Skip to main content

Assumption-based modeling using ABEL

  • Accepted Papers
  • Conference paper
  • First Online:
Qualitative and Quantitative Practical Reasoning (FAPR 1997, ECSQARU 1997)

Abstract

Today, different formalisms exist to solve reasoning problems under uncertainty. For most of the known formalisms, corresponding computer implementations are available. The problem is that each of the existing systems has its own user interface and an individual language to model the knowledge and the queries.

This paper proposes ABEL, a new and general language to express uncertain knowledge and corresponding queries. Examples from different domains show that ABEL is powerful and general enough to be used as common modeling language for the existing software systems. A prototype of ABEL is implemented in Evidenzia, a system restricted to models based on propositional logic. A general ABEL solver is actually being implemented.

Research supported by grant No. 2100-042927.95 of the Swiss National Foundation for Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almond, R.G. 1990. Fusion and Propagation of Graphical Belief Models: an Implementation and an Example. Ph.D. thesis, Department of Statistics, Harvard University.

    Google Scholar 

  • Almond, R.G. 1995. Graphical Belief Modeling. Chapman and Hall.

    Google Scholar 

  • Andersen, S.K., Olesen, K.G., Jensen, F.V., & Jensen, F. 1990. HUGIN — a Shell for Building Bayesian Belief Universes for Expert Systems. Pages 332–338 of: Shafer, G., & Pearl, J. (eds), Readings in Uncertain Reasoning. Morgan Kaufmann.

    Google Scholar 

  • Anrig, B., Haenni, R., & Lehmann, N. 1997. ABEL — A New Language for Assumption-Based Evidential Reasoning under Uncertainty. Tech. Rep. 97–01. University of Fribourg, Institute of Informatics.

    Google Scholar 

  • Davis, R. 1984. Diagnostic Reasoning based on Structure and Behaviour. Artificial Intelligence, 24, 347–410.

    Google Scholar 

  • de Kleer, J. 1986. An Assumption-based TMS. Artificial Intelligence, 28, 127–162.

    Google Scholar 

  • de Kleer, J. & Williams, B.C. 1987. Diagnosing Multiple Faults. Artificial Intelligence, 32, 97–130.

    Google Scholar 

  • Haenni, R. 1996. Propositional Argumentation Systems and Symbolic Evidence Theory. Ph.D. thesis, Institute of Informatics, University of Fribourg.

    Google Scholar 

  • Hsia, Y.T., & Shenoy, P.P. 1989. An Evidential Language for Expert Systems. Pages 9–14 of: Ras, Z.W. (ed), Methodologies for Intelligent Systems. North-Holland.

    Google Scholar 

  • Kohlas, J., & Monney, P.A. 1993. Probabilistic Assumption-Based Reasoning. In: Heckerman, & Mamdani (eds), Proc. 9th Conf. on Uncertainty in Artificial Intelligence. Kaufmann, Morgan Publ.

    Google Scholar 

  • Kohlas, J., & Monney, P.A. 1995. A Mathematical Theory of Hints. An Approach to the Dempster-Shafer Theory of Evidence. Lecture Notes in Economics and Mathematical Systems, vol. 425. Springer.

    Google Scholar 

  • Kohlas, J., Monney, P.A., Anrig, B., & Haenni, R. 1996. Model-Based Diagnostics and Probabilistic Assumption-Based Reasoning. Tech. Rep. 96-09. University of Fribourg, Institute of Informatics.

    Google Scholar 

  • Lauritzen, S.L., & Spiegelhalter, D.J. 1988. Local Computations with Probabilities on Graphical Structures and their Application to Expert Systems. Journal of Royal Statistical Society, 50(2), 157–224.

    Google Scholar 

  • Lehmann, N. 1994. Entwurf und Implementation einer annahmenbasierten Sprache. Diplomarbeit. Institute of Informatics, University of Fribourg.

    Google Scholar 

  • Reiter, R. 1987. A Theory of Diagnosis From First Principles. Artificial Intelligence, 32, 57–95.

    Google Scholar 

  • Saffiotti, A., & Umkehrer, E. 1991. PULCINELLA: A General Tool for Propagating Uncertainty in Valuation Networks. Tech. Rep. IRIDIA, Université de Bruxelles.

    Google Scholar 

  • Shafer, G. 1976. The Mathematical Theory of Evidence. Princeton University Press.

    Google Scholar 

  • Shenoy, P.P. 1995. Binary Join Trees. Tech. Rep. 270. School of Business, University of Kansas.

    Google Scholar 

  • Shenoy, P.P., & Shafer, G. 1990. Axioms for Probability and Belief Functions Propagation. In: Shachter, R.D., & al. (eds), Uncertainty in Artificial Intelligence 4. North Holland.

    Google Scholar 

  • Srinivas, S., & Breese, J. 1990. IDEAL: A Software Package for Analysis of Influence Diagrams. In: Proceedings of the Sixth Uncertainty Conference in AI, Cambridge, MA.

    Google Scholar 

  • Steele, G. L. 1990. Common Lisp — the Language. 2d edn. Digital Press.

    Google Scholar 

  • Xu, H., & Kennes, R. 1994. Steps Toward Efficient Implementation of Dempster-Shafer Theory. Pages 153–174 of: Yager, R.R., Fedrizzi, M., & Kacprzyk, J. (eds), Advances in the Dempster-Shafer Theory of Evidence. John Wiley and Sons.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Dov M. Gabbay Rudolf Kruse Andreas Nonnengart Hans Jürgen Ohlbach

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Anrig, B., Haenni, R., Kohlas, J., Lehmann, N. (1997). Assumption-based modeling using ABEL. In: Gabbay, D.M., Kruse, R., Nonnengart, A., Ohlbach, H.J. (eds) Qualitative and Quantitative Practical Reasoning. FAPR ECSQARU 1997 1997. Lecture Notes in Computer Science, vol 1244. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0035621

Download citation

  • DOI: https://doi.org/10.1007/BFb0035621

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63095-1

  • Online ISBN: 978-3-540-69129-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics