
Compositional State Space Generation 
from Lotos Programs* 

Jean-Pierre Krimm and Laurent Mounier 

VERIMAG 
Zirst-Miniparc 

F-38330 Montbonnot Saint-Martin, France 

Abstract .  This paper describes a compositional approach to generate the labeled 
transition system representing the behavior of a LOTOS program by repeatedly 
alternating composition and reduction operations on subsets of its processes. To 
restrict the size of the intermediate LTSs generated, we generalize to the LOTOS 
parallel composition operator the results proposed in [GS90], which consist in rep- 
resenting the environment of a process by an interface, i.e., a set of "authorized" 
execution sequences. This generalization allows to handle both user-given inter- 
faces and automatically computed ones. This compositional generation method has 
been implemented within the CADP toolbox and experimented on several realistic 
case-studies. 

Introduction 

Formal verification is a part  of software engineering that  consists in eval- 
uating a set of specifications on a formal description of a program. When 
this program is "finite state",  which happens in particular when consid- 
ering only essential features of parallel and reactive systems, one of the 
practical approaches is to generate a model of this program, for instance 
a Labeled Transition System (LTS), describing its exhaustive behavior. 
Then, verification can be performed on this finite model, using appropri- 
ate decision procedures. This approach, usually named model-checking, can 
be fully automated and therefore gave rise to numerous verification tools 
([Arn89,CPS89,RS90,Holgl,FGK+96], etc.). 

In spite of its apparent simplicity, one of the major  drawback of model- 
checking is that  the size of the model generated may exponentially grow 
up when considering large programs, and thus rapidly exceed the machine 
capabilities. Several solutions have been investigated to overcome this state 
explosion problem, for instance avoiding either an explicit storage of the whole 
model ("on-the-fly" techniques), or even its exhaustive generation ("reduced 
model generation" techniques). 

A particular instance of this later solution consists in performing the 
verification not on the LTS S obtained from the initial program description, 
but  rather on its quotient SIR where R is an equivalence relation preserving 

* An extended version can be found in [KM97]. 



240 

the properties under verification. Then, the main difficulty remains to obtain 
this quotient without generating first the initial LTS. 

However, if the program under consideration can be described by a com- 
position expression between communicating LTSS, and provided that R is a 
congruence with respect to the operators of this expression, the quotient S/R 
can be easily generated following a so-called compositional approach [Va196]: 
it consists in (repeatedly) generating the LTS S t associated to a given sub- 
expression, and replacing this sub-expression in the initial one by the quotient 
Sr/R. Unfortunately, this technique is not so appealing in practice. In partic- 
ular, the LTS S r may often contain lots of unnecessary execution sequences, 
forbidden by the synchronizations expected by the rest of the composition ex- 
pression (its environment). In the worst cases, the size of S r may even exceed 
the one of S, leading to a failure of this approach. 

A solution to this problem has been proposed in [GS90,GLS96] and 
[CK93,CK95] for composition expressions based on the CsP [Hoa78] par- 
allel operator. Intuitively, it consists in expressing the environment of a sub- 
expression by an interface, i.e., an LTS representing a set of "authorized" 
execution sequences that can be performed by this sub-expression. Thus, us- 
ing a projection operator, only a "restricted" LTS S r is generated, in which 
useless execution sequences have been cut off according to its corresponding 
interface. 

The main objective of this work is to evaluate this compositional genera- 
tion method on realistic case-studies, in order to compare its efficiency with 
respect to some other existing solutions for the state explosion problem. To 
this purpose, we have generalized the results of [GS90] and [CK93] to the 
LOTOS language [ISO88], an international Iso standard for the description 
of communication protocols. In particular a new projection operator - named 
semi-composition - has been defined, able to deal either with user-given in- 
terfaces (as in [GS90]), or with automatically computed ones (as in [CK93]). 
Then, compositional generation have been integrated within the CADP tool- 
box [FGK+96] and experimented on some of the large case-studies already 
carried out with this toolbox. 

This paper is organized as follows. In section 1, we recall some basic 
definitions concerning LTSS and behavioral equivalences. In section 2, we 
present the general framework we used for compositional generation of LOTOS 
programs, and section 3 and 4 show how to perform this generation using 
either automatically computed or user-given interfaces. Finally, section 5 
briefly presents our implementation and gives the results obtained on two 
different case-studies. 

1 Preliminary definitions 

The behavior of a (sequential) process can be modelized by a labeled transi- 
tion system, namely, a set of states (the possible values of its program counter 



241 

and local variables), and a labeled transition relation between states (each 
transition describing the execution of a given instruction). 

More formally, let Q be a set of states, A a set of label (or instruction 
names), T a particular label representing a hidden or unobservable instruction 
(r r A), and let Ar = A U {T}. For a set X, X* will represent the set of finite 
sequences on X.  

Def in i t i on  1. A Labeled Transition System (LTS, for short) is a quadruplet 
S = (Q,A,T,  qo) where Q is a finite set of states (Q c_ Q), A is a finite set 
of actions (A c_ At) ,  T is a transition relation (T C_ Q • A • Q) and qo is a 
distinguished element of Q called the initial state. [] 

For an LTS S = (Q,A,T,  qo), and for a given state p in Q, we adopt the 
following notations: 

- The predicate (p, a, q) �9 T is noted p - ~ T  q (or even p ~ ) q). 
This notation is extended to label sequences: let )~ C_ A*, we write 

p ) T q i f f 3 U l " " u n E ) t A 3 q l , ' " , q n - l � 9  Ul~Tql"''qn-l-~2+T 
q. Note that  for each LTS considered in this paper, Q always matches with 
the set of states reachable by T from q0: Q = {p 1 3a �9 A* . q0 ~ ~ T P}. 

- Act(p) is the set of labels that  can be performed from p: 

A c t ( p ) = { a � 9  a~Tq}. 

A rough characterization of a process behavior consists in considering 
the set of its observable execution sequences. For this purpose we define the 
language of an LTS as the set of finite observable label sequences that  can be 
obtained from its initial state. 

De f in i t i on  2. Let S = (Q, A, T, q0) be an LTS. For a given p �9 Q, the (ob- 
servable) language associated to p on S is defined as follows: 

T*Ctn_ 1 

The (observable) language of S is then defined as the language associated 
to its initial state: ~(S) = s [] 

Finally, we also introduce a particular operator, allowing to abstract away 
a given set of labels on an LTS by renaming them into the special ~- label. 

De f in i t i on  3. Let S = (Q, A, T, q0) be an LTS and G a set of label (G C_ A). 
The abstraction S[G] of S with respect to G is the LTS (Q, A', T ~, q0) where 

A , = { A  i fAC_G 
(A N G) U {T} otherwise 

T ' =  {(p,a,q) i(P,a,q ) e T A a �9 G}U{(p,%q) i(p,a,q ) e T A a ~ G}. 

[] 



242 

Several equivalence relations have been proposed in the literature for com- 
paring two LTSs�9 They mainly differ by the underlying behavior notion they 
are based on (e.g. a set of execution sequences versus an execution tree), 
together with the abstraction criterion used to handle the internal ~- action�9 

We consider here a well-known family of behavioral equivalences, the 
bisimulation relations. First, we recall the general definition of these rela- 
tions. Then we indicate how most of the classical bisimulations used in the 
verification framework are derived from this definition�9 

In the rest of the section we consider two LTSS Si = (Qi, Ai, Ti, qoi)i=(1,2) 
and A a family of disjoint languages on A* (A C_ 2A;). 

D e f i n i t i o n  4. For each relation R E Q1 x Q~, we define: 

~A(R) = {(pl,p2) [ VA e A, 

(Vql (/91 ;~ �9 -"+T1 ql ~ 3q2 (P2 x �9 q2 ^ (ql,q )e R)) )  A 

(Vq2 (P2----+T2 q2 ~ 3ql (Pl �9 - ---+T1 ql A (ql,q2) �9 R)))} 

The bisimulation equivalence ..~A for the language A is defined as the greatest 
fixed-point of/3A. [] 

Following definition 4, LTSs $1 and S2 are said A-bisimilar (also noted 
$1 ..~A $2) if and only if their initial states are related by ...A. This general 
definition allows to define most of usual bisimulation relations�9 The choice of 
a family A corresponds to the choice of an abstraction criterion on the labels: 
strong bisimulation ..~ ([Par81]) is obtained when A = {{a} I a �9 A}, obser- 
vation equivalence ~o ([MilS0]) is obtained when A = ~-* U {~-*a~-* I a �9 A}, 
delay bisimulation ~-~d ([NMV90]) is obtained when A = r* U {r*a l a �9 A}, 
eta 1. 

For each behavioral relation R, the quotient of a given LTS S with respect 
to R can be intuitively defined as the smallest LTS (in number of states) R- 
equivalent to S. Such a quotient will be noted S / R  in the sequel. Moreover, 
for the bisimulation relations, the quotient of an LTS can be uniquely de- 
fined and computed rather efficiently for medium-sized LTSs (see for instance 
[PT87,KS90,Fer90,GV90]). 

Finally, all these relations can be compared each other with respect to 
the inclusion, and thus ordered in the binary relation lattice�9 In particular, 
it is generally admitted that  strong bisimulation is the finest relation for 
behavior comparison and it is therefore considered here as the "identity" 
relation between LTSS. 

2 Compositional state space generation 

We now turn back to the problem of generating the global LTS representing 
the behavior of a system of communicating processes. First, we present the 

1 branching bisimulation [vGW89], however, cannot be derived from this general 
definition. 



243 

language used throughout this paper to express such systems, and then we 
describe a compositional approach to perform the state space generation. 

2.1 Composition expressions 

The language we chose to describe systems of communicating processes is 
build from two LOTOS operators, namely the parallel composition operator 
( I]G )2 and the hiding operator (hide G i n . . . ) ,  both parametrized by a 
label set G. Moreover, sequential elementary processes are represented by 
identifiers S. 

The abstract syntax of composition expressions ExP is then the following: 

EXP::=EXP fIG EXP ] h i d e G  inExp ] S 

Composition expressions can be viewed as an intermediate form for the 
compilation of a LOTOS program into an LTS. More precisely, our objective 
is to express a LOTOS program as parallel compositions of many possible 
elementary processes. Although very simple, it will be shown in section 5 
that the syntax proposed here fulfills this objective, and allows to deal with 
non trivial programs. Moreover, this syntax could easily be extended with 
other LOTOS operators (e.g. the so-called enable and disable operators, >> 
and [>) without significantly modifying the results presented in the following 
sections. 

It now remains to define more precisely the parallel and hiding operators 
used in composition expressions. 

Informally, $1 I]G $2 is the LTS obtained by parallel composition of Lwss 
$1 and $2 with rendez-vous synchronization on the labels belonging to G. 
Transitions whose label does not belong to G are performed independently 
by the two LTSS according to the interleaving semantics. 

Defini t ion 5. Let Si = (Qi,Ai,Ti,qo,)i=(1,2) be two Lwss, and G a la- 
bel set (G C_ A). Then, $1 JIG $2 is the LTS (Q, A1 0 A2, T, (q01, q02)) where 
Q c_ Q1 x Q2 and T are the smallest sets verifying: 

(q01, qo=) 6 Q [CO] 

a 

(ql, q2) �9 Q, qx ~ q2 a �9 G [Cl] 
(q~, q~) �9 Q, (ql, q2) "-~T (q~, q~) 

(ql, q2) GQ, ql a)Tlq~, a C G  

(q~, q2) 6 Q, (ql, q2) "-~T (q~, q2) 

(ql, q2) 6Q,  q2 a>r: q~, a C G  
(ql, q~) 6 Q, (ql, q2) --~T (ql, q~) 

[c2] 

[c3] 

2 representing both the I I, I I I and I [. �9 .] I operators of LOTOS. 



244 

[] 

Note that  this parallel composition operator is commutative but not asso- 
ciative in the general case (i.e., when the synchronization sets are not fixed). 

For a given LTS S, h ide  G in  S is the LTS obtained from S by renaming 
each label belonging to G into the internal T label .  

Definition 6. Let S = (Q, A, T, q0) be an LTS, and G a label set (G C A). 
hide G in S is the LTS S[A \ G]. [] 
The hiding operator can be partially distributed over parallel composition 

as follows: 

hide H in (SI []G $2) "~ hide (H N G) in 

((hide (H\G) in S1)[IG (hide (H\G) in $2)) 

Using definition 5 and 6 we are now able to give the semantics of a com- 
position expression E in terms of LTSS. To this purpose we (inductively) 
define the function sem associating to each composition expression the LTS 
representing its behavior: 

sere (El IIG = sem (El) HG sere (E2) 

sem Chide G in  E) = h ide  G in  sem (E) 

sem (S) = S. 

Finally, all the bisimulation relations mentioned in the previous section 
are congruences with respect to parallel composition and hiding operators. 
More precisely, it easy to check that  if a language set A is such that  each A 
in A is included in ( v* U {T*ar* I a 6 A}), then, for all LTSS $t,  $2 and S: 

sl ~A s2 (Sl s) ~A (& Ib s) 
$1 "~A $2 ~ (hide G in SI) "~A (hide G in $2) 

2.2 A composit ional  approach for state space generation 

As already mentioned in the introduction, an automatic method to formally 
verify a system described by a composition expression E consists in gen- 
erating the LTS sem (E), or, more efficiently, the quotient of this LTS with 
respect to a suitable equivalence relation R (where R is supposed to preserve 
the properties under verification). 

Furthermore, instead of generating first the overall LTS sem (E) and then 
reducing it modulo relation R, using an incremental approach seems much 
more attractive. Such an approach can be sketched as follows: starting from 
the elementary processes Si of E, sem (E) is obtained following a bottom-up 
strategy by replacing each sub-expression of E by the quotient modulo R of 
its associated LTS. This approach can be formalized as a recursive function 



245 

CompGen (for Compositional Generation), inductively defined in the follow- 
ing manner: 

CompGen (El I IG E2) = (CompGen (El) IIG CompGen (E2))/R 
CompGen (hide G in E) = (hide G in CompGen (E))/R 

CompGen (S) = (sem (S))/R. 

Provided that R is a congruence with respect to parallel composition and 
hiding operators, and provided that the quotient of an LTS modulo this rela- 
tion is unique, it is clear that for any composition expression E, CompGen (E) 
is equal to (sem (E))/R. 

Unfortunately, this straightforward approach is not always sufficient in 
practice since unnecessary large intermediate LTSs may be generated. In- 
deed, sub-expressions are considered outside of their context (the remaining 
part of the initial composition expression), and therefore many constraints 
on their effective behavior are not taken into account during their genera- 
tion. Consequently, the LTSs associated to such sub-expressions by function 
CompGen may contain lots of useless execution sequences forbidden by the 
context, that will disappear only in forthcoming parallel compositions 3 

A solution to this problem has been already formulated by [GS90] and 
[CK93] for a Csp-like parallel composition operator. Their approach can be 
summarized as follows: 

- the context constraints of a sub-expression is a set of (allowed) execution 
sequences, and it can be represented by an LTS called the interface; 

- LTSs generated from sub-expressions of E are "restricted" LTSS, in which 
forbidden execution sequences have been cut off according to their asso- 
dated interface. 

In order to formalize this solution in our framework, we first need to de- 
fine more precisely the notion of environment of a sub-expression E'  in a 
composition expression E. Intuitively, this is the set of parallel composition 
operations applied to E'  in E (hiding operators are not included in the envi- 
ronment since only parallel compositions may restrict the behavior of a given 
sub-expression): 

Defini t ion 7. Let E be a composition expression. The set of sub-expressions 
of E is given by the function SubExp : ExP --+ 2 ExP, defined in the usual 
way: 

SubExp (El IIc E2) = {El lie E2} U SubExp (El) U SubExp (E2) 

SubExp (hide G in E) = {hide G in E} U SubExp (E) 

SubExp (S) = {S} 

3 Note that this is particularly the case for programs written following the so-called 
constraint oriented specification style [VSSB91]. 



246 

For any sub-expression E I of E, the environment of E ~ in E is given by 
the function Env : E x P  x ExP --+ 2 F~XPx2~, where 

Env (E', E) = {(Ei, Gi) ] 3E~, E~' e SubExp (E). 
((E~i ' = Eti I[a, Ei) V (E~' = Ei [la, E~)) A (E' e SubExp (E~.))} 

[] 

Using this definition we are able to take into account the context con- 
straints within a compositional generation. More precisely, the basic idea is 
to replace each sub-expression E '  of E by the LTS kV(E', Env (E', E)),  where 
the transformation kV satisfies the following requirements: 

R I :  it restricts the behavior of E '  according to its environment, i.e., 

I kV(E', Env (E',  E)) I -< [ sem (E') I 

R2 :  it preserves the behavior of the initial expression when a sub-expression 
E ~ is replaced by its corresponding ~P-transformation, i.e., 

sem (E[~P(E', Env (E', E))/E']) ..~ sem (E) 

R3 :  it can be computed on-the-fly, i.e., kV(E I, Env (E r, E)) can be obtained 
without generating sem (E ~) first. 

Finally, it remains to propose a suitable transformation kV, satisfying the 
desired requirements. In [CK93], this transformation is built from the paral- 
lel composition operator itself. However, this solution requires to determinize 
first the interface LTS, which may exponentially increase its size. Moreover, 
even with a deterministic interface, requirement R 1  is not ensured. Regard- 
ing [GS90], transformation ~ is built from a new operator, called the projec- 
tion, able to restrict a composition expression even from a non deterministic 
interface. We adopt here this later approach, defining a similar operator in 
the framework of LOTOS parallel composition. 

3 Compos i t i ona l  generat ion  under  contex t  constraints  

In this section, we give first the definition of a new operator between LTSs 
named the semi-composition. Then, we show that it ensures all the require- 
ments given in the previous section, and how to introduce it in a composition 
expression. 

Definition 8. Let Si = (Qi, Ai, Ti, qo~)i=(1,2) be two LTSs, and G a label set 
(G C A). 

Let S'  = (Q' ,A' ,T ' ,q~)  be the LTS $1 JIG $2. We denote by $1 ~IG $2 
the LTS (Q, A1, T, q0) resulting from the semi-composition of $1 by $2 and 



247 

defined as follows: 

O = { ( p 1 , X ) I p l  e Qx A x - {p= I (p~,p2) e Q'}} 
T = { ( ( p l , Z l ) , a , ( p = , X 2 ) ) l  

(Pl, ql) a ) T' (P2, q2) A ql E X1 h q2 e X2 A Pl 

qo = {(qol ,Xo) I Xo = {p2 I (qo,,p2) e Q'}} 

a 

)T1 P2} 

For any (pl,X) E Q, set X is unique, which ensures the correction of this 
definition. [] 

According to this definition, the LTS resulting from the semi-composition 
of $1 by $2 is clearly a sub-LTs of $1. Consequently, the semi-composition 
never increases the number of states and transitions of its first operand, which 
ensures the requirement R1. 

This semi-composition operator can be introduced in a composition ex- 
pression in order to reduce the size of intermediate LTSs, as expressed by 
proposition 9 : 

Proposition 9. Let $1 and $2 be two LTSs and G a label set (G C_ A). Then, 
the following relation holds: 

s~ IIG S~ ~ (S~ 71G S2) IIG S2 

[] 

The second operand ($2) of the semi-composition will represent the con- 
text constraints applied on the first operand and is named the interface. 
However, it is not necessary to use this whole LTS in order to restrict a 
sub-expression. Indeed, it can be performed by considering only the set of 
execution sequences of the interface defined on the synchronization set G 
(in particular the branching structure of the interface is irrelevant). Proposi- 
tion 10 formalizes this property: 

Proposition 10. Let S1 and $2 be two LTSs and G a label set (G C A). For 
any LTS S~ such that/:(SI[G]) = ~(S2[G]) we have: 

(s~ 71a s~) ~ (Sl 71~ s i ) .  

[] 

Contrarily to the one considered in [GS90] and [CK93], the parallel com- 
position operator we use is not associative. Consequently, the propagation 
of the semi-composition operator through the parallel composition needs a 
property of (partial) distribution: 

Proposition 11. Let $1, $2 and S be three LTSs and G a label set (G C_ A). 
Then, 

(s~ II~ &)lla s ~ ((s~ 7IG~ S ) l i e  (S~ 71a~ s ) ) l l c  s 



248 

where label sets G1 and G2 are defined as follows: 

= G n (E u (Act(S1) \ Act(S ))) 
G2 = G Cl (E U (Act(&) \ Act(S1))) 

[] 
Finally, we also use the following property in order to propagate context 

constraints through the hiding operator: 

P r o p o s i t i o n  12. Let $1 and $2 be two LTSs and G1 and G2 two label sets. 
Then, 

(hide G1 in S1) ilc2 $2 ~ (hide G1 in ($1 -~IG=\G1 S2)) IIG= s= 

[] 

It now remains to show more formally how this semi-composition operator 
can be used to implement the ~P transformation. 

In the general case, let E be a composition expression, E'  a sub-expression 
of E, and (E~, G~) an element of Env (E', E). According to definition 7 there 
exists a sub-expression E~' of E such that E~' JIG, Ei (or Ei JIG, E~') be- 
longs to SubExp (E) and E '  6 SubExp (E~'). Then, E'  can be restricted up 
to (Ei, Gi) and we define: 

O(E', {(Ei,Gi)}) = E'  qla ' ,  E~ 

where f (sem (E~)[G~]) = f (sem (Ei)[G~]) and G~ is a subset of Gi, depending 
on the syntactic path between E~' to E'. More precisely, G~ = ~E,(E~', Gi) 
where function ~E' is inductively defined according to propositions 11 and 
12: 

q~E,(E',X) ----- X 
{ ~E,(EI,X r~ (G U Act(E1) \ Act(E2))) 

if E'  6 SubExp (El) 
qhE, (El ItC E2, X) = ~E' (E2, X r~ (G U Act(E2) \ Act(El))) 

if E '  6 SubExp (E2) 

~E' (hide G in E, X) = ~E, (E, X \ G) 

We have shown that the semi-composition operator can be used to build a 
~-transformation verifying requirements R1 and R2 of the previous section, 
and that this transformation allows to restrict automatically a sub-expression 
according to a part of its environment. However, several problems live on. For 
instance: 

- the interface (i.e. sem(E~)[G~]) has to be small enough to be generated; 
- the semi-composition have to be restrictive (i.e. G~ not empty); 



249 

- It is not always possible to restrict a sub-expression using its whole en- 
vironment in a single (semi-composition) operation. 

Consequently these results may be unsufficient in some practical cases. 
In the next section, we propose an alternative solution in which the user can 
express by himself the context constraints, and then (partially) avoid these 
problems. 

4 Compositional generation with user given interfaces 

The idea of using user-supplied interfaces to represent the context constraints 
associated to a sub-expression is not original: it is the basis of the work 
described in [GS90], and it has also been applied in [CK95]. However, our 
objective in this section is to show how this solution can be adapted to LOTOS 
composition expressions, and to propose a general framework in which both 
user given and computed interfaces can be used. 

The main problem arising when user given informations are used in a ver- 
ification framework is to ensure that,  even if such informations are erroneous, 
they cannot lead to an incorrect result. A practical way to solve this prob- 
lem is therefore to try verifying these informations as well, and to conclude 
only when the answer is positive. To this purpose, we follow the approach 
proposed in [GS90] 4. Intuitively, this approach can be summarized as follows: 

- if a sub-expression E '  is restricted with respect to a user given interface, 
the synchronizations "refused" by this interface are recorded; 

- when E ~ is composed with its "real" environment (the rest of the compo- 
sition expression) it is easy to verify if these synchronizations really had 
to be refused. 

To formalize this approach we need to extend the notion of LTS used so 
far by adding a binary predicate ~. Its intuitive meaning is to associate to 
each state a label set for which a synchronization has been refused during 
the generation of this LTS, and such that  this refusal has not been justified 
(yet). 

Def in i t ion  13. An Extended Labeled Transition System (ELTS for short) 
is a 5-tuple (Q, A, T, q0, ?) where (Q, A, T, q0) is an LTS and j" is a predicate 
over Q x A. 

In the following we note p 1" a iff (p, a) EJ ~, and p t e iff ~ a  E A~ . p j" a. 
Moreover, an ELTS S is said valid, and we note valid (S), iff it has not been 

obtained from unjustified refused synchronizations: (Vp E Q .  p 1" e). Conse- 
quently, "standard" LTSs can be simply viewed as valid ELTSS. [] 

In the rest of the section we consider a label set G C_ ,4 and two ELTSS 
S~ = (Qi, Ai, Ti, qo,, J'i)i=(1,2). 

4 and also in [CK95] using a different formalism. 



250 

From definition 13, we extend the parallel composition and hiding op- 
erators for ELTSS. In particular, since the parallel composition operator is 
used only to compose a sub-expression with a part of its "real" environment, 
then, for any action a belonging to the synchronization set G, (ql, q2)? a 
holds iff ql 1" a holds (an unjustified a-synchronization holds on state ql) and 
a e Act(q2) (a is not refused by q2), or vice-versa. 

The exact definition of these operators is then the following: 

Def in i t i on  14. $1 IIG S~ is the ELTS (Q,A,T, qo,?) where Q, A, T and q0 
are obtained from definition 5, and 1" is the smallest set verifying: 

ql 1"1 a, a r G q2~'2a, a ~ G  

(ql, q2) ~ a (ql, q2) ~ a  

ql ~l a, q2 a)T2 q~, a E G ql a)rl q~, q2 % a, a e G 

(ql, q2) ?a (ql, q2) ?a 

q171a,  q 2 % a ,  a e G  

(ql, q2) I a 

h ide  G in $1 is the ELTS (Q,A,T, qo,~) where Q, A, T and q0 are ob- 
tained from definition 6, and 

1"= {(Pl, a) I Pl % a A a r G} U {(pl,T) I Pl 1"1 a A a �9 G} 

[] 

Similarly, the semi-composition operator also has to be extended to ELTSS. 
Let us recall that  this operator allows to restrict a sub-expression E ~, whose 
semantics is now expressed by an ELTS, with respect to a set of execution 
sequences - the interface - represented by a "standard" LTS and a synchro- 
nization set. Depending on the nature of this interface (i.e., user-supplied 
or automatically computed on the initial composition expression), we distin- 
guish between two semi-composition operators: 

- an "user one" (noted -]1? ), which updates predicate ~ on sem(E')  
by adding the labels corresponding to synchronizations refused by the 
interface; 

- an "exact one" (still noted -]1 ), which updates predicate 1" on sem (E ~) 
by removing the labels corresponding to synchronizations refused by the 
interface (this can be viewed as an anticipation, provided that  E '  will be 
composed with the part of the environment corresponding to this exact 
interface). 

More formally, these operators are defined as follows: 



251 

Defini t ion 15. 81 ~IG 82 is the ELTS ( Q , A , T ,  qo,~) where Q, A, T and q0 
are defined according to definition 8 and 1" is obtained from 1"1 as follows: 

$ = { ( ( P l , X ) , a ) I ( ( p l , X ) e Q A p l " ~ l a ) A ( a f i G  ~ (3p fi X . a e Act(p)))} 

Similarly, $1 -]l?v 82 is the ELTS (Q ,A ,T ,  qo,~) where Q, A, T and qo are 
defined according to definition 8 and 1" is obtained as follows: 

~'= {((pl, X), a) I (Pl ~'1 a) V (a e G A a G Act(p1) A (Vp2 G X .  a • Act(p~)))} 

[] 

The validity of a compositional generation under user-given interfaces is 
established by proposition 16, which states that whenever an ELTS obtained 
from such an interface is valid, then this interface can be considered as correct. 

P ropos i t ion  16. Let $1 and 82 be two ELTSs, I an LTS, G and X two label 
sets and 8 = (81 71?x I) IIc 82. 

valid(S) ~ (8  ,'~ 81 IIv 82) 

[] 

More generally, according to proposition 16, if E is a composition expres- 
sion and E' a sub-expression of E, then E I can be replaced in E by ELTS 
(E' ~l?x I) whenever the resulting ELTS is valid: 

valid (sere (E[(E' 7[?x I ) /E '] ) )  ~ (sere (E[(E' 7[?x I ) /E '] )  ~ sere (E)) 

In such case, k~(E', Env (E', E)) is therefore simply expressed by E'  ~l?x I. 
Finally, to obtain a practical approach for compositional generation, it 

also remains to extend the behavioral relations NA to ELTSS. Intuitively, 
these extensions "flA must verify three properties: to preserve the original 
relation ~"A ("flA C--'A), to be a congruence with respect to (extended) opera- 
tors of a composition expression, and to preserve the valid predicatebetween 
equivalent ELTSS. 

It can be checked that the following extension of a A-bisimulation relation 
satisfies these criteria for the language sets A mentioned in section 1: 

Defini t ion 17. For each relation R G Q1 • Q2, we define: 

B (R) = I w  e A, 
( V a e A ~ . ( p l # a )  ~ (p2#a))  A 

(Vql . (p l  ~)Tlql =~ 3q2.(p2 ~ --'+T2 q2 A (ql,q2)e R))) A 

(Vq2 (p2 �9 >T2q2 =~ 3ql . (p l  ~ "--+T1 ql A (ql,q2) e R)))} 

T* 
where p ~ a = ( 3 q . p  )q  A ql"a). The extension "JA 
equivalence "A is defined as the greatest fixed-point of B~A . 

of bisimulation 
[] 



252 

5 A p p l i c a t i o n  

This compositional generation method has been implemented within the 
CADP toolbox and experimented on several LOTOS programs. We briefly 
describe this implementation, and we give some experimental results. 

5.1 The  CADP toolbox 

CADP (C2ESAR/ALDEBARAN Development Package) is a toolbox for protocol 
engineering [FGK+96]. Its main functionality is to allow formal verification 
of both behavioral and logical specifications, following the model-based ap- 
proach. This toolbox includes several components, and in particular: 

- the LOTOS compiler C.5~SAR, able to translate a LOTOS program into an 
explicit LTS; 

- the equivalence checker ALDEBARAN, able to compare or minimize LTSs 
up to various bisimulation relations. 

- the OPEN-C~SAR environment, able to compile either a LOTOS program 
or a composition expression into an implicit LTS (i.e., a set of C functions 
allowing an on-the-fly exploration of this LTS). 

Two new components have been integrated in CADP to allow composi- 
tional generation from LOTOS programs: 

- the PROJECTOR too1, implementing the semi-composition algorithms 
that can be found in [KM97], and developed within the OPEN-C/ESAR 
environment; 

-- a compositional generation tool, which takes as input an equivalence re- 
lation and composition expression extended with semi-composition oper- 
ators (see example ine section 5.2), and which generates an UNIX shell- 
script containing the corresponding calls to C~SAR, ALDEBARAN and 
PROJECTOR. 

5.2 Experimental  results 

We give the experimental results obtained when applying the compositional 
generation method on two realistic LOTOS examples: an atomic multicast 
protocol [SE90], requiring user-given interfaces, and a leader election algo- 
rithm [GM96], that could be handled automatically. ' 

The rel/REL protocol [SE90] aims to support atomic communications 
between a transmitter and several receivers, in spite of an arbitrary number 
of failures from the stations involved in the communications. We focus here 
on a version of this protocol which preserves the order of the messages sent 
by the transmitter (its LOTOS specification is given in [BM91]). 

This protocol is built on a transport layer which provides a reliable mes- 
sage transmission between any pair ofstations. In case of crash, stations are 



253 

supposed to adopt a fail-silent behavior: they stop any message emission, and 
they silently discard any received message. 

The rel/REa protocol is based on a two phases commit algorithm: the 
transmitter sends two successive copies of the message to all receivers; each 
message being uniquely identified, and an additional label indicates whether 
it is a first or a second copy. On receipt of a first copy, a station S waits for 
the second one. If it does not arrive before the expiration of a delay, then 
S assumes that the transmitter crashed and that some of the receivers may 
have not received any copy of the message. Then, S relays the transmitter and 
multicasts the two copies of the message, using itself the rel/REL protocol. 
However, to reduce the network traffic, a station stops to relay as soon as 
a second copy of the message is received from the transmitter or from any 
other receiver. 

If we consider a transmitter Trans, and three receiving stations Recl, 
Rec2 and Rec3 the composition expression derived from the LOTOS program 
describing this protocol is the following: 

E = ((Rec2 ]I{R23,R32} Rec3) []{R12,R13,R21,R31} Recl)[[{RT1,RT2,RT3} Trans 

Note that the hiding operators have been omitted, since they are automat- 
ically distributed over parallel compositions by the compositional generation 
tool (see section 2.1). 

A brutal application of the compositional generation method on this ex- 
pression leads to several comments. First, the LTSS representing receivers Reci 
are too large to be generated, and only LTS sem (Trems) can be obtained. 
Moreover, this later happens to be insufficient to restrict the receivers, i.e., 
LTS (sem(Reci)7[RTi sem(Trans)) is still too large. Therefore, user given 
interfaces Zi are necessary to express the constraints provided by the whole 
environment of each station Reci (the transmitter and the other receivers). 
Finally, each parallel composition occurring in E is also systematically re- 
stricted with respect to the constraints provided by the transmitter. The 
resulting composition expression is then the following: 

E'  = (((((Rec2 7[?{RT2,R12,R32} ~2) I[{R23,R32} (Rec3 -~[?.{RT3,R13,R23} ~3)) 

7[{RT2,RT3} Trails) H{R12,R21,R1S,R31} (Recl -~[?{RT1,R21,R31} ~1)) 
7I{RT1,RT2,RT3} Trans) H {RT1,RT2,RT3} Trans 

Intuitively, interfaces Zi can be obtained by examining the constraints 
imposed by their environment on message sequences received by each station 
Reci. In particular, due to the message order preservation, one can assume 
that every messages are always received by the station in the order they have 
been sent. Then, using a global knowledge of the protocol, it becomes possible 



254 

to write a LOTOS program describing a superset of such sequences for each 
station Reci, and thus to obtain suitable LTSs Zi 5 

When applying our compositional generation tool on expression E t the 
following intermediate LTSs are generated (each of them corresponding to a 
generation step): 

Sli ---- sem (Reci) ~I?G~ Zi 
$2 = ($12 II{R23,R32} S13) qI{RT2,RT3} s e m  (Trans) 

$3 = - ( S l l  II{R12,R21,R13,R31} $2)q]{RT1,RT2,RT3} sem (Trans) 

sem ( E')  = $3 I]{RT1,RT2,1:tT3} sem (Trans) 

The following table lists the size of these LTSS (in number of states and 
transitions), before and after reduction modulo strong bisimulation (remem- 
ber that  each LTS is systematically reduced after its generation), when three 
different messages are sent by the transmitter:  

S l i  
$2 
$3 

sem (E') 

b e f o r e  r e d u c t i o n  
states transitions 
16694 108407 
95041 1284922 

854302 6144825 
898638 5893476 

a f t e r  r e d u c t i o n  
states transitions 
1121 15114 

44195 551902 
200795 1418989 
193991 1550623 

According to these figures, none of the intermediate LTSS overcomes one 
million of states, and the resulting LTS sem ( E ~ ) / ~  is less than 200 000 states, 
which is quite manageable for verification purposes. Moreover, the whole 
generation process completed in a few hours on a SUN SS 20 workstation. 
The application on this same example of a symbolic generation method (based 
on a BDD encoding of the composition expression), leads to an LTS sem (E) 
containing about 200 million of states (represented itself by a BDD), obtained 
in one week of computations using the same workstation. 

More generally, we summarize in the following table the results obtained 
for the two main applications we considered. We adopt here the terminology 
proposed in [GS90]: the "apparent size" of the application is the number of 
states of the LTS S obtained using a symbolic generation method, its "real 
size" is the number of states of S / R  6 and its "algorithmic size" is the number 
of states of the largest LTS generated using our compositional approach. 

s Let us notice that these interfaces rely on a correct functioning of the protocol 
under verification, which may seem paradoxical. In fact, the valid predicate allows 
to justify a posteriori the correction of this hypothesis. 

s where R is the "extended" strong bisimulation relation ...t for the rel/REL pro- 
tocol and the branching bisimulation for the Leader Election algorithm. 



255 

application "apparent size .... algorithmic size" "real size" 
rel/REL 2 stations 249 357 9 717 4 085 
rel/REL 3 stations 178 519 776 898 638 193 991 

Leader Election 4 stations 502 788 448 1 232 5 
Leader Election 5 stations ? 45 760 6 

It is quite clear on this two examples that compositional generation al- 
lows to largely avoid the "apparent complexity" of the program, and even to 
remain sometimes close to its "real complexity" as in the rel/REL example. 

Conclus ion  

We have proposed in this paper a generalization of the results presented 
in [GS90] and [CK93] for applying a compositional generation method to 
LOTOS programs. Although many other works have been already carried out 
on compositional verification and compositional generation (an interesting 
classification can be found in [GLS96]), only a few of them - to our knowledge 
- have been applied to large examples in order to make a fair comparison with 
other "advanced" verification techniques. 

The integration within the CADP toolbox of the compositional generation 
method described in this paper, and its evaluation on non-trivial case stud- 
ies, have shown its interest in a verification framework. In particular, this 
approach allowed to significantly improve the capabilities of the toolbox for 
the two examples presented in this paper, providing better results than other 
verification methods implemented in CADP ( such  as  on-the-fly verification 
and symbolic minimal model generation [FKM93]). Nevertheless, this is not 
true for all the examples we considered and this work still needs to be carried 
on.  

First of all, it appears in practice that, even with a good knowledge of the 
program, it is not always possible for the user to provide suitable interfaces. 
Therefore, their automatic computation should be improved. A possible way 
could be to consider composition expression between LTSS extended with 
state variables, and thus making possible the use of some abstract inter- 
pretation techniques (since interfaces may not be necessarily represented by 
LTSs). 

Besides, the �9 transformation we consider preserves strong bisimulation 
(requirement R2 in section 2). In fact, this requirement is too strong if the 
relation R under consideration is a coarsest relation (which is often the case in 
practice). Therefore, parametrizing this transformation with an equivalence 
relation could lead to further restrictions during the semi-composition, and 
thus reducing even more the size of intermediate LTSs. 

Furthermore, the choice of a suitable strategy to decide which sub- 
expressions have to be dealt with during the compositional generation is 
also an important problem from the user point of view. Even if automatically 



256 

providing an optimal strategy is certainly not manageable, some heuristics 
could be proposed to assist him. 

Finally, compositional generation could also be extended to LTSs commu- 
nicating with other mechanisms than rendez-vous, for instance such as fifo 
channels. 

A c k n o w l e d g e m e n t s :  the authors are grateful to Susanne Graf for her 
numerous comments about  a previous version of this work, and to the anony- 
mous referees for their helpful suggestions. 

References  

[Arn89] 

IBM91] 

[CK93] 

[CK95] 

[CPS89] 

[Fer90] 

[FGK+96] 

[FKM93] 

[CLS96] 

Andr~ Arnold. MEC: A System for Constructing and Analysing Transi- 
tion Systems. In Joseph Sifakis, editor, Proceedings of the 1st Workshop 
on Automatic Verification Methods for Finite State Systems (Grenoble, 
France), volume 407 of Lecture Notes in Computer Science, pages 117- 
132. Springer Verlag, June 1989. 
Simon Balnbridge and Lanrent Mounier. Specification and Verification 
of a Reliable Multicast Protocol. Technical Report HPL-91-163, Hewlett- 
Packard Laboratories, Bristol, U.K., October 1991. 
S.C. Cheung and J. Kramer. Enhancing Compositional Reachability 
Analysis with Context Constraints. In Proceedings of the 1st A CM Inter- 
national Symposium on the Foundations of Software Engineering, pages 
115-125, Los Angeles, California, December 1993. 
S.C. Cheung and J. Kramer. Compositional Reachability Analysis of 
Finite-State Distributed Systems with User-Specified Constraints. In 
Proceedings of SIGSOFT'95, 1995. 
R. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Workbench. 
In J. Sifakis, editor, Proceedings of the 1st Workshop on Automatic Ver- 
ification Methods for Finite State Systems (Grenoble, France), volume 
407 of Lecture Notes in Computer Science, pages 24-37. Springer Ver- 
lag, June 1989. 
Jean-Claude Fernandez. An Implementation of an Efficient Algorithm 
for Bisimulation Equivalence. Science of Computer Programming, 13(2- 
3):219-236, May 1990. 
J.C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and 

M. Sighireanu. CADP: A Protocol Validation and Verification Toolbox. 
In Rajeev Alur and Thomas A. Henzinger, editors, Proceedings of the 
8th Conference on Computer-Aided Verification (New Brunswick, New 
Jersey, USA), August 1996. 
J.C. Fernandez, A. Kerbrat, and L. Mounier. Symbolic Equivalence 
Checking. In C. Courcoubetis, editor, Proceedings of the 5th Workshop 
on Computer-Aided Verification (Heraklion, Greece), volume 697 of Lec- 
ture Notes in Computer Science. Springer Verlag, June 1993. 
S. Graf, G. L/ittgen, and B. Steffen. Compositional Minimisation of 
Finite State Systems using Interface Specifications. Formal Aspects of 
Computation, 3, 1996. appeared as Passauer Informatik Bericht MIP- 
9505. 



257 

[GM96] 

[GS90] 

[GV90] 

[Hoa78] 

[Ho191] 

[iso88] 

[KM97] 

[KS90] 

[Mil80] 

[NMV90] 

[ParS1] 

[PT87] 

[asg0] 

[SE90] 

[wJ96] 

[vCW89] 

Hubert Garavel and Laurent Mounier. Specification and Verification of 
various Distributed Leader Election Algorithms for Unidirectional Ring 
Networks. Science of Computer Programming, 1996. Special issue on 
Industrially Relevant Applications of Formal Analysis Techniques. Full 
version available as INRIA Research Report 2986. 
Susanne Graf and Bernhard Steffen. Compositional Minimization of 
Finite State Processes. In Workshop on Computer-Aided Verification, 
Rutgers, USA, June 1990. DIMACS, R.P. Kurshan and E.M. Clarke. 
Jan Friso Groote and Frits Vaandrager. An Efficient Algorithm for 
Branching Bisimulation and Stuttering Equivalence. In M. S. Patterson, 
editor, Proceedings of the 17th ICALP (Warwick), volume 443of Lecture 
Notes in Computer Science, pages 626-638. Springer Verlag, 1990. 
C. A. R. Hoare. Communicating Sequential Processes. Communications 
of the ACM, 21(8):666-677, August 1978. 
Gerard J. Holzmann. Design and Validation of Computer Protocols. 
Software Series. Prentice Hall, 1991. 
ISO/IEC. LOTOS - -  A Formal Description Technique Based on the 
Temporal Ordering of Observational Behaviour. International Standard 
8807, International Organization for Standardization - -  Information 
Processing Systems - -  Open Systems Interconnection, Gen~ve, Septem- 
ber 1988. 
Jean-Pierre Krimm and Laurent Mounier. Compositional State Space 
Generation from Lotos Programs. Technical Report RR97-01, VER- 
IMAG, January 1997. 
P. Kanellakis and S. Smolka. CCS Expressions, Finite State Processes 
and Three Problems of Equivalence. Information and Computation, 
86(1), May 1990. 
Robin Milner. A Calculus of Communicating Systems, volume 92 of 
Lecture Notes in Computer Science. Springer Verlag, 1980. 
Rocco De Nicola, Ugo Montanari, and Frits Vaandrager. Back and Forth 
Bisimulations. CS R9021, Centrum voor Wiskunde en Informatica, Am- 
sterdam, May 1990. 
David Park. Concurrency and Automata on Infinite Sequences. In Peter 
Deussen, editor, Theoretical Computer Science, volume 104 of Lecture 
Notes in Computer Science, pages 167-183. Springer Verlag, March 1981. 
Robert Paige and Robert E. Tarjan. Three Partition Refinement Algo- 
rithms. SIAM Journal of Computing, 16(6):973-989, December 1987. 
Val~rie Roy and Robert de Simone. Auto/Autograph. In R. P. Kur- 
shan and E. M. Clarke, editors, Proceedings of the 2nd Workshop on 
Computer-Aided Verification (Rutgers, New Jersey, USA), volume 3 of 
DIMACS Series in Discrete Mathematics and Theoretical Computer Sci- 
ence, pages 477-491. AMS-ACM, June 1990. 
Santosh K. Shrivastava and Paul. D. Ezhilchelvan. rel/REL: A Family of 
Reliable Multicast Protocol for High-Speed Networks. Technical Report, 
University of Newcastle, Dept. of Computer Science, U.K, 1990. 
Antti Valmari. Compositionality in State Space Verification. In Applica- 
tion and Theory of Pctri Nets, volume 1091 of Lecture Notes in Computer 
Science, pages 29-56. Springer Verlag, June 1996. 
R. J. van Glabbeek and W. P. Weijland. Branching-Time and Abstrac- 
tion in Bisimulation Semantics (extended abstract). CS R8911, Centrum 



258 

voor Wiskunde en Informatica, Amsterdam, 1989. Also in proc. IFIP 
l l t h  World Computer Congress, San Francisco, 1989. 

[VSSB91] C. Vissers, G. Scollo, M. van Sinderen, and E. Brinksma. On the use 
of specification styles in the design of distributed systems. Theoretical 
Computer Science, 89(1):179-206, October 1991. 


