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SUMMARY 
The lou' hierarchy m NP [5c-83} and the extended low hierarchy [BB5-86} have been 

useful in characterizing the complexity of certain interesting classes of sets. However, un­

til nou'. there have been no results establishing whether a given lowness result is the best 

possible, 

We proi:e absolute loirer bounds on the location of classes in the extended lou' hierarchy, 

and relatioized lower bounds on the location of classes in the low hierarchy in I\TP. In some 

cases. u'e are able to shou: that the classes are lower in the hierarchies than was known 

preciousb). In almost all cases, we are able to prove that our results are essentially optimal. 

We also examine the interrelationships among the levels of the low hierarchies and the 

classes of sets reducible to or equivalent to sparse and tally sets under different notions of 

reducibility. We feel that these results clarify the structure underlying the low hierarchies. 

Introduction 

The low hierarchy within l\'P (with levels 11 , Lr , 12 • L2 , .•• ) was defined and studied by 

Schoning [5c-83J as a way to classify the complexity of sets within NP that seem to encode 

less information than KP-complete sets. In essence, Schoning proves in [5c-83J that no set in 

the low hierarchy can be complete under any reasonable notion of completeness. unless the 

polynomial hierarchy collapses. A number of researchers have examined the low hierarchy, 

and many interesting complexity classes have been shown to be low. Results of this sort 

will be surveyed later in this paper. 

The low hierarchy, as defined in [5c-83]' can only be used to classify the complexity 

of sets in !\P. In order to talk about related sets that are not in NP. the extended low 

hierarchy was introduced in [BB5-86]. (The levels of this hierarchy are labeled Et 2 , £L 2 , 

£L 3 . £L3 .... ) Again. many interesting complexity classes have been shown to reside inside 

I A preliminary version of this paper was presented at the 16th International Colloquium on Automata, 
Languages, and Programming [AR-8gaJ. 
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3Supported in part by a Hewlett-Packard Corporation equipment grant and the National Science Foun­

dation under grant CCR-88091i4/CCR-8996198 and a Presidential Young Investigator Award. 
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the extended low hierarchy. (Definitions of the low and extended low hierarchies are given 

in Section 2.) 

For example, it is shown in [BBS-86] that every sparse set is in EL 3 , and it is shown 

in [KS-85] that every sparse set in NP is in 12 . Also, it is shown in [KS-85] that every 

co-sparse set in KP is in 13 . The question naturally arises as to whether these results are 

optimal; i,e., is there any real reason why the co-sparse sets in NP have not been shown to 

be as "low" as the sparse sets in KP? Do their complexities in the extended low hierarchy 

also differ? 

Taking questions such as these as our starting point, we systematically examine many 

results concerning the low and extended low hierarchies. In some cases, we are able to 

improve known lowness results. 

More importantly. we present the first theorems showing that various lowness results 

cannot be improved. For example, we show the existence of a sparse set that is not in EL 2 , 

thus answering a question posed in [BB-86]. 

Although we are able to construct sets that are not in certain levels of the extended low 

hierarchy, we cannot hope to prove similar results for the low hierarchy within KP, unless 

we are first able to prove P¥KP. Given that that is beyond current techniques, the best 

that we can do is to construct oracles relative to which certain classes are not contained in 

given levels of the low hierarchy. 

Our results are summarized in Tables 1 and 2. As one can see, in most cases, we are able 

to present lowness results t hat are best possible (at least using relativizable techniques). 

The results in these tables show, for example, that the sparse sets in KP do seem to have 

different lowness properties from the co-sparse sets in KP, and that it is very unlikely that 

every set in P jpoly can be shown to have the same lowness properties as the sets in RP 

have. 

\Ye find that. in trying to understand the structure of the low hierarchies. it is helpful 

to study the lowness properties of the classes of sets reducible to or equivalent to sparse 

and tally sets under various notions of reducibility. These results are summarized in Tables 

3 and 4. 

Finally. we note that all oracles constructed in this paper are recursive. 

Definitions 

We assume that the reader is familiar with fundamental notions such as KP and the poly­

nomial hierarchy. 

Following [1\:S-85]. for all k ~ 0 we define L, to be the class of sets L in ?\P such 
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that ~t:,L = ~~, and :L· is the class of sets L such that .6.~,L = .6.~. Thus the sets in the 

10\\' hierarchy are those sets in r-;p that provide no additional power to some level of the 

polynomial hierarchy. when given as an oracle. Some basic properties of this hierarchy are 

that Lo = Lo = L = P. and Ll = NPncoNP. Also, for all k, r., ~ Lk+l ~ Lk+l. 

Only sets in KP can appear in the low hierarchy. To help classify sets that are not in 

KP, the extended low hierarchy was defined in [BBS-86] as follows: For all k 2: 1, ELk is 

the class of sets L such that ~~,L ~ ~~:-?SAT, where A ffi B = {Ox Ix E A} U {lz Ix E B}. 

Similarly, one can define intermediate levels (although to our knowledge this has not been 

done in earlier work on the extended low hierarchy). Let ELk denote the class of sets such 

that ~f·L ~ ~~:-(SAT. This gives rise to the following observations: 

Proposition 1 

1.	 Every subset of {D. I}· is in ELI. 

2.	 ELI = EL 2 . 

3.	 For all l: 2: 2. ELkn\P = LdBBS-86]. 

4.	 For all k 2: 2. EL;,nKP = Lk. 

Proof: To prow the first statement. it suffices to note that, for every set L. ~~.L = 
pL ~ pLi:-SAT = .6.i!('SAT. 

To prove the second statement, observe that L E ELI ¢::=::> NpL ~ pLEflSAT ¢::=::> pl\'pL C 

pLi:-SAT ¢::=::> L E EL 2 • 

Statement four follows since, if L is in NP and k 2: 2, then L E ELk ¢::=::> P~~:-l ~ 
",p.LSSAT ",p,L ",p,SAT L'	 • 

P~k-2 ¢::=::> P~k-l ~ P~k-2 ¢::=::> .6.~. =.6.~ ¢::=::> L ELk. 

Because the classes ELI and ELI behave anomalously, we will consider for the rest of 

this paper that the extended low hierarchy begins at level EL2 . 

The following theorem illustrates some of the closure properties of the levels of the low 

hierarchies. Let us say that a class C is closed under relation R if for all sets A and B, 

(ARB and B E C =::::} A E C). 

Theorem 2 

1.	 Every level of the extended low hierarchy is closed under =j. 

2.	 EL 2 and EL 2 are not closed under ~~. 

3.	 If the polynomial hierarchy is infinite, then no level of the extended low hierarchy is 

closed under ~~. 

4.	 Every level of t he low hierarchy is closed under ~~. 
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5.	 If A~~B and A E KP and B E Lk (Lk), then A E Lk (Lk). (Thus every level of the 

low hierarchy is closed under ~~. when only sets in NP are considered.) 

Proof: Part 1: Let L be in ELk and let A =t L. Then ~~,A ~ ~~,L ~ ~~:!'lffiSAT ~ 

~~::..4;SAT: thus ELk is closed under ='j-. The proof that ELk is also closed under =j. is very 

similar. 

Part 2: From the proof of Theorem 4, later in this paper. one can see that there is a 

sparse set 5 in DSPACE(2 n ) that is not in EL 2 . On the other hand, note that if A is any set 

that is ~~-complete for DSPACE(2n O(1) ) , then KpA = DSPACE(2n O(1) ) , and thus pNpA 

= DSPACE(2n O( l) ) = pA~SAT, and thus A is in EL 2. Part 2 follows since 5~~A, A E EL 2, 

and 5 rt EL 2 . 

Part 3: It was observed in [BBS-86] that any set ~~-complete for PSPACE (such as 

QBF) is in EL 2 • and thus QBr is in every level of the extended low hierarchy. If some level 

ELk of the extended low hierarchy is closed under ~~. then SAT is in ELk (since SAT ~~ 

QBF E ELk) and thus SAT E ELk n;\P = Lk and hence the polynomial hierarchy collapses, 

by [Sc-83]. 

Note that part 5 implies part 4. so we will prove only part 5. Let A~~B and A E NP 

and B ELk. Then ~~..4 <; ~fc·B = ~~, and thus A ELk. The proof for Lk is equally 

trivial. • 

It would be desirable to prove that no level of the extended low hierarchy is closed under 

~~1' The techniques of [Ko-89a. Ko-89b] may help in proving this. 

A set 5 is a tally set if 5 ~ O" (see [Bo-i4]). A set 5 is sparse if there is a polynomial 

p(.) such that for all n , there are at most p(n) strings in 5 oflength at most n (see [Ma-861). 

Corollary 3 Everv set in KP that is ~~ reducible to a sparse set is in L2 . 

Proof: Let A be a set in 1\P such that A~~51 for some sparse set 51. Let f be the 

many-one reduction that witnesses A~~51' We can assume, without loss of generality, that 

f is "honest." i.e .. there is some polynomial p such that, for all x. p(lf(x)ll ~ Ixl. Let 

52 = {y : :Jx E A f(x) = y}. It is easy to check that 52 is sparse and in KP and A~~52' 

The result now follows from Theorem 2 and the fact that all sparse sets in NP are in L2 

[KS-S.5]. • 

The structure of the low hierarchies can be better understood by examining the lowness 

properties of classes of sets equivalent to or reducible to sparse or tally sets under various 

sorts of reducibility. The rest of this section presents definitions that are necessary in order 

to do this in a systematic way. 

Let r be a type of red uci bility, such as ~fn, :sj, :s~tl' etc. (For definitions of these notions 

of reducibility. see [LLS-7.5].) Following the definitions of [BK-88], define Pr(5PAR5E) to 
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be the class of sets L such that there is some sparse set S such that L::;fS. Similarly, define 

Pr ( TALL n to be the class of sets L such that there is some tally set T such that S ::;fT. 

The properties of the classes Pr( TALLY) and Pr(SPARSE) are studied in [BK-88, Ko-88]. 

One motivation for studying classes of this sort comes from interest in P Ipoly. which is the 

class of sets that have polynomial-sized circuits. It is shown in [BK-88, Sc-85] that P Ipoly 

= PT(SPARSE) = Ptt(SPARSE) = PT( TALLY) = Pt t ( TALLY). 

Somewhat different structures emerge when one considers the classes of sets that are 

equivalent to sparse or tally sets under these notions of reduction. Such a study was begun 

in [TB-SS]. Following their definitions, define Er(SPARSE) (Er(TALLY)) to be the class 

of sets L such that there exists some sparse (tally) set S such that L::;fS and S::;fL. In 

addition to [TB-S8]. results concerning these classes may be found in [A\Y-S8]. 

Our paper makes brief mention of the classes APT ("almost polynomial time") [~1P-79] 

and P-close [Sc-86]. The only facts we will need concerning these classes are (1) every sparse 

set is in APT n P-close, and (2) every set in APT UP-close is ::;i_tt-reducible to a sparse 

set. 

Our proofs in this paper will make use of a standard enumeration of clocked nondeter­

ministic polynomial-time oracle machines 111 , M 2 , ..•• where the running time of 11j is no 
jmore than n + j. Similarly, we will use PI, P 2 , ... to refer to a standard enumeration of 

clocked deterministic polynomial-time oracle machines. 

3 Results on Extended Lowness 

Theorem 4 There is a sparse set that is not in £L2 . 

Proof: Our goal is to construct a sparse set S such that L = {x : Ixl = n, 3y E ~n Vz E 

~n Oxyz rf- Sand 1xyon E S} is not in NpSffiSAT (note that L is in NP,\pE); thus S is not 

in EL 2 . 

S is constructed according to a stage construction. At state j, we will guarantee that 

the jth machine M, does not accept L with oracle Se:JSAT. 

To begin the construction, let So = 0, and set no = 1. At stage j, let Sj-l be the part of 

oracle S that has been constructed in earlier stages. (At each stage j, Sj-l will be finite.) 

Let 71 = nj = nj_l + j. (This will guarantee that n is large enough to avoid interference 

with earlier stages.) Run 11j on input on with oracle Sj-l EBSAT. 

If there is an accepting computation, then let Sj = Sj-l: note that in this case on is 

not in 1, but is accepted by 11j . 

If, on the other hand, there is not an accepting computation, then if there is a y such 

that 11j rejects on with oracle (Sj-l U {lonyon} )EBSAT, then let s, = Sj-l U {lonyon}. 
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Note that in this case on is in L, but is rejected by Mj . 

If there is no such y. then choose some accepting path of M, on input on with oracle 

(5j-1 U {lononon} )ffiSAT. Along this path, there is some z such that oono" z is not queried. 

Let S, = 5j - 1 U {lononon,oonon z } . In this case, on is not in L. but is accepted by M j . 

That completes the construction of stage j. The set 5 is U, 5 j . Note that, at each 

stage. at most 2 strings are placed into 5, and thus 5 has at most two strings of any length 

71. Thus 5 is sparse. • 

Corollary 5 

• co-SPARSE ~ EL 2. 

• APT ~ El 2 • 

• Pvclose ~ El 2 . 

• P fpoly ~ £l2. 

• Er(5PARSE) ~ £l2. for any standard reducibility ~~. 

• Pr ( 5PARSE) ~ £l2. for any standard reducibility ~~. 

In trying to prove best possible results on lowness and extended lowness, we were led 

to make improvements 011 previously known lowness results concerning sparse sets and left 

cuts of real numbers. The rest of this section deals with these improvements. 

It was shown in [BBS-86] that every sparse set is in El3: we improve this a half-level 

and show that SPARSE ~ £l3' (The half-levels of the extended low hierarchy were not 

considered by [BBS-8G].) 

Theorem 6 P1- tt(5PAR5E) ~ E'l3' 

Proof: let L E P1 - tt(5PARSE). To show that L E £l3. it will suffice to show that 
KP:\pL ~ pI\pLE:'SAT. 

We may assume without loss of generality that L~i-tt 5 for some sparse set 5 via a 

~f-tt reduction f having the property that, for all x, f(x) is either ACCEPT or REJECT 

(indicating that x should be accepted or rejected) or f(x) is of the form (y,b), where 

bE {T. F}, Iyl > [z]. and x is accepted iff b = the truth value of the statement "y E 5". 

let 5' = {y E 5 : (:Jx E L f(x) = (y,T)) V (:Jx E I f(x) = (y,F))}; intuitively, 5' 

contains those elements of 5 that are actually tested by f. Then L~i_tt5' and 5/ E Kp L . 

Note also that the set pref(5 /) = {(z,on)::Jw Izwl = n r. zw E 5/} is in KpL. 

let A E KpNpL. That is. there exists a set B and there exist i,j such that A is the 

language accepted by Mr and B is the language accepted by M;. let A' = {(~·,t): tis 
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the encoding of a finite set and x is accepted by M, with oracle the set accepted by MD. 
Then A' E KP!\'P, and if t is an encoding of the set of strings in S of length ~ (Ix Ii + i)J + j, 

then x E A ¢::::::> (x, t) E A'. 
Our pNpL6SAT algorithm for recognizing A is as follows. On input x, use repeated calls 

to the oracle for pref( S')( E Kp L ~ NpL$SAT) to construct an encoding t of strings in A of 

length ~ (Ixl i + i)j + i, and then use the oracle for A'(E NpNP ~ NpL$SAT) to determine 

if (x, t) E A' ( ¢::::::> x E A). • 

Corollary 7 

• Pm ( SPARSE) ~ £L3 . 

• ET( SPARSE) ~ £L3 . 

• SPARSE ~ E"t3 . 

• co-SPARSE ~ £L3 . 

• APT ~ £L3 . 

• P-close ~ £L3 . 

• ET( SPARSE)n"!\p ~ 13 . 

• P1-tt(SPARSE)nXp ~ 13 . 

• co-SPARSEn!'\P ~ 13 , [KS-85] 

• P-closenKP ~ 13 , [Sc-85] 

The following result should be compared with Theorem 6. 

Theorem 8 Pbtt( TALL}") is contained in £L2 • 

Proof: It was shown in [BK-88] that Pbtt( TALLY) = Pm ( TALD'), so it will suffice to 

show that if there is a tally set T and a ~~ reduction f such that f : L::;~T, then Kp L E 
pSATe-L. 

\Ye may assume without loss of generality that f is an honest reduction. Let T' = 
{on: 3:r E L f(x) = on}. Then L~~T' and T' E pSAT$L. 

Let A E :\pL; so there is a machine M, that accepts A with oracle L. Let A' = {(x, t) : 
t is the encoding of a finite tally set, and M, accepts x with oracle z}. Note that if t is an 

encoding of the elements of T of length ~ Ixl i + i, then x E A ¢::::::> (x, t) E A'. Note also 

that A' E NP. 
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Our pSATffiL for recognizing A is as follows. On input z , construct i-an encoding of 

the strings in A of length ~ [z]' + i-by determining if oj E T' for 0 ~ j ~ IxIi + i. Then 

accept x ¢:::::> (x, i) E A' (which can be determined by one call to SAT). • 

Corollary 9 ET ( TALLY) ~ E"L 2 . [BB-86] 

Left cuts of real numbers were introduced into complexity theory by Ko [Ko-82]. Ko 

defined standard left cuts and generalleft cuts. Lowness results are known for both. Selman 

showed that every Standard Left Cut is in ET( TALLY) [Se-81]; we improve this below to 

show that every General Left Cut is in ET( TALL Y). It was shown in [KS-85] that every 

(General) Left Cut in T\P is in 1 2 • (Ko and Schoning did consider half-levels of the low 

hierarchy in ~P.) 1;sing Corollarv 9 we improve the result of [KS-85] to show that every 

General Left Cut in ~P is in L2 • 

We will present only the definition for general left cuts. For the purposes of this paper, 

it suffices to note that every standard left cut is also a general left cut. 

Definition: Let E = (+I-)(OIl)+.(Ollt. To everv string x E E we associate the 

rational number (which we also denote by x) whose binary encoding is given by x. (For 

more detail. see [1\:0-86].) For any real number y. the general left cut of y is the set of all 

strings x E E such that x - y ~ 21=!, where z is the suffix of x appearing after the decimal 

point. 

Theorem 10 If L is a General Left Cut, then L is in ET( TALLY). 

Proof: Let L be a general left cut. Note that for all lengths n there is a string (which 

we shall call maxrJ such that for all x.z E (~ ". l:n n E).x.z E L ¢:::::> x.z ~ max n . 

Let T be the set {lna i : the ith bit of the fractional part of maXn is I}. T is easily seen 

to be in ET( TALL)'). It is also easy to see that T =j L. • 

Corollary 11 

• Every General Left Cut is in £L 2 . 

• Every Standard Left Cut is in E"L 2 • [Se-81] 

• Every Standard Left Cut in NP is m L2 • 

• Every General Left Cut in Nf' is in i:,;. 
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4 Relativizations 

In this section we present oracle constructions showing that known lowness results concern­

ing sets in NP cannot be improved using any proof techniques that relativize; hence the 

known lowness results are optimal in some sense. 

Baker. Gill, and Solovay [BGS-i5] presented an oracle relative to which there is a tally 

set in NP -coNP. Since L1 = NPncoNP, an immediate corollary is that there is an oracle 

relative to which there is a tally set (hence also a sparse set in APT) in NP that is not 

in L1 . Since Ko showed in [Ko-83] that if there is a tally set in NP-coI\P then there is a 

standard left cut in I\P-coI\P, it follows that the [BGS-75] relativization also shows the 

lowness results for Left Cuts presented in the previous section cannot be improved. 

In order to present our other relativization results, we must say a few words on how the 

levels of the relat ivized low hierarchy are defined. We define Lt to be the class of sets L in 

Kp A such that ~f:'L7A = ~%.A, and it is the class of sets L such that~~·L~A = ~~,A. 

All sets in the probabilistic complexity class RP are in L2 [KS-85]: thus. the following 

result is essentially optimal with respect to relativizable techniques. 

Theorem 12 There is an oracle A relative to which RP is not contained in 12 . 

Proof: \\'e present an oracle A such that the set L = {x : 3y Iyl = 21xI and xy E A} is 

in RP'\ and such that the set B = {on: 3x E :En X rt L} is not contained in p~pA. (Note 
NPA . ) that B is clearly in KpL: thus L is not in i1, since p~pLeA is not contained in p 

We use a stage construction. In stage (i, j) we guarantee that for all deterministic 
MA 

machines Pi and for all nondeterministic machines Mj, Pi J does not recognize B, while 

maintaining the condition that L E RpA. 

Begin the construction in stage awith A = 0 and no = 1. The following lines explain the 

construction of stage l. where I = (i,j). In this proof. and in all later "stage" constructions 

in this paper. we always use the current version of our evolving oracle A in simulations, and 

always refer to the final oracle A when speaking of reserving strings in A or A. 
Staqe 1= (i,j): Choose n so that n > (nl-I + i + j)i+ j and 2n > (n i + i)(n + i + jr+ j , and 

set 71/ '- n. 

Begin a simulation of Pion input on with oracle M1- Let WI be the first query asked 

by Pi in this computation. If there is a set S of strings of length at least n such that Mtu S 

accepts U·I. then let S be such a set of minimal size. (Note that S has size at most IwII) +j, 

since that is the largest number of queries that can be asked along any single computation 

path of 11d Choose one accepting path p of M, on input WI with oracle AU S. Place all 

the strings in S into A. and reserve for A each string that is queried on path p and not in S 
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and not already in A. Note that at most IWIIJ+j ~ (ni+i)j+j ~ (n+i+j)i+ j strings are 

reserved in this way. (\Ve will call this process reserving an accepting path. Kate that as 

long as we add no strings to A that have been reserved for A, M, will accept WI with oracle 

A.) Also note that if there is no such S, then Mj will reject WI with oracle A no matter 

how we modify oracle A, as long as we place in A no strings that have been reserved for A. 

Now continue the simulation of Pi until another query W2 to Af/ is encountered, and 

repeat the process of the preceding paragraph with string W2. Continue this process for all 

queries asked by Pi on input 0". Note that membership for at most (n i + i)(n + i + j)i+j 

strings is decided in this way. 

When the simulation of Pi finally halts, there are two cases: 
MA 

Case 1: P,) accepts 0". In this case place into A all strings of length 3n that have not 

been reserved for A. It is easy to verify that for all a E ~" there are at least 22" - 1 strings 

y E ~2" such that xy E A. Thus every string in L:" is in L, and thus 0" .;. B, which was the 

condition that needed to be satisfied. Furthermore. we have maintained the straightforward 

RpA membership test for L. 
!ll A 

Case 2: Pi) rejects 0". In this case, let X = {Xl.X2, ... ,Xr} be the elements x of 

~" for which there is some y of length 21xl such that xy has been placed into A. For each 

x EX, there are at least 22[rl_ (n i + i)( n + i + j)i+ j > 221r1- 1 strings y E L:21rl such that xy 

has not been reserved for A. Place each such string xy into A. Thus we have maintained the 

straightforward Rp A membership test for L. Furthermore, since r < (n i + i)( n + i + j)i+j < 
2n x , there are strings x E I;n - X and for such strings x there is no y E L: 2 1 l such that xy 

MA 

is in A. Thus 0" E B, which guarantees that Pi) does not recognize B. • 

Corollary 13 

• There is an oracle relative to which BPPn:;\P is not contained in 12 . 

• There is an oracle relative to which coAMnKP is not contained in 12 , 

The next two results concern Pvselective and P-cheatable sets. P-selective sets were de­

fined by Selman in [Se-79] and have been studied since then in [Se-81, KS-85] and numerous 

other papers. It was shown in [KS-85] that every P-selective set in NP is in L2 • and in 

[ABG-89] it was shown that all P-selective sets are in EL 2 . 

P-cheatable sets have been studied by several authors in the last few years (see [Be-87, 

AG-87, GJY-87, ABG-89]). In [ABG-89]' it was shown that the P-cheatable sets are in 

EL 2 . 

We do not know if there are any P-cheatable or P-selective sets that are not in £L2• 

However. the following two theorems show that relativizable proof techniques cannot show 
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that every set that is P-selective or P-cheatable is in EL2 • First, we present the definitions 

for P-selective and P-cheatable sets; since we need to refer to these notions relative to 

oracles, we will define pA-selectivity and pA-cheatability for any oracle A. 

Definitions: A set L is pA -selective if there is a function f computable in polyno­

mial time relative to A such that for all x and y, f((x,y)) E {x,y} and {x,y} n L 1:­
o==:::} f( (x, y)) E L. L is P.4-1-cheatable if there is a machine running in polynomial time 

relative to oracle A ffi L that, on input (x,y), outputs (XdX),XL(Y)), and makes at most 

one query to the L part of its oracle. (Here, XL denotes the characteristic function of L.) 

Any set that is p A-1-cheatable is called pA-cheatable, as are sets satisfying certain more 

general notions of cheatability (see [ABG-89, GJY-87]). In this paper we need nothing 

beyond l-cheatability. 

Theorem 14 There is an oracle A relative to which there is a set in KP that is P-selective 

and P-cheatable and is not in 12 . 

Proof: In some ways this oracle construction is similar to the preceding one, except 

that we must build extra information into the oracle A in order to ensure the set L is 

pA-selective and pA-1-cheatable. 

Let	 us say that A is legal for L if A and L satisfy the following five requirements: 

• l' E L ¢:=:> :Jy Iyl = Ixl and Oxy E A	 (1) 

• for all :1' and y such that x < y, exactly one of the strings 

l1(x, y, z ), l1(x, y, y), 10(x, y, x), 10(x, y, y) 

is in A	 (2) 

• for all x,y.U,v such that x < y and {x,y} = {u,v}, if 1b(x,y,u) is in A. then 

(uEL==:::} rEL)	 (3) 

(u ~ L ==:::} (v E L ¢:=:> b = 1))	 (4) 

• If Il'l < IYI, then 10(x,y,x) tt A (5) 

We will say that A is legal if there exists a set L such that A is legal for L. Note that 

for any set L there exist infinitely many sets A such that A is legal for 1. Note also that if 

A is legal for L. then L is in KpA, by condition (1). Conditions (2), (3), and (4) guarantee 

p -selecti vity and P -cheatabili ty, as we show below. Condition (5) is a technical condition 

that	 simplifies the proof. 

First we claim that if A is legal for L, then L is p A-1-cheatable. To see this. consider 

t he following routine: 
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On input (11:,Z), let z = min(w,z) and y = max(w,z). 

If 11' = z then xdw) = Ad z). so one query to L suffices. Otherwise: 

Make at most four queries to A to find for which U E {x, y} and b E {O,I} is 

lb(x, y. u) in A. 

Let l' denote the string in {x,y} - {u}. 

If U E L (which can be determined by making a query to L), 

Then XL(11) = 1 and xdv) = 1
 

Else xi. (11) =0 and XL(v) =b
 

Next we claim that if A is legal for L, then L is pA-selective. To see this, consider the 

function J computed by the following routine: 

On input (u',z), let x = min(w.z) and y = max(w,z). 

If 11' = z then output 11'. Otherwise: 

Make at most four queries to A to find for which 11 E {x,y} and bE {O,l} is 

lb(:r.y.u) in A. 

let r denote the string in {x, y} - {11}. 
Output r. 

It is easy to verify that J satisfies the conditions required for L to be pA-selective. 

Let B = {on: 'V'J: E ~" X E L}. Clearly, B is in coKpL ~ pNp
L 

8 
A

, We will build A in 

such a way that B is not in pl'\pA, thus showing that the pA-selective and pA-l-cheatable 

set L is not in it. 
As before, in st age (i, j) we guarantee that for all deterministic machines Pi and for all 

MA 

nondeterministic machines 11j, Pi J does not recognize B, while maintaining the condition 

that A is legal for L. 

At the beginning of each stage. there will be finite sets of strings that are reserved for 

A and for A. respectively. As each stage progresses. more strings will be reserved for A and 

A. Reserving a string for A or A may force other strings to be reserved for A or A (and 

thus. indirectly. for L) in order to maintain legality. For example, if we reserve Oxy for A, 

where Ixl = Iy[, then z is in L. (We will say in this case that x is reserved for L.) Also, if 

there is some string z > x such that lO(x, z,x) is reserved for A, then z is also reserved for 

L: this means that some string Ozv must be reserved for A, for some v of the same length 

as x, The consequences of reserving a string can be complex. In order to minimize this 

complexity, we will take pains to ensure that we avoid reserving strings for L. 

Begin the construction in stage 0 with A = 0 and no = 1. (We will maintain the 

condition that no string of length greater than n/ is reserved by stage I.) The following lines 
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explain the construction of stage I, where I = (i,j). 

Stage I = (i,j): Choose n so that n > (nl-l + i + j)i+ j and 2n > (n i + i)(n + i + jr+ j , and 

set n/ .- (n + i + j)i+ j • 

The first step of this stage is to reserve for A all strings in O~r such that n/-l s: r < n; 

and r f; 2n. In order to maintain the legality of A, the following strings must also be 

reserved: 

for all x < y where either XL(X) or Xdy) is determined (that is, for all x < y 

with 21yl + 1 s: n/ such that it is not the case that [z] = Iyl = n), and such that 

XL(y) was not determined in stage 1- 1: 

(Note that the last condition implies XL(y) = 1.) 
reserve l1(x,y,x) for A, and 

reserve 11(x, y, y), 10(z , y, x), 10(x, y, y) for A. 

l\ext. reserve for A all strings 'lL' of the form Ib(x, y, z) where either z tf. {z , y} or x ~ y, 

such that Iv:1 s: 11/. 

It may now be verified that the only strings of length s: ti: that are not reserved are 

strings of the form Oxy where lx' = Iyl = n, and strings of the form Ib(x, y. z) where x < y 

and:; E {:r,y} and (lz ] = n or Iyl = 11). 

Furthermore. A has the property that for every subset S of ~n, there a set L with 

L n ~n = S such that there is an extension of A that is legal for L. 

Next, begin a simulation of PIon input on with oracle Mt. Let WI be the first query 

asked by Pi in this computation. If there is a set S that is a legal extension of A such that 

:t\'1; accepts WI' then choose one accepting path p of MJ on input WI with oracle S, and let 

Q be the set of strings that are queried along this path. Reserve all of the strings in Q n S 

for A. and reserve for A all of the strings in Q n 5; in order to maintain the legality of A. 

it mav be necessary to reserve other strings at this time too. Note that the size of Q is at 

most IU'II J +j s: (n + i + j)'+ i (If there is no such legal extension S, reserve no strings for 

A or A at this step.) 

Now continue the simulation of PI until another query W2 to Ml is encountered, and 

repeat the process of the preceding paragraph with string W2. Continue this process for all 

queries asked by Pi on input 0". Note that at most (n i + i)(n + i + j)i+ j queries to the 

oracle A are processed in this way. 

In order to proceed. we will need the following lemma: 

Lemma 15 During the simulation phase of stage (i,j), if r queries to oracle A are pro­

cessed, then at most r strings in O~2" are reserved for A or A, and at most r strings are 

reserved for 1. and no string is reserved for L during stage (i,j). 
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Let us assume for now that the lemma is true, and present the rest of the construction.
 

When the simulation of Pion input on is finally completed, there are two cases:
 

Case 1: p~1: accepts on. In this case let x be a string of length n that has not been
 

reserved for L. (Such a string x must exist. by Lemma 15, since 2n > (ni+i)(n+i+j)i+ j . ) 

Since x is not reserved for L, that means that there is some legal extension of A that keeps 

:r out of L. Extend A in this way; note that no string of length greater than ru needs to be 
_ MA 

reserved for A or for A to guarantee that x fJ L. Now observe that on fJ B, and thus Pi ) 

does not accept B. 
~lA __ 

Case 2: P; ) rejects on. In this case, since no string of length 11 is reserved for L, there 

is a legal extension of A such that L contains every string in ~n. Extend A in this way; as 

before, no string of length greater than 11/ needs to be reserved for A or for A to guarantee 
~lA 

this. Now on E B, and thus Pi ) does not accept B. 

1\' ow it remains only to prove Lemma 1.5. \Ve will prove, by induction on r , 0 ~ r ~ 

(71' + i)( 11 + i + j)i+ j . that after the rth query to oracle A is processed, at most r strings 

in o~2n are reserved for A or A. and at most r strings are reserved for L, and no string is 

reserved for L during the simulation. 

The proof will proceed by showing that each reserved string can be "charged" to some 

query; we will show that no individual query is charged for too many reserved strings. 

The basis r = 0 is trivially true; thus consider what happens when the rth string 'W is 

reserved. There are several cases: 

Case 1: U' is reserved for A. and w = Oxy where Ixl = Iyl. This reserves x for L; charge x 

to w, 

Note that Ixl = n. For each string z that is reserved for L. let 1/ = min(x.z) and 

l' = max(x.z). Reserve 11(11.1',1') for A. and reserve 1l(11.1'.11),10(u,1',1'),10(u.1'.u) 

for A. 

For each string z that is reserved for L (any such z must have length less than 111-d, 

reserve l1(z,x,z) for A, and reserve 11(z,x,x),10(z,x,z),10(z,x,x) for A. 

If there is any string v such that u is not currently reserved for L, and there is some 

string u of the form Ib( 11, z , x) or 1b(x, u, x) that is reserved for A, then in order to 

maintain legality. 11 must also be reserved for L. However, note that u must have 

been reserved during the simulation phase, and no string was charged to 11 when u 

was reserved. Thus, we can charge the string v to u. Also. in order to reserve v for 

L, it is necessary to find some string s in ~n and reserve Ovs for A. This string Ovs 

may also be charged to 11. Now follow Case 1 recursively. 

14
 



Case 2: u' is reserved for A, and w = Oxy where Ixl = Iyl. Again, [z] = n. Since at most 

r < 211 strings in o~2n have been reserved for A, it is not necessary to reserve x for L. 

Case 3: u' is reserved for A, and w = 11(x, y, x), with x < y. Reserve 11( x, y, y), lO(x, y, z ), 

lO(x,y,y) for .4.. 

If x is reserved (either for L or for L), and y is not yet reserved for L, then this reserves 

y for L; charge y to w. (Note in this case that Iyl = n.) Also, some z E ~n must 

be found such that Oyz is not yet reserved for A. (Such a z exists by the inductive 

hypothesis.) Reserve Oyz for A, and charge Oyz to w. Now continue as in Case 1. 

Case 4: u' is reserved for A. and w = l1(x, y, y), with x < y. Reserve l1(x, y, x), lO(x, y, z ), 

lO(x,y,y) for A.
 

This case is symmetric to Case 3: in this case it is x that must be reserved for L if y
 

is already reserved for L.
 

Case 5: U· is reserved for A,and w = lO(x,y,x), with x < y. Reserve l1(x,y,y),l1(x,y,x). 

lOCy. y, y) for A.
 

Note that by condition (5), if lO(x, y,x) is in a legal set A, it implies that Ixl = Iyl = 11.
 

Since no string in ~n has been reserved for L, this does not cause y to be reserved for
 

Y.
 
If x has been reserved for L. then this causes y to be reserved for L; charge y to w.
 

Also, some z E ~n must be found such that Oyz can be reserved for A; charge Oyz to
 

U'. Now continue as in Case 1.
 

Case 6: 'lJ' is reserved for A. and w = lO(x, y, y), with x < y. Reserve 11(x, y, y), lO(x, y, z ), 

l1(x.y.y) for A. 

If y has been reserved for L. then this causes x to be reserved for L: charge x to u·. 

Also. some z E ~Ti must be found such that Ox:; can be reserved for A; charge Oxz to 

U·. I\ 0\\' continue as in Case 1. 

Case i: u·isreserwdforA,wherewisinthesetSx •y ={lb(x,y,v): 1 E {O.l},vE {x,y}}. 

for some x < y. If three elements of Sx,y have been reserved for A, this is equivalent 

to reserving the fourth element of SX,y for A. Continue as in the appropriate case 

above. 

Case 8: Kane of the previous cases apply. In this case nothing else needs to be reserved. 

An examination of these cases shows that no query is charged with reserving more than one 

string in O~2Ti for A or A, and no query is charged with reserving more than one string for 

1. In addition. in no case is any string reserved for L. 
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That completes the proof of the lemma and of the theorem. • 
Corollary 16 

• There is an oracle relative to which there is a P-selective set that is not in £L 2 . 

• There is an oracle relative to which there is a P-cheatable set that is not in £L2 . 

"'e do not know if Corollary 16 is true for all oracles, or if there are also oracles relative 

to which every P-selective and P-cheatable set is in £'12 , All known constructions of P­

selective and P-cheatable sets involve tally languages; it is not currently known how to 

give an explicit construction of a P-selective or P-cheatable set that is provably not in 

ET( TALLY), 

All co-sparse sets are in L3 [I~S-85]: the following theorem shows that this result is 

essontially optimal with result to relativizable proof techniques. 

Theorem Ii There is an oracle A relative to which there is a co-sparse set in KP that is 

not in L2 , 

Proof: We will present an oracle A such that the set L = {'U : :J1' E ~ltLl 'UT {j. A} is 

co-sparse, and such that Kp L ~ coT\p;,\p·4. Note that L is clearly in ?'IpA.. and note also 

that the conditions on L and A imply that coNp L is not contained in KPl\'pA, and hence L 

is not in L7' 
Let B = {on::J'U E ~n 11 {j. L}(= {on::J'U E ~n 'Vt' E ~n '111' E A}). B is clearly in NpL. 

Our goal is to build A so that B is not in CONpNpA. Note that B is in coI\p!\PA iff there is 

some polynomial q; and some deterministic polynomial-time machine P k such that for all 

n, the condition 

:Ju E ~n "it' E 2:n 'Ill' E A (6) 

is equivalent to the condition 

(7) 

Thus our stage construction. at stage t i, ~'). will construct A n 2:n so that conditions (6) 

and (7) are not equivalent, while maintaining the condition that L is co-sparse. (Actually, 

we will maintain the condition that. for every n , either L contains all of En, or L contains 

all but one string in 2:n . ) 

Begin the construction in stage a with A = {OO, 01,10, l l }, and set no = 2. 

Stage I = (i, k): Let p and r be polynomials such that for all m the number of strings in 

E~qi(m) :S 2P(m ) and such that for all y and z in ~~qi(m), the running time of Pion input 
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(0"'. y. z) is bounded by r( rn ). Choose n so that n > nl_}, and such that p(n) < 2n / 2 and 

r(n) < 2n / 2 . Let n: +- 2r(n). 

First put into A all strings of length Tn for all Tn such that n/-l < m < 2n or 2n < 
m :s: tu, This guarantees that the initial segment of L is co-sparse, except that at this point 

there are still no strings of length n in L. 

For each string u E 1:n , let it denote the set {uv : v E ~n}. Note that on E B <=:::} u ~ A 

for some u E ~n. 

Let a set 5 be called a sample set if 5 contains exactly one element of ii for each u E ~n. 

Note that there are 2n 2n sample sets, 5}, 52,... 52n 2 n • Also note that on ~ B iff A contains 

some sample set. 

Case 1: There is some sample set 5j so that with oracle A U (~2n - 5j), condition (7) 

evaluates to TRrE. In this case. add to A the strings in ~2n - 5)' Note that this makes 

condi tion (6) false and condi tion (7) true, and that Pi touches only strings of lengt h less 

than 11/. Also. in this case. L contains every string in ~n. 

Case 2: There is some u such that with oracle AU (1:2n - ii), condition (7) evaluates 

to FALSE. In this case, add to A the strings in 1:2n - it. Note that this makes condition 

(6) true and condition (7) false. Also, in this case. L contains every string in ~n except u. 

Case 3: Neither of the previous two cases apply. But this is precisely the situation that 

was shown to be impossible by Baker and Selman in the proof of Lemma 2.4 of [BS-79].• 

Corollary 18 

• There is an oracle relative to which P-closenNP is not contained in L2 . 

• There is an oracle relative to which P jpolynT\P is not contained in l2' 

Conclusions 

The study of the low hierarchy is motivated by the desire to have evidence that certain 

classes of sets contain no Nf'<complete sets. The lower in the low hierarchy a class resides. 

the stronger the evidence is that its sets are not NP-complete. In order to have the strongest 

evidence possible. it is natural to try to improve on known lowness results. 

Thus. it is important to know what sorts of lowness results are impossible given the 

current state of the art, and which improvements might reasonably be sought; this paper is 

the first contribution in this direction. 

We have examined the current state of knowledge concerning the lowness properties of 

certain classes of sets. In many cases, we have been able to present lowness results that 
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are provably optimal. and in most cases we have been able to present lowness results that 

cannot be improved using any relativizable proof technique. 

In addition, we have studied the lowness properties of the classes of sets equivalent to 

or reducible to sparse and tally sets. These results help clarify the structure underlying the 

10\\' hierarchies. 

As the tables indicate, further progress on placing sets at the correct level of the low 

hierarchies may hinge on resolving the question of whether P jpoly = ET(SPARSE). This 

question, mentioned both in [TB-88] and in [AW-88]' is a special case of the more general 

question of whether it is the case for any standard reducibility ::;~ that Pr(SPARSE) = 
Er(SPARSE). Recent results by the authors suggest that these questions may be quite 

difficult. since. for example. one can show that p=~p ===? Pm(SPARSE) = Em(SPARSE), 

and the question of whether Pm ( TALL}') ::: Em ( TALLY) is equivalent to some basic open 

questions in complexity theory [AH-89b]. At this point, however, nothing is known about 

the Pjpol~' =? ET( SPARSE) question. 

One other avenue for further work involves the notion of self-reducibility. It can be 

shown that for some classes C, the self-reducible elements of C have lowness properties not 

shared by other elements of C. For example, it is shown in [KS-85] that the self-reducible 

sets in ~p that have polynomial-size circuits are in L2 . What relativized lower bounds can 

be proved on the lowness of this class? 

In many cases. we have claimed that lowness results are "optimal." \\'e should caution, 

however, that these results are optimal onlv with respect to the low hierarchies as they have 

ban (ftfintd. However, just as one can define (infinitely) many intermediate levels of the 

polvnomial-t irne hierarchy. so can one define corresponding levels of the low hierarchies. 

"[sing a finer granulari tv in defining the low hierarchies. it may be possible to characterize 

more precisely the sort of "lowness" results which can be proved for various classes: that 

was not our intent in this paper. 

Finally. we mention that lowness results for various classes have recently been presented 

in [Ko-S". Sc-88, Ka-88]. We leave as an open problem the investigation of the optimality 

of these results. 
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Class C c~ Cq, optimal? 

TALLY Et2 [BB-86] NjA YES 

Standard Left Cuts EL 2[Se-81,BB-86] NjA YES 

General Left Cuts Et2 NjA YES 

BPP EL 2[Sc-85] EL 2 t YESt 

Pvselective EL 2[ABG-89] EL 2 t YESt 

weakly P-selective EL 2[ABG-89] EL 2T YESt 

P-cheatable EL 2 EL 2t YESt 

SPARSE El3 EL 2 YES 

co-SPARSE Et3 EL 2 YES 

APT EL 3 EL 2 YES 

P-close £L3 EL 2 YES 

P jpoly EL 3[BBS-86] EL 2 * 
Table 1: Inclusions and non-inclusions for the Extended Low Hierarchy.
 

For example. every sparse set is in £L3 , there are sparse sets that are not in EL 2 • and thus
 

the given lowness result is optimal. References given refer to the papers where the stated
 

result is first proved. For example, it is shown in [BBS-86] that P jpoly is contained in EL 3 .
 

If no reference is given. the result is due to this paper. Since the lowest level in the extended
 

low hierarchy is £l2. the third column is not applicable for the first three rows in the table.
 

i This is a relat ivizat ion result; we present an oracle relative to which this class is not
 

contained in :EL2.
 
[This result cannot be improved using any relativizable proof technique.
 

* If this class is not contained in £L3 , then P jpoly :j:. ET(SPARSE). 
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Class C CnNP~ CnNPg optimal? 

TALLY 

Standard Left Cuts 

General Left Cuts 

SPARSE 

12 [KS-85] 

L2 

L2 

L2 [KS-85] 

L1[BGS-75] 

L1 [BGS-75] 

L1[BGS-75] 

L1 [BGS-75] 

YES 

YES 

YES 

YES 

APT L2 [KS-85] L1[BGS-75] YES 

P-selecti ve 

Weakly P-selective 

P-cheatable 

RP 

L2[KS-85] 

L2[KS-85] 

L2[ABG-89] 

L2[KS-85] 

L2 

L2 

L2 

L2 

YES 

YES 

YES 

'{ES 

BPP 

coAxl 

L2 [Sc-85] 

L2[Sc-87] 

L2 

L2 

YES 

YES 

co-SPARSE L3 [KS-85] L2 YES 

P-close L3 [Sc-85] L2 YES 

P Ipoly L3[KS-85] L2 +t 
Table 2: Inclusions and relativized non-inclusions for the Low Hierarchy in KP.
 

For example. every sparse set in KP is in L2 , there is an oracle relative to which there are
 

sparse sets in KP that are not in L1, and thus the given lowness result is optimal.
 

t+If this class is not contained in L3 • then there is an oracle relative to which P Ipoly i=
 
ET(SPARSE). 
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Class C C~ Crz optimal? 

ET( TALLY) EL 2 [BB-86] N/A YES 

Pm( TALLY) EL 2 N/A YES 

(=Pbtt( TALLY))[BK-88] 

ET(SPARSE) EL 3 EL 2 YES 

Pm(SPARSE) Et3 EL 2 YES 

P1-tt(SPARSE) EL 3 EL 2 YES 

P2 - tt( SPARSE) EL3[BBS-86] EL 2 ** 
Ptt( TALLY) EL3[BBS-86] EL 2 ** 
(=PT(SPARSE) 

=p Ipoly )[BE-8S. Sc-8.5] 

Table 3: Extended Low Hierarchy results for sets reducible to sparse and tally sets. 

*'" If this class is not contained in EL3 • then P Ipoly l' ET(SPARSE). (Also, [AH-89b] 

shows that if P=!\P. then P2- t t(SPARSE) ~ Ett(SPARSE) ~ EL 3 . ) 

Class C Cn~p~ CnKP~ optimal; 

ET( TALL}') 12 [BB-86] L1 [BGS-75] YES 

Pm( TALLY) 12 L1 [BGS-75] YES 

(=Pbtt( TALLY))[BI\:-88] 

Pm(SPARSE) 12 L1 [BGS-75] YES 

E 1 ­t t ( SPARSE) 13 L2 YES 

ET(SPARSE) 13 L2 YES 

P1 ­t t (SPA RSE) 13 L2 YES 

P2­tt (SPA RSE) L3[KS-85] L2 tt 
Pu( TALLY) L3[KS-85] L2 tt 
(=PT(SPARSE) 

=P Ipoly)[BE-88, Sc-85] 

Table -1: Low Hierarchy results for sets reducible to sparse and tally sets.
 

The non-inclusion results in column three are relativization results: for example, there is an
 

oracle relative to which ET(SPARSE) is not in L2 .
 

[j If this class is not contained in 13 • then there is an oracle relative to which P Ipol)' l'
 
ET(SPARSE).
 

24
 


