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A b s t r a c t .  In this paper, we show how to use the theorem prover Isabelle 
to provide tool support for Focus, a specification and verification frame- 
work for the stepwise development of distributed systems. Focus is em- 
bedded into Isabelle by modeling the basic notion of stream processing 
functions and by formalizing an appropriate set of assumption/commit- 
ment refinement rules. Moreover, the refinement calculus is proven to be 
correct within this model. The model is based upon the logic HOLCF, 
an extension of higher order logic by the notions of domain theory. The 
well-known case study of a production cell is used to evaluate our proof 
support by mechanically verifying parts of a paper and pencil proof. 

1 I n t r o d u c t i o n  

Modeling distributed systems in a functional style by nondeterministic dataflow 
networks has a long tradit ion [Kok87, Bro87]. The system development method- 
ology F o c u s  [BDD+93, Bro93] follows this tradition and models distributed sys- 
tems as networks of asynchronously communicating agents. The agents them- 
selves are represented by a set of functions, where every function processes infi- 
nite streams of incoming messages and yields infinite streams of outgoing mes- 
sages. The semantical foundation is provided by Scott 's domain theory [Pau87]. 
Using for example the least fixed point theorem allows us to model feedbacks of 
message streams. 

F o c u s  also provides various refinement calculi. We concentrate on a particu- 
lar calculus defined by a set of refinement rules in an Assumption/Commitment  
(A/C) style [SDW93]. 

The aim of this paper is to provide and evaluate mechanical proof support  
for F o c u s .  Although quite a number of case studies have already been dealt 
with on paper using this design method (see, e.g., [BFG+94]), there has not 
been any tool support  for F o c u s  until now. For our proof assistance we employ 
Isabelle [Pau94], an interactive theorem prover. Note that  a model checking ap- 
proach is not applicable here, as F o c u s  components in general describe infinite 
state systems. 
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Isabelte is generic in the sense that it provides an intuitionistic higher order 
metalogic wherein userdefined object logics may be embedded. Several object 
logics are already supported in the Isabelle distribution. For our purposes we 
choose the logic HOLCF [Reg95, Reg94], which provides the notions of domain 
theory as, e.g.; partial orders, continuity and least fixpoint induction. It is based 
on Isabelle/HOL, an object logic formalizing higher order logic. 

We formalize the notions of streams, stream processing functions and the A/C 
refinement rules [SDW93] in HOLCF. The refinement calculus is definitionally 
embedded into HOLCF, i.e. its proof rules are not axiomatized, but mechanically 
proven with Isabelle. 

The practicability of our formalization is evaluated by the well known case 
study of a production cell [Lin93]. We prove structural refinement in three hierar- 
chy levels. The proof has already been done [FP93] in Focus,  but the treatment 
was entirely mathematical, without computer support. 

Our work is part of the project AUToFocus [HSSS96], whose overall goal 
is a tool environment offering graphical description formalisms and appropriate 
analysis techniques which are embedded into the semantical framework of Fo- 
cus. AuToFocus  will include graphical editors for hierarchical state transitions 
diagrams, network structure diagrams and message sequence charts. Analysis 
techniques will range from consistency checks over a simulation facility to for- 
mal verification. The work described in this paper fits into this toolset as a 
verification backend. 

1.1 Out l ine  of  the  Paper  

The paper is organized as follows: Section 2 introduces the methods and tools 
used in our work. In Section 3 streams, stream processing functions and Focus  
components are formalized. Section 4 describes the embedding and verification 
of the refinement calculus. Finally, in Section 5 the case study of the production 
cell is presented. 

2 M e t h o d s  a n d  T o o l s  

In this section we give a survey of the formalisms and tools used in our approach. 

2.1 Focus 

Focus  [BDD+93] provides a framework for the stepwise development of dis- 
tributed systems. Starting from a requirement specification, a design specifica- 
tion is derived which is to be refined to an executable program in further steps. 
In this paper, we deal with the refinement of design specifications. 

In the design phase, distributed systems are modeled in Focus  as networks 
of asynchronously communicating agents. The agents themselves are modeled 
by continuous stream processing functions. A stream s is generated by the con- 
structors e (empty) and & (cons), elements are extracted by the usual head and 
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tail selectors ft.s and rt.s. The operator Slk yields the prefix of the length k of 
s, # s  the length of s, a l i s t � 9  filters all elements of alist out of s, and s o t 
concatenates s and t. 

As mentioned above, Focus  provides a calculus for the structured refinement 
of A/C-specifications. The calculus includes rules for sequential and parallel 
composition of agents (called SEQ and PAR) and for the introduction of feedback 
loops (FB), see Fig. 1. 

il o1 

SEQ PAR FB 

Fig. 1. Refinement Schemes for A/C-Specifications 

Additional rules include a rule for specializing specifications by weakening 
the assumption and/or strengthening the commitment, and specialized feedback- 
rules. We write A/C-specifications as 

f ( i )  = o A assumption(i) ~ commitment(i,  o) (1) 

where i and o are input and output streams and f is a stream processing function. 

2.2 Isabelle/HOL and HOLCF 

In our approach, we use the logic HOLCF [Reg95] both for formalizing specifica- 
tions and for proving the refinement rules. HOLCF extends Isabelle's instantia- 
tion of HOL conservatively by the Logic of Computable Functions LCF [Pan87]. 
HOL formalizes Church's formulation of Higher Order Logic. To distinguish LCF 
types from HOL types, HOLCF introduces the type class pcpo, which is equipped 
with a complete partial order __ and a least element _L. pcpo is introduced as a 
subclass of term, the default class of HOL. HOLCF provides the type of mono- 
tonic, continuous functions between pcpos. Elements of this type are called op- 
erations. 

For operations a specific syntax is introduced for applications ( f ' t )  and ab- 
stractions (Ax.t).  The fixpoint operator is denoted by f ix .  The syntax used 
for formulae is standard, except that there are two implications (----~ and ~ )  
and two equalities (= and - )  which stand for object logic and metalogic respec- 
tively. Premises of theorems are enclosed in the brackets [ ]. In the following 
all formulae have been taken directly from Isabelle input and translated auto- 
matically into 1.4TEX , thanks to a version of Isabelle/HOL that allows the use of 
mathematical symbols like V or 3. 

HOLCF comes with several standard domains. For the Cartesian product 
of domains the syntax < a , b >  is introduced, with the selectors c f s t  and csnd. 
Further domains include strict products, strict sums and lifted types. There is 
also a datatype package supporting the introduction of user defined domains. 
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3 F o r m a l i z i n g  F O C U S  Spec i f i ca t ions  

In this section we present the formalization of stream processing functions and 
network specifications in HOLCF. 

3.1 Formalizing Streams 

F o c u s  is based on continuous stream processing functions. The type of contin- 
uous functions is already provided by HOLCF. Therefore we only need to de- 
fine a domain type of polymorphic streams. For the definition we use HOLCF's  
data type package: 

domain (a )  s t r eam = "~:~z" ( f t  : :~) ( lazy  r t  : : ((~) s t ream)  

The definition is recursive: Streams are produced by the constructor &&5, 
which appends the element f t  of type a to the existing a stream r t .  Empty  
streams are represented by the least element .1_. The operator  &s& is lazy in its 
second argument: Otherwise the definition would yield an empty type. 

Supplied with the above equation, the datatype package defines the new type 
s t r eam with the constructors _1_ and a~z~:s, the counterparts of the F o c u s  con- 
structors ~ and a&s.  It also provides definitions of the selectors f t  and r t  and 
derives a rich collection of theorems for the practical use of these definitions. In 
particular a rule for structural induction on streams is proven by the package. 
This rule is based on the functional s t r eam t a k e  which provides the function- 
ality of the F o c u s  operator S]k. 

In addition to the automatic definitions of the data type package we intro- 
duce the operators # s ,  s o t, a l i s t@s  and the map functional smap on streams. 
These definitions include the introduction of the domain of lists and a datatype 
for infinite natural  numbers. For the practical use of the operators about 120 
theorems have been derived interactively in about  900 proof steps. 

As an example, we discuss in the following the introduction of the length 
operator #s .  Since the length of a stream may be infinite, a datatype of possi- 
bly infinite natural numbers is required. We define this datatype by adding an 
infinity element to the HOL type nat for natural  numbers: 

datatype inat = fin nat I infinity ("co") 

The definition does not use the datatype package mentioned above, but a 
similar one for the logic HOL. For i n a t  we redefine the relations < and < =  
and the successor function (iSuc).  As we reused na t ,  we can directly use HOL's 
theories Nat and A r i t h  for the subset of finite numbers. These theories provide 
an extensive formalization of arithmetic on natural  numbers and therefore make 
our definition practically useful. We only need to derive theorems for the spe- 
cific properties of the type i n a t .  About 50 of the theorems mentioned above 
concerning the operators on streams deal with these properties. Equipped with 
the type i n a t ,  we can now define the operator  # :  
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#s -- if stream_finite s 

then fin(~n, stream_take n's = s) 

else co 

Here the function s t r e a m _ f i n i t e  is used, which determines whether a stream 
is finite or not. In the finite case, we define the length of a finite stream as the 
least n (#n.) for which sin yields s. Otherwise, #s yields co. 

The definition shows a major benefit of HOLCF: Since every domain type is 
a HOL-type, the sublanguages HOL and LCF can be combined. We define the 
operator #s as a HOL function. Its domain is the pcpo type (a)stream and its 
range is the HOL type ina t .  This is not the only possible definition of #s. We 
may also introduce a domain type of infinite natural numbers and define #s as 
an operation of LCF. However, this would be a tedious task as we would have 
to develop a complete theory for natural numbers instead of making use of the 
existing theories Nat and Arith. However, the benefits of the above definition 
are not for free: the notion of continuity is not applicable to #s because of its 
range type. This complicates for example admissibility proofs considerably. (A 
predicate P is admissible, if it holds for the least upper bound of every chain 
satisfying P). For LCF terms admissibility often can be reduced to the continuity 
of the involved functions, which then can be proven automatically. However, it is 
possible to derive suitable counterparts of admissibility theorems in our setting. 
An example will be given in Section 5.1. 

3.2 Formalizing Network Specifications 

Our approach of formalizing specifications is based on the Agent Network De- 
scription Language ANDL [SS95]. ANDL provides graphical and textual speci- 
fication schemes for Focus components which can be translated automatically 
into HOLCF notation. In the following we describe only the HOLCF syntax 
generated by the translation. 

ANDL provides schemes for writing functional specifications both of basic 
agents and of agent networks. The description scheme for basic agents consists 
of just two implications (Ass and Comm are definition schemes) 

basic-f f -- Vi o. f'i = o ---+ Ass i ~ Comm i o 

which represents a direct encoding of (I) in HOLCF. The scheme for the descrip- 
tion of agent networks is more interesting. We introduce these descriptions by 
an example, shown in Fig. 2. The graphical ANDL specification of this example 
has the following counterpart in HOLCF syntax: 

network_table f -- 

(3 fl f2. basic_control fl A basic_motor f2 A 

(V i a o. fc<i,a> = o ---+ 

(B y z. fl'<i,a,z> = <o,y> A f2'y = z A 

minimal <o,y,z>))) 
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minimal 

(V ol 
<o,y,z> = 
yl zl. fl'<i,a,z> = <ol,yl> A 

<o,y,z> ~ <ol,yl,zl>) 
f 2 ' y l  = z l  - - +  

F - - ~  . . . . . . . . . . . . . . . . . . . . . . . .  i 

' table ', 
i 

I 0 

,,~-] control y [ [z 1 
._~ = motor LZ__, 

i - ' 2  L2 " : ' _  _ - _ ' : - ' 2 " : ' - 2 " : ' ~ - -  - _ _ _ - - - _  - ' ~ - - _  _ - - - ~ -  - _ _ _ _ ' ~ L  i 

Fig. 2. Example of an agent network 

The network specification network_table demands that there exist stream 
processing functions f l and f2 which fulfill the specifications of the basic compo- 
nents, i.e. the basic specifications should be consistent. Furthermore, for all input 
and output streams i ,  a and o there must be a network configuration including 
the internal streams y and z which satisfies the network description. Finally, 
the internal and the output streams must be minimal. This implies according to 
Scott that the network computes a least fixed point. This constraint is necessary 
for the unique description of networks which contain feedback loops. 

4 Formalizing and Verifying the  Ref inement  R u l e s  

As mentioned already in Section 2.1, we base our refinement notion upon the 
A/C refinement calculus of Str et al. described in [SDW93]. Refinement in our 
context means inclusion of the semantic models of stream processing functions. 
The definitions of [SDW93], however, have to be adapted to our setting first. 
Then a proof for each rule is given in the theorem prover Isabelle. 

We formalized and verified two rules for sequential and one for parallel com- 
position, a rule for specializing specifications and two rules for feedback loops. 
In the following we present only a rule for sequential composition and a rule for 
feedback loops. 

4.1 A Rule for Sequential Composition 

The rule SEQ is used for sequential composition of two components according 
to Fig. 1. We employ this simple rule to show the transformation of the format 
described in [SDW93] into ANDL/HOLCF. Whereas in ANDL we describe net- 
works uniformly by equations given by the network structure, Str et al. use 
explicit composition operators. They introduce the operators o and [[ for sequen- 
tial and parallel composition and the operator # for feedback loops. In [SDW93], 
the rule SEQ is written as follows: 

Ass_g i ~ Ass_f1 i 
Ass_g i A Comm_fl (i, y) ~ Ass_f2 y 
Ass_g i A Comm_fl (i, y) A Comm_f2 (y, o) ~ Comm_g (i, o) (SEQ) 

[Ass_g, Comra_g] ~,~ lAss_f1, Comm_fl] o [Ass_f2, Comra_f2] 
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Here, A/C specifications are written as [Ass_f, Comm_~. The term specl 
spec2 means that specl can be refined to spec2, which logically states that spec2 
implies specl. In our approach, the rule SEQ has to be formalized in HOLCF as 
follows: 

[ Vi y. fl'i = y ---+ Ass_fl i ---+ Comm_fl i y; 

Vy o. f2'y = o ) Ass_f2 y ~ Comm_f2 y o; 

flCi = y; f2Cy = o; 

Ass_g i ; 

Ass_g i ) Ass_fl i; 
Ass_g i A Comm_fl i y ) Ass_f2 y; 

Ass_g i A Comm_fl i y A Comm_f2 y o 

Comm_g i o 

Comm_g i o 

The second part of the premises correspond exactly to the premises of SEQ. 
As we do not use an explicit operator for sequential composition, we added the 
network description to the premises. Furthermore, some implicit information is 
made visible: The basic specifications for/1 and f2 

fl(i) = o h Ass_fl(i) =~ Comm_fl(i, o) 

are also added to the premises, in order to bind f l  to Ass_f1 and Comm_fl. 
Finally, the specification lAss_g, Comm_g] is split into the premise Ass_g and the 
remaining proof goal Comm_g. 

The proof of this rule can be done completely automatically in Isabelle. 

4.2 A Rule  for Feedback Loops 

In this section we present a rule for feedback loops, called FB2, which allows to 
express liveness conditions in the assumption (see also Fig. 1). We start aga in  
with the version presented in [SDW93]: 

adm(Ass_f) 
Ass_g i ==* Ass_f(fo, O) 
Ass_g i A Ass_f(i, z) A Comm_f(i, z, o, z) ~ Comm_g(i, o) 
Ass_g i A Ass_f(fj, x) h Comm_f(fj, x, o, z) =~ Ass_f(fj+l, z) 

[Ass_g, Comm_g] .,~ #[Ass_f, Comm_f] 
(FB2) 

The basic idea of the rule is the following: The assumption Ass_f holds ini- 
tially and is preserved by every computation step. Since Ass_f is admissible, it 
also holds for the complete - -  possibly infinite - -  computation. Of course, the 
commitment predicate Comm_f must be strong enough to imply the commit- 
ment predicate for Comm_g. 

The steps of the computation are modeled by chains which approximate the 
input and output streams of f: The nth element of the chains consist of the 
consumed input and the produced output after n computation steps. To apply 
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the rule, the user has to supply a chain f which describes the consumption of the 
input stream i by the component f .  In the formalization of the rule in HOLCF 
the chain i" ( i  chain)  is required explicitly: 

[ Vi o. f'i = o > Ass_f i --+ Comm_f i o; 

fc<i, z> = <o,z>; 
Vozl. f~<i, csndCozl> = ozl ---+ <o,z> _ ozl; 

Ass_g i ; 
is_chain i_chain; (Un. i_chain n) = i; 

adm Ass_f ; 
Ass_g i > Ass_f <i_chain 0,_L>; 
Ass_g i A Ass_f <i,z> A Comm_f <i,z> do,z> > Comm_g i o; 
Vj xoz. 

Ass_g i A Ass_f <i_chain j,x> A Comm_f <i_chain j,x> do,z> 
> Ass_f <i_chain (Sue j),z> ] 

==> Comm_g i o 

The proof of this rule uses a second chain (oz_chain) modeling the output 
produced during the computation. Its least upper bound is the pair (o, z>. We 

show by induction that for all n that Ass_/holds for the nth computation step, 
i.e. for the nth element of both chains. The premise adm(Ass_/) ensures that 
Ass_/also holds for the least upper bounds of the chains, i.e. for the complete 
streams i and z. From the semantics of A/C-specifications and the third premise 

of rule FB2 it follows that Comm_g holds. 
In [SDW98] the chain oz_chain modeling the produced output is only de- 

scribed by axioms. The main difficulty in the proof of the rule is to find a defi- 
nition of this chain independent of the explicit construction of the user supplied 
chain i_chain and to prove the desired properties: 

oz_chain 0 = <i,i> 
oz_chain (Suc n) -= fc<i_chain n,csnd c (oz_chain n)> 

[Jn.oz_chain n = do,z> 

For this definition we need a sophisticated recursion principle that allows not 
only to refer to the n th  element of the chain but to n explicitly, which is not 
available in HOLCF. Therefore we are forced to define the chain in pure HOL. 
Since theorems concerning least upper bounds of chains are not supported by 
the HOL library there is a lack of convenient theorems supporting the proof of 
the above properties, in particular of the last one. Therefore these proofs are 
rather  tricky and require about 220 interactive proof steps, carried out in 11 
lemmata. Actually, they demand the main part  of the proof of the feedback rule 
which requires about 260 proof steps. 

However the rule itself is relatively easy to apply, as will be shown in Section 
5. The fact that  the user must supply the construction of a chain may seem 
to indicate the opposite. However, the definition of a chain by the user makes 
the rule extremely flexible: Consider a component with more than one input 
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stream. In that case, various feedback recursions of the component are possible 
which can all be tackled by just one rule. Furthermore, in many cases feedback 
recursions are simple, which implies trivial chains. This will alsobe shown by 
an example in Section 5. 

Note that for the refinement of specifications which do not contain liveness 
conditions there is a refinement rule available (FB) which does not require the 
construction of chains. 

4.3 Syntactical Restrictions for Specifications 

In this section we discuss some restrictions imposed on the formulation of the 
rules, which sometimes make transformations between specifications necessary. 
The problem is to formulate the rules independent on the number of input and 
output channels. Our solution is that we do not give a concrete type for a channel, 
but only determine the type class of the channel as the HOLCF default type 
class pcpo. Thus a channel of a rule can be instantiated for one stream only or 
for an arbitrary tuple of streams, encoded as nested pairs of streams. This is 
possible, as pairs of pcpos also belong to the class pcpo. Note that thereby we 
generalize the refinement rules: They do not hold for (a)stream only, but also 
for every type of class pcpo, e.g. for timed streams. 

However, some restrictions remain. First, in the feedback rule we have to 
divide the input channels into environment inputs and feedback inputs. They 
are coded as a pair < i , z > ,  where i and z are of class pcpo as described above. 
Therefore the syntax of a specification spec depends on the structure of the 
environment. Thus our approach is not completely modular: Different versions 
of semantically equivalent specifications may be necessary in different environ- 
ments. 

Second, if spec is further refined by the rule for parallel composition, there 
may be another pairing of input and feedback streams necessary. Therefore trans- 
formations between semantical equivalent specifications may be necessary. Al- 
though there is not a general refinement rule for such transformations, the cor- 
responding refinement proofs are trivial, as the differences are only syntactical. 
Therefore, the proofs can be performed automatically. 

Notice that all these restrictions are due to the type system of Isabelle/HOL. 
With dependent types, for example, a more flexible and modular solution would 
likely be possible. 

5 C a s e  S t u d y :  P r o d u c t i o n  C e l l  

The example of a production cell has already been tackled using several formal 
methods, the task description was developed at FZI Karlsruhe ILia93]. A first 
impression of the production cell is given by Fig: 3. 

Our aim is to investigate the usability of the formalized refinement rules in 
practice. Emphasis is laid on the demonstration of the efficiency of our tool sup- 
port. Therefore we do not develop specifications for all components of the system. 



c o n v e y o r  pelt  

c o n v e y o r  belt  

e leva t ing  ro tary  table  

3 6 0  

Production cell 

Fig. 3. The specified Production Cell 

This has already been done in [FP93], where the whole production cell is devel- 
oped in F o c u s  and paper proofs of the refinement steps are given. Instead we 
focus on the development of one component of the production cell, reproducing 
the corresponding paper proofs of [FP93] in Isabelle. Starting with an abstract 
specification of the whole system, we carried out the complete development of 
the controller and motor of the elevating rotary table. The development process 
consists of three major  steps (see Fig. 4): 

--•producfionceU•--• 
.::=%~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  : :=~ 

_ _ ~  conveyor  ~ . ~  processing ~ cony. belt 2/ 

. . . . . . . . . . . .  ; 7--" . . . . . . . . . . . . .  ~ i . . . . . . . . . . . .  ' 

j - ;  . . . . . . . . . . . . . .  .-=~ . . . . . .  
~ : :  . . . . . . . . . . . . . . . . . . . . . . . .  \ _  

Fig. 4. Refinement Steps carried out in Isabelle 

First, we divide the system into three units: first conveyor belt, processing 
unit and second conveyor belt/crane. The processing unit is refined to the sub- 
systems elevating table and robot/press in the second step. As an example, we will 
illustrate this step in more detail in the following sections. Finally, the elevating 
table is itself refined to the components motor and controller. 
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5.1 Refinement of  the Processing Unit: The Feedback Loop 

The refinement process of the processing unit PU involves two steps: First, a 
feedback loop is introduced using the rule FB2. The resulting specification PU2 
is divided into the components table and robot/press in a further refinement 
step. 

PU2 

Fig. 5. Introducing a Feedback Loop for the Processing Unit 

T h e  Specification. The component specifications of PU and PU2 and the net- 
work specification of PU are shown below: 

(* specification of PU *) 
Ass_PU i -- True 

Comm_PU i o -- smapCprocessCi ---- o 

basic_PU f ---- 

(V i o. f'i = o ----+ Ass-PU i ---+ Comm_PU i o) 

(* specification of PU2 *) 

Ass_PU2 <i,z> ---- #z <= #i A #i <= iSuc #z 

Co... PU2 <i,x> <o,z> -- smap'process'i = o A #z = #o 

basic_PU2 f -- (V i x o z. 

f'<i,x> -- <e,z> ) Ass_PU2 <i,x> ---+ Comm_PU2 <i,x> <o,z>) 

(* network specification *) 

network_PU f -- (3 El. basic_PU2 El A 

(V i o. f'i ---- o ---+ 

(B z. fl'<i,z> ---- <o,z> A minimal <o,z>))) 

The component specification of PU is obviously a degenerate A/C specifica- 
tion: It imposes no constraints on the input stream and assures that the com- 
ponent processes every input, which is modeled by the function process. The 
network specification of PU is also simple: it consists of the component PU2 which 
in addition uses its second output stream as a second input. The specification 
of PU2 is more interesting: the assumption Ass_PU2 demands 

# z  < # i  < # z  + 1 

As the input stream z is produced by PU2, this is a constraint concerning the 
behavior of not only the environment of PU2, but also PU2 itself. It states that PU2 
alternatingly consumes its input streams. This requirement is formulated with 
the next refinement step in mind: PU2 is refined to the sequential composition of 
the components table and robot/press. The table has to pass on every input to 
the robot, but before the next input can be processed an acknowledgement has 
to be received. 
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Prov ing  the  Correctness  of  the  Ref inement  Step.  The proof is straight- 
forward: starting with the goal 

network spec (PU) ~ basic spec (PU) 

we first have to unfold the specifications and perform some simple transfor- 
mations. This requires six trivial proof steps and can be done schematically. 

The next major step in every refinement proof is to apply the suitable re- 
finement rule. For using the rule FB2, we also have to supply the definition of 
a chain i chain which models the consumption of the stream i by PU2. The 
construction of i chain is quite simple: 

An. stream_take n'i 

This means that after n computation steps, the prefix of length n of i has 

been consumed. Supplying the definition of i_chain,  applying FB2 and proving 
the first four premises of FB2 requires another six interactive proof steps. 

The remaining task is to prove that the premises of the mathematical rep- 
resentation of the rule discussed in Section 4.2 and the demanded properties 
of i chain hold. Except proving the admissibility of Ass_PU2, this is relatively 
easy: it mainly requires term rewriting using some properties of Focus  operators 
on streams. The proof of 

adm(#a < #b) 

is subtle because of the formalization of the operator # in HOL as discussed in 
Section 3.1. However, a more general version of this theorem could be proved 
which can be applied frequently throughout the case study. The proof of this 
theorem required 27 interactive proof steps. Using this theorem and the prop- 
erties of the Focus ' s  operators, proving the premises of FB2 requires just eight 
proof steps. 

5.2 Further  Ref inement  into Table and R o b o t / P r e s s  

The remaining task is now to divide the responsibilities of the elevating rotary 
table and the system robot/press (RP): 

x t a b l e  
y _ r o b o t  / 

v p r e s s  

O 

Z 

Fig. 6. Dividing the Processing Unit 

The  Specif icat ion.  In HOLCF Fig. 6 looks as follows: 

Ass_table <i,x> -~ #x <= #i A #i <---- iSuc #x 

Comm_table <i,x> o _---- i = o 

basic_table f ----_ 

(k/ i x o. f~<i,x> ----- o --+ Ass_table <i,x> ---+ Comm_table <i,x> o) 
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Ass_RP i -- True 

Comm_RP i <o,z> -- smap'processCi ---- o A #z ---- #o 

basic_RP f -- 

(V i o z. f~i ---- <o,z> ---+ Ass_KP i > Comm_RP i <o,z>) 

network_PU2 f ~_ 

(3 fl f2 . basic_table fl A basic_RP f2 A 

(V i x o z. f'<i,x> ---- <o,z> --+ 

(3y. table'<i,x> ---- y A RP'y = <o,z> A minimal <y,o,z>))) 

The specification of the component PUP. was already designed with respect 
to the specifications of t a b l e  and RP. Therefore the specifications follow closely 
that of PU2. The table has to send every input to the robot provided the press has 
sent enough acknowledge messages. Hence the assumption A s s t a b l e  is identical 
with Ass_PU2 and the commitment assures the identity of the input and output 
stream. The assumption tss_RP of the system robot/press is empty. The system 
processes each input element and generates the acknowledge messages for the 
table. Hence the commitment Comm RP is identical with Comm PU2. 

Note that we refined this rather abstract specification in the next refinement 
step to a representation close to an implementation. 

The Correctness  P r o o f  of  the Ref inement  Step.  The proof is nearly trivial 
and consists of three major steps analogous to the proof in the previous section. 
First some schematic transformations are performed. Second the refinement rule 
SEQ is applied. In the third step we have to prove the premises of SEQ. Since 
they consist of trivial implications only, they can be proven automatically. 

6 C o n c l u s i o n  

In this paper we described the definitional embedding of an A/C refinement 
calculus for Focus  in the logic HOLCF of the theorem prover Isabelle. As far as 
we know, this embedding is the first mechanical verification support applicable to 
Focus  or similar approaches modeling distributed systems as nondeterministic 
dataflow networks. 

The embedding has successfully been used to redo the structural develop- 
ment of a production cell component in a completely tool supported way. Our 
experience shows that the application of the formalized rules often follows a 
common scheme so that a high degree of automation seems to be possible. 

In comparison to the paper proof we encountered a remarkable mismatch in 
the verification of the feedback rule. Whereas in [SDW93] a complicated chain 
was only axiomatized by demanding some properties, we had to define this chain 
and to prove these properties, which required more than 80% of the whole proof 
effort for the rule. In our opinion, this emphasizes the value of rigorous machine- 
checked proofs in contrast to (semiformal) paper proofs. 
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The refinement rules were formalized in a general way, so that  they hold for 
various kinds of streams, i.e. also for timed streams or for finite streams only, 
although then the rules are not tailored for these specific streams. 

The type system of Isabelle/HOL sometimes enforces us to apply syntactical 
transformations on component specifications. This requires identity proofs on the 
semantical level, which, however, can be automated.  A richer type system, as e.g. 
dependent types, would allow a more modular handling of  F o c u s  components. 

A major benefit of our work is the deeper experience in the use of HOLCF. 
On the one hand, we are convinced that  HOLCF is exactly the right choice for 
a formalization of F o c u s .  The notions of LCF are a necessity for the seman- 
tical foundation (coinduction would be the only alternative [LPM93]), and the 
expressivity of higher order logic allows for natural  high-level specifications. On 
the other hand, HOLCF needs a lot of proof experience, in particular when com- 
bined with logical elements of pure HOL. HOL and its sublogic HOLCF have 
their own strengths and weaknesses, and using one of them at the wrong place 
often causes unexpectable trouble. For the definition of the length operator,  for 
example, we could reuse the well established HOL theories for arithmetic on nat- 
ural numbers. The price was to establish proof support  for admissibility proofs 
for this operator  in HOL, which in HOLCF in most cases are completely auto- 
mated. Another example occurred in the proof of the feedback rule. A recursion 
functional not available in HOLCF forced us to define a chain in pure HOL. 
The missing proof support  for arguing about limits of chains in HOL lengthened 
the proof considerably. What  is needed is a clear interface between HOLCF and 
pure HOL which allows mutual  reuse without loss of reasoning power. A first 
step into this direction has been developed in [MN97]. 

The project  A u T o F o c u s  [HSSS96] aims among other things at tool support  
for F o c u s  based graphical description techniques, which in particular include 
the ANDL network specifications we used in our FOCUS formalization. This will 
provide a graphical interface for our HOLCF specifications, which is accessible 
for design engineers. 
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