charts
are synchronized by a global, discrete clock. Each transition relation formally
denotes the relationship between two system configurations, i.e. the set of all
currently valid control states of all sequential au tomata between two subsequent
instants.

3.1 Pre l iminar ies

Avoiding Multiple Transitions in one Step. As we deal with instantaneous feed-
back, more than one transition of different sequential au tomata can fire simul-
taneously. However, every single automaton only can make one step in one
instant, i.e. no two consecutive transitions in a sequential automaton are taken
in a step. This informal requirement has to be formalized in the automaton's
transition relation. Fhrthermore, we have to ensure that only one branch of a
nondeterministic choice in an automaton is taken in a step.

Both restrictions can be ensured using additional signals. For each sequential
automaton Seq (N, •, ad,5) we introduce a signal @N" Informally, this is a
copyright on transitions of the automaton signaling that N already made a
step. When the signal is not present, the automaton may yet make a transition,
whereupon it will generate QN. If it is already present, the automaton has to

231

stay in its current state. The need for this signal will become clearer when we
later introduce broadcast communication. The copyright signals are introduced
in the following way. Each transition c/y of N is modified such that:

- The trigger condition c is strengthened by conjoining -~(s to it.
-- The action set y is extended by @N.

We assume all signals @N to be disjoint from signals in M and define M@ by
M U {@N I N e Ident}.

Negation in Trigger Expressions. Negation in trigger expressions can lead to
some tricky causality problems. For example, what would be the semantics of a
transition labeled -~a/a? Some Statecharts semantics simply disallow Statecharts
with causality problems. They require a static analysis of the chart, which might
reject charts that do not really have causality conflicts. This is for instance the
approach taken by Argos [9] or the reactive programming language Esterel [2].

We handle these conflicts semantically. In case of a causal conflict, the transi-
tion is simply not taken. We accomplish this through oracle signals that predict
the presence or absence of a given signal in a step. For each signal a that occurs
negatively in the trigger of a transition, we introduce a new signal ~ that replaces
a in the trigger part of a transition label. We define M to be M U {al a C M}.
However, oracle signals can cause the following two inconsistencies:

- A signal a is generated by the system or input from the environment, al-
though the oracle forecasts its absence. In other words, a is in the signal set,
but not ~.

- A signal a that is predicted to be present, is neither input nor generated by
the system. In other words, ~ is in the signal set, but not a.

The requirement to avoid these inconsistencies is formally expressed by:

Consistence(x, y, o) =_ (hsexuy s E o) A (Aseo s c x U y)

where x, y, and o denote the sets of input, output, and oracle signals respec-
tively. This technique is similar to that used in the bottom-up evaluation of
logic programs with negation as presented in [8]. For a detailed discussion of
this topic the interested reader is referred to [12].

3.2 Configurations

Configurations c E g are defined inductively. The configuration of a sequential
automaton is simply its current state. To denote an And-chart's And ($1, $2)
configuration we use a tuple (cl, c2), where Cl and c2 are the configurations of the
parallel components $1 and $2, respectively. The configuration of Feedback (S, L)
is simply the configuration of S.

For hierarchical decomposition we need a slightly more subtle notation. The
master is decomposed in n =de/ [dora Q[slaves, where dora ~ denotes the domain

232

of the partial function ~o. The configurations of these slaves are denoted by
cl, . �9 cn, whereas the configuration of the master is denoted by Cm. The overall
configuration of Dec (N, Z, ag, 5) by ~ is then the (n + 1)-tuple (c,~, C l , . . . , cn).

In the sequel, we will formulate the transition relations for every single syn-
tactic construct of the p-Charts language. We have two different categories of
predicates: one for initialization and one for the transition step from one config-
uration to the following. These predicates have the type:

I n i t s : C -+ BooI

T r a n s s :C x g~(M@) x C x ~o(M@) x M --+ Bool

for every /*-Chart S. A predicate T r a n s s (c , x , c ' , y , o) is true whenever the
current configuration of S is c and S can, stimulated by the set of input signal set
x, reach the subsequent configuration c I in exactly one instant while producing
the output signal set y. The set o includes those oracles that are needed for the
t reatment of negative signals in S.

3.3 Sequential Automata

Initially, a sequential automaton S =~ef Seq (N, ~ , O'd, 5) is in its default state
Cr d. For a set of input signals x coming from the environment, S generates a set
of output signals y and changes its configuration, i.e. its current state from c to
C I:

In i t s (c) = (c = ad)

Transs (c , x, c', y, o) - (c', y) C 5(c, x U o)

3.4 Parallel Composition

The tuple (cl, c2) is the initial configuration of chart S =de~ And ($1, $2) when-
ever cl, c2 are the initial configurations of charts $1, $2, respectively:

I n i t s ((cl, c2)) = In i t& (cl) A In i t s : (c2)

The formal semantics is defined by the following case distinction, which yields
three mutually exclusive cases. An And-chart can perform a step when at least
one of the subcharts makes a step (notice that in our setting also a self-loop is
a step); one or even both may not react at all.

Transs((Cl , c2), x, (c~, c~), y, o) -
(3yl, y2.Trans& (cl, x, c'1, yl, o) A T r a n s & (c2, x, c~, Y2, o) A y = Yl U Y2) V

((2Y2, c.Transa2 (c2, x, c, Y2,0)) A T r a n s & (cl, x, c~, y, o) A c~ = c2) V

((~Yl, c .Trans& (Cl, x, c, Yl, o)) A Transs= (c2, x, c~, y, o) A c~ = Cl)

The first conjunction represents the case when both charts $1 and $2 can react
in their current configurations cl and c2 on the current signals x. In this case the

233

overall reaction is simply denoted by the logical conjunction of both transition
predicates Transs~ and Transs2. The other two conjunctions are true whenever
only one of S1 or $2 can react on the current stimuli in its current configuration.
Should none of the three terms be true, the overall transition predicate Transs
is false, i.e. S cannot react at all.

3.5 Hierarchical Decompos i t ion

A decomposed chart S =de/ Dec (N, Z, crd, ~) by Q is in its initial configuration
iff the master A =def Seq (N, Z , ad, 6) and all existing slaves {$1 , . . . , S~} =d,/
dora ~ are in their initial configurations:

Inits((Cm, c l , . . . , Ca)) =- InitA(cm) A Ai~=l Ini ts , (ci)

To define the step relation for the decomposition, we distinguish four mutually
exclusive cases�9 The first case occurs whenever the current state Cm of the
master is refined by a slave Si (in this case O(Cm) is defined, i.e. Cm 6 dora
and Q(Cm) = Si), and both A and Si can react. All other, currently not active
slaves keep their current configuration Aj#i cj = c~. Generated signals of both
master and active slave are collected: y = Ys U Ym. Notice that whenever the
transition predicate TransA of the master is true, the slave is initialized through
the predicate Inits~ (c~). This first case is formally denoted by:

Trans s((cm;cl,.. ' ' ' o) - �9 , (Cm, e l , . . , c a) , Y,
3ym, Ys, c.Trans A (Cm, x, C'm, Ym, O) A

cm 6 dora 0 A Si = ~(Cm) A Transs~ (ci, x, c, Y2, o) A
v = y8 u v m ^ z n i t s , A hjr =

Here both master and slave can react on the current set of input stimuli. In
this case, the master interrupts the slave's reaction. Remember that our seman-
tics deals with non-preemptive interruption: so the slave still can terminate its
current action, i.e. generate all output signals y,. However, even then it will be
re-initialized.

Whenever the master 's current state Cm is not decomposed (Cm r dora e),
all slaves stay in their current configurations (Ai~l ci = c~) and only the master
itself reacts:

Trans2s((Cm,Cl,.. cn),x, ' ' .. c' �9 , (c m , c l , . , -
A n t ' o) A Cm q~ dom Ai=l ci = ci TransA (cm, x, Cm, y, Q

If however a slave exists but is not able to make a step, again only the master
reacts but now the current slave Si is initialized and all other slaves do not
change their configuration:

I I O) ---~ Trans3((Cm, C l , . . . , cn), x, (Cm, c1 , . . . , CIn), y,
TransA(Cm,X, Cm; y,o) A cm 6 domQASi =0(Cm) A

~Ys, C's.Transsl (ci, x, c' s, Ys, o) A Inits~ (c~) A Ajr cj = c~

234

Finally, if the master cannot react, but the current slave Si can, we have:

. . C ! T r a ~ s ~ ((e m , c , , � 9 en) , x, (m, e l , . . . , e ') , y, o) =-
O /~y,~, C~m.TransA (c,~, x, cm, y,~,) A

Cm E dora ~ A Si = Q(Cm) A Aj~i cj = e~ A Transs~ (ci, x, c~, y, o)

Overall, the complete transit ion relation is the disjunction of these cases:
!

Transs((em, e l , . . . , e,~), x, (e~, e l , . . . , C I n) , y , O) ----
I t ! Transls((em, c l , . . . , e~), x, (Cm, e l , . . . , c,~), y, o)V

Trans~((Cm, Cl , . . . , en), x, (elm, e l , . . . , Cln), y, o)V
I I Tra~s~((em, e~ , . . . , e~), x, (e , , e~ , . . . , e',), y, o)V

T ~ a ~ s ~ ((c , ~ , e~, . . . , e ,) , x , (era,' e~,' . . . , e ') , y, o)

The predicate T r a n s s is false iff neither master nor slave can react to the current
input.

3.6 Broadcas t C o m m u n i c a t i o n

The initialization predicate for S = Feedback(R, L) is defined as:

Ini ts(c) =- Ini tn(c)

The transit ion relation T r a n s s is built up from a number of auxiliary predicates.
As we deal with a chain reaction when defining the semantics of the instantaneous
feedback, we first have to fix the terminat ion of this reaction. I t terminates when
in the current configuration c the chart S cannot react any more on the current
input stimuli x:

Terms(c , x, o) =-fly, c ' .TransR(c, x, c', y, o)

The predicate Cones constructs the set of all intermediate points in the chain
reaction by the p-calculus formula:

Cones(e, x, c', y, o) -
p~. (TransR(e , x, c', y, o) V

3x', y', y", e".e(c, x, c", y", o) A TransR(c" , x', c', y', o) A
x' ---- x U (y" N L) A y = y ' U y ")

In order to verify whether Cones(c ,x ,e~,y ,o) yields true we have to verify
whether either of the two following possibilities is true. The first alternative
is tha t c and c' represent two subsequent configurations, i.e. are reachable in
one step: TransR(c ,x , c ~, y, o). Otherwise, it has to be verified whether c and
c' can be reached via an intermediate configuration c". All reachable configura-
tions from c are computed by applying the least fixpoint operator p on predicate
~. Notice tha t the external stimuli x are available during the whole chain re-
action and tha t only those internal signals which occur in L can be fed back:
x' = x U (y n L). The overall transit ion relation of S is then defined as:

Transs(c , x, c', y, o) --
Cones(e, x, c', y, o) A Terms(c ' , x U (y" A L), o)

235

4 S y m b o l i c V e r i f i c a t i o n

The transition relations defined in the previous section are partial. When a chart
cannot react to its current input, the relation is undefined. Intuitively, in this
case however the chart should stay in its current configuration. The execution
of a chart S is therefore defined over the following, total, step relation:

Steps(c, x, c', y) =_
(3o.Trans s (c, x, c', y, o)) V
(Vc', y ' , o.-~Transs(c, x, c ' , y ' , o) A c = c' A y = ~ A
Consis tence(x , y, o))

The oracle signals in o nondeterministically predict the absence or presence of
signals in a step. This prediction is needed for the proper t reatment of negative
trigger expression in sequential automata. Of course, such a guess might lead to
inconsistencies, if in fact a signal predicted to be present is neither input from the
environment, nor generated by the system, or vice versa. Such inconsistencies
are detected with the predicate Consistence defined in Section 3.1. They can
only occur with instantaneous feedback of a signal that can be generated in
one subchart, and whose absence is checked in another subchart. If there is no
consistent oracle guess, the chart will remain in its current configuration.

Experimental Results

Since all sets occurring in the formulae of the previous section are finite, it is
stra!ghtforward to translate them into propositional it-calculus. We have devel-
oped a prototypical compiler that translates a given textual it-Charts specifica-
tion into a set of #-calculus formulae following the above mentioned semantical
definitions. This first version of the compiler has been written in the language
Perl 5.0 [19].

The it-calculus formulae generated by the compiler are the input for the
#-calculus verifier #-cke [3].

We have tried to prove that whenever the central locking system is not yet in
its CRASH mode and a crash signal occurs while the ignition is on, both motors
will ope n their doors:

AG(-~in(CRASH) A crash A ignit ion A r
AF(in(MOTORLEFT.UP)) A AF(in(MOTORRIaHT.UP)))

where r is a predicate that is true whenever all internal signals (see Table 1) are
absent.

However, this property turned out to be false for the specification in Figure 1.
The reason is the following: Remember that each motor can nondeterministically
need either one or two steps to terminate whenever it is in its DOWN or UP state.

Assume that CONTROL is in its LOCKG state, both motors are in their DOWN,
START configuration, and the crash signal occurs. If for instance the right motor
needs two steps to lock the door and the left motor one step, the LOCKG changes

236

from NONE to LEFT. The overall signal set (including internal communication)
now is {crash, ignition, lmr}. Although we allow non-preemptive interrupt,
ready was not generated yet. The CONTROL changes to its CRASH mode and
ready cannot be produced anymore. As a consequence, both motors will "starve"
in their DOWN states and never will be triggered by lup or rup.

This problem can be avoided by substituting ready by xmr and xmr (with
x E {l ,r}), respectively (see Figure 4). In this case the termination of the
motors' lowering process does not any longer depend on the existence of the
signal ready but the motors can terminate themselves.

D OWN

xdn ~ ~ , xup .

x m r ~ ~ / ' x m r

UP

F i g u r e 4. Motor version 2, x E {l, r}

In case of an accident, unlocking the doors is a time critical task. However,
notice that though the motor version in Figure 4 eventually allows to open the
central locking, it still may need four steps to do that. This time is caused by
is the nondeterministic behavior of the motors. When in OFF the left motor for
instance can follow either edge because, if the current signal set is {lup, ldn},
both trigger conditions are valid. Hence, before following the opening command
lup it first can decide to act upon the command ldn. In order to avoid this delay,
we must give the signals lup and rup a higher priority than the signals Idn and
rdn by additional negative triggers as shown in Figure 5.

xdn A ~ x u p ~ xup .

x m r " ~ " x mr

F i g u r e 5. Motor version 3, x E {l, r}

In this case, each motor needs at most three steps to enter its UP state if it
is in its DOWN state and exactly one step, if it is OFF. It may be interesting
for the reader that we started to prove at first the above mentioned property
with the system specification as pictured in Figure 1 and only discovered later
applying the model checking techniques presented in this paper that our original
specification could not keep this restriction.

The step relation Steps for the overall specification requires 3877 BDD nodes;
the initialization predicate requires another 21 nodes. We expect that the num-
ber of nodes can be further reduced with a different encoding of the configura-
tions. For hierarchically decomposed charts, the configuration is the algebraic
product of the configurations of the master and all slaves. This is redundant,

237

since only one slave can be active at a time. The #-calculus verifier #-cke does
not yet support the encoding of algebraic sums. In any case, however, the prod-
uct encoding is necessary when slaves shall remember their configuration instead
of being re-initialized when entered.

In order to test the scalability of our approach we have recently verified a
more complex version of the locking system. Its specification contains about
three times as many states and transition as the one in Figure 1. However,
it turned out that this larger example is already the limit for our prototypical
tool. Since the critical factor in the verification turned out to be the size of the
intermediate BDDs, we believe that this is because of the very general nature
of the verifier #-cke. A dedicated, optimized implementation of the needed
verification algorithms could alleviate this problem.

5 C o n c l u s i o n

The Statecharts dialect presented in this paper offers instantaneous feedback and
nondeterminism. We have shown how to deal with both concepts formally and
demonstrated that model checking for specifications with instantaneous chain
reactions is possible. We demonstrated our approach by an example. Once more
it turned out that formal verification is of great help in debugging specifications
for time- and safety-critical reactive systems. The results presented in Section 4
show that it is difficult to trust in a formal specification without proving central
system properties.

We expect that in our framework larger specifications can be verified than in
approaches without instantaneous feedback. The reason is that in the feedback
definition intermediate configurations that occur only during chain reactions are
hidden through the fixpoint construction. With other communication mecha-
nisms, these intermediate configurations remain visible. Moreover, we believe
that specifications with instantaneous broadcasting are more concise than those
written in e.g. the Statemate dialect. Future work will focus upon the treatment
of larger case studies to examine whether these conjectures hold.

Finally, it remains to be seen whether BDD-based symbolic verification tech-
niques are indeed the best approach for model checking #-Charts. For instance,
in our example only 22 configurations are reachable. It is possible that non-
symbolic techniques are more efficient for #-Chart specifications. However, the
high-level input language of #-cke turned out to be very helpful for rapid proto-
typing of our language definition, semantics, and verification approach.

R e f e r e n c e s

1. G. Berry. Real Time Programming: Special Purpose or General Purpose Lan-
guages. Information Processing 89, 1989.

2. G Berry and G. Gonthier. The ESTEREL Synchronous Programming Language:
Design, Semantics, Implementation. Technical Report 842, INRIA, 1988.

238

3. A. Biere. Eine Methode zur #-Kalkfil-Modellprfifung. Slides for the AKFM from
23.05.96, GI/ITG-Fachgesprs "Formale Beschreibungstechniken fiir verteilte
Systeme" (in German), 1996.

4. D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming, 8:231 - 274, 1987.

5. J.J.M. Hooman, S. Ramesh, and W.P. de Roever. A Compositional Axiomatization
of Statecharts. Theoretical Computer Science, 101:289 - 335, 1992.

6. C. Huizing and W.-P. de Roever. Introduction to Design Choices in the Semantics
of Statecharts. Information Processing Letters, 37, 1991.

7. i-Logix Inc., 22 Third Avenue, Burlington, Mass. 01803, U.S.A. Languages of
Statemate, 1990.

8. K. Inoue, M. Koshimura, and R. Hasegawa. Embedding Negation as Failure into
a Model Generation Theorem Prover. In D. Kapur, editor, CADE-11, number 607
in Lecture Notes in Artificial Intelligence, pages 400-415, 1992.

9. F. Maraninchi. Operational and Compositional Semantics of Synchronous Au-
tomaton Compositions. volume 630 of Lecture Notes in Computer Science, pages
550 - 564. Springer-Verlag, 1992.

10. F. Maraninchi and N. Halbwachs. Compositional Semantics of Non-deterministic
Synchronous Languages. ESOP'96, 1996.

11. D. Nazareth, F. Regensburger, and P. Scholz. Mini-Statecharts: A Lean Version
of Statecharts. Technical Report TUM-I9610, Technische Universits Miinchen,
D-80290 Miinchen, 1996.

12. J. Philipps and P. Scholz. The Tao of Statecharts. 1996. To appear in: TAP-
SOFT'97.

13. J. Philipps and T. Yoneda. Symbolic Model Checking of Statecharts. Technical
Report FTS-95-37, IEICE, 1995.

14. A. Pnueli and M. Shalev. What is in a Step: On the Semantics of Statecharts. In
T. Ito and A.R. Meyer, editors, Proccedings of the "Theoretical Aspects in Com-
puter Software 91", volume 526 of Lecture Notes in Computer Science, pages 244

264. Springer-Verlag, 1991.
15. P. Scholz. An Extended Version of Mini-Statecharts. Technical Report TUM-I9628,

Technische Universit~t Mfinchen, D-80290 Miinchen, 1996.
16. P. Scholz. A Light-Weight Formalism for the Specification of Reactive Systems.

1996. SOFSEM'96.
17. P. Scholz, D. Nazareth, and F. Regensburger. Mini-Statecharts: A Compositional

Way to Model Parallel Systems. 1996. PDCS'96.
18. M. von der Beeck. A Comparison of Statecharts Variants. volume 863 of Lecture

Notes in Computer Science, pages 128 - 148. Springer, 1994.
19. L. Wall and R.L. Schwartz. Programming in perl. Carl Hanser, 1993.

