
INFORMATION AND COMPUTATION 100, 202-260 (1992)

Structured Operational Semantics and
Bisimulation as a Congruence*

JAN FRJSO GROOTE AND FRITS V AANDRAGER t

Centre for Mathematics and Computer Science,
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

In this paper we are interested in general properties of classes of transition system
specifications in Plotkin style. The discussion takes place in a setting of labelled
transition systems. The states of the transition systems are terms generated by a
single sorted signature and the transitions between states are defined by conditional
rules over tne syntax. It is argued that in this setting it is natural to require that
strong bisimulation equivalence be a congruence on the states of the transition
systems. A general format, called the 1xfi/1yxt format, is presented for the rules in
a transition system specification, such that bisimulation is always a congruence
when all the rules fit this format. With a series of examples it is demonstrated that
the t.i:fi/1yxt format cannot be generalized in any obvious way. Another series of
examples illustrates the usefulness of our congruence theorem. Briefly we touch
upon the issue of modularity of transition system specifications. It is argued that
certain pathological tyft/tyxt rules (the ones which are not pure) can be disqualified
because they behave badly with respect to modularization. Next we address the
issue of full abstraction. We characterize the completed trace congruence induced
by the operators in pure tyft/tyxt format as 2-nested simulation equivalence. The
pure tyft/tyxt format includes the format given by de Simone (Theoret. Comput. Sci.
37, 245-267 (1985)) but is incomparable to the GSOS format of Bloom, Istrail, and
Meyer (in "Conference Record of the 15th Annual Symposium on Principles of
Programming Languages, San Diego, California, 1988," pp. 229-239). However, it
turns out that 2-nested simulation equivalence strictly refines the completed trace
congruence induced by the GSOS format. <': 1992 Academic Press, Inc.

1. INTRODUCTION

Plotkin (1981, 1983) advocates a simple method for giving operational
semantics to programming languages. The method, which is often referred
to as SOS (for Structured Operational Semantics), is based on the notion

*This paper is a revised version of Report CS-R8845, Centrum voor Wiskunde en
Informatica Amsterdam. An extended abstract appeared in "Proceedings JCALP 89, Stresa"
(G. Ausiello, M. Dezani-Ciancaglini, and S. Ronchi Della Rocca, Eds.), Lecture Notes in
Computer Science, Vol. 372, pp. 423-438, Springer-Verlag, Berlin/New York.

t The research of the authors was supported by ESPRIT Project 432, An Integrated Formal
Approach to Industrial Software Development (METEOR), and by RACE Project 1046,
Specification and Programming Environment for Communication Software (SPECS).

202
0890-5401/92 S5.00
Copyright l['..1 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved.

SOS AND BISJMULATION AS A CONGRUENCE 203

of transition systems. The states of the transition systems are elements of
some formal language that, in general, will extend the language for which
one wants to give an operational semantics. The main idea of the method
is to define the transitions between states by what we call a Transition

System Spec(fication (TSS): a set of conditional rules over the syntax of the
language.

In recent years a large number of (concurrent) languages have been
provided with an operational semantics using Plotkin's approach. There­
fore it might be worthwhile to develop a general theory of structured
operational semantics: to establish a hierarchy of "formats" of transition
system specifications and to investigate the expressiveness and properties
of each format. We think that it is possible to develop such a general
theory: many important properties of transition system specifications can
be derived by just looking at the syntactic form of the rules. A general
theory of SOS will be useful for several reasons. First, certain results will
become reusable so that one does not have to prove them for each
individual language separately. Second, a general theory of SOS may lead
to a better understanding of the relations between languages that have been
provided with a semantics using the approach. Third, one may hope that
a general theory helps people in giving good operational semantics: if one
knows that certain types of rules have bad properties, then one will try not
to use them. Surprisingly, there are not many papers that contain general
results on SOS. We are only aware of the work of de Simone (1984, 1985)
and Bloom, Istrail, and Meyer (1988).

The aim of this paper is to contribute to the general theory of structured
operational semantics. We start from the requirement that strong
bisimulaton equivalence should be a congruence for the operators in a
transition system specification. We then show how this requirement leads
naturally to a certain format of rules, which we call the tyft/tyxt format.
Next we analyze the properties of the tyjt/tyxt format and make com­
parisons with related work.

In order to facilitate analysis, we restrict our attention to a specific type
of transition systems: transitions are labelled and as states we have ground
terms generated by a single sorted signature. This is an important subcase:
the operational semantics of languages like CCS (Milner, 1980), TCSP
(Olderog and Hoare, 1986), ACP (van Glabbeek, 1987), and Meije
(Boudol, 1985) has been described in essentially this way. However, there
are also many examples of transition system specifications where the set of
states is not specified by a single sorted signature, for instance the seman­
tics for CSP as presented by Plotkin (1983) and the semantics for POOL
of America, de Bakker, Kok, and Rutten (1986). We hope that the insights
derived from our analysis of a basic case will also be useful in more general
settings.

204 GROOTE AND VAANDRAGER

1.1. Bisimulation as a Congruence. A fundamental equivalence on the
states of a labelled transition system is the strong bisimulation equivalence
of Park (1981). Strong bisimulation equivalence seems to be the finest
extensional behavioural equivalence one would want to impose: it is not
clear how two states of a transition system which are strongly bisimilar can
be distinguished by external observation. This means that from an observa­
tional point of view, the transition systems generated by the SOS approach
are too concrete as semantical objects. The objects that really interest us
will be abstract transition systems where the states are bisimulation
equivalence classes of terms, or maybe something even more abstract. If
bisimulation is not a congruence then the function that computes the
transitions associated with a phrase from the transitions associated to its
components depends on properties of the transition system which are
generally considered to be irrelevant, such as the specific names of states.
This function is compositional on the level of (concrete) transition systems
but not on the more fundamental level of transition systems modulo
bisimulation equivalence.

This brings us to the first main question of this paper which is to find
a format, as general as possible, for the rules in a transition system
specification, such that bisimulation is always a congruence when all the
rules have this format. We proceed in a number of steps.

In Section 2 of the paper definitions are given of some basic notions like
signature, term and, substitution. Section 3 contains a formal definition of
the notion of a transition system specification (TSS). In Section 4 it is
described how a TSS determines a transition system. Moreover the
fundamental notion of strong bisimulation is introduced. The real work
starts in Section 5, where we present a general format, called the tyft/tyxt
format, for the inductive rules in a TSS and prove that bisimulation is
always a congruence when all rules have this format (and a small addi­
tional requirement is met). With a series of examples it is demonstrated
that this format cannot be generalized in any obvious way.

Section 6 contains some applications of our congruence theorem. We
think that our result will be useful in many situations because it allows one
to see immediately that bisimulation is a congruence. Thus it generalizes
and makes less ad hoe the congruence proofs in (Milner, 1983), (Baeten
and van Glabbeek, 1987), and elsewhere. Our experience is that if rules in
a TSS do not fit our format, there is a good chance that something
is wrong: either bisimulation is not a congruence right away or the
congruence property will get lost if more operators and rules are added.

1.2. Modularity of Transition System Specifications. Often one wants to
add new operators and rules to a TSS. Therefore, a very natural and
important operation on TSSs is to take their componentwise union. Given

SOS AND BISIMULATION AS A CONGRCENCE 205

two specifications P 0 and P 1 , let P 0 EBP 1 denote this union. A desirable

property to have is that the outgoing transition of states in the transition

system associated to P 0 are the same as the outgoing transitions of these

states in the extended system P 0 EBP 1• This means that P0 EB P 1 is a "con­
servative extension" of P 0 : any property which has been proved for

the states in the old transition system remains valid (for the old states)

in the enriched system. In Section 7 we show that, except for certain rules

which are not "pure," t;ft/tyxt rules behave fine under modularization.

Fortunately, nonpure rules are quite pathological and we have never seen
an application in which they are used.

1.3. Trace Congruences. A central idea in the theory of concurrency is

that processes which cannot be distinguished by observation should be

identified: the process semantics should be fully ahstrac1 with respect to

some notion of testing (De Nicola and Hennessy, 1984). Natural observa­

tions that one can make on a process are its (completed) traces. A trace of

a process is a finite sequence of actions that can be performed during a run

of the process. A trace is completed if it leads to a state from where no

further actions are possible. Two processes are (completed) trace convuent

with respect to some format of rules if they yield the same (completed l

traces in any context that can be built from operations defined in this for­

mat. The first main result of Section 8 is a characterization, valid for image

finite transition systems, of the completed trace congruence induced by the

pure tyft/tyxt format as 2-nested simulation equil'alence. On the domain of

image finite transition systems, 2-nested simulation coincides with the

equivalence induced by the Hennessy-Milner logic formulas (Hennessy and

Milner, 1985) with no [] in the scope of a (). Consequently the two trees

in Fig. 1, which are not bisimilar, cannot be distinguished by operators

defined with pure ty(t/tyxr rules. Also in Section 8, we characterize the

a a

a a a

b c b b c b b c

FIG. 1. Pure tyft/1yx1 congruent but not bisimilar.

206 GROOTE AND VAANDRAGER

trace congruence induced by the pure tyfi/tyxt format as simulation
equivalence.

1.4. Comparison ll'ith Related Work. In Section 9 we give an extensive
comparison of our format with the format proposed by de Simone (1984,
1985) and the GSOS format of Bloom, Istrail, and Meyer (1988). Roughly
speaking, the situation is as displayed in Fig. 2. The GSOS format and the
pure tJft/tyxt format both generalize the format of de Simone. The GSOS
format and our format are incomparable since the GSOS format allows
negations in the premises, whereas all our rules are positive. On the other
hand we allow for rules that give operators a lookahead and this is not
allowed by the GSOS format. A simple example in (Bloom, Istrail, and
Meyer, 1988) shows that the combination of negation and lookahead is
inconsistent in general. The point where the two formats diverge is
characterized by the rules which fit the GSOS format but which contain no
negation. We call the corresponding format positive GSOS.

From results of de Simone (1985) and Bergstra, Klop, ad Olderog (1988)
it follows that the completed trace congruence that corresponds to the
format of de Simone coincides with failure equivalence. Bloom, Istrail, and
Meyer (1988) proved that the completed trace congruence induced by the
GSOS format can be characterized by the class of Hennessy-Milner logic
formulas in which only F may occur in the scope of a []. Larsen and Skou
(1989) in turn showed that the equivalence induced by this class of logical
formulas can be characterized as ~-hisimulation equivalence. From these
results we can conclude quite directly that the pure t;jt/tyxt format can
make more distinctions between processes than the GSOS format: 2-nested
simulation refines ~bisimulation. Now, interestingly, it turns out that the
completed trace congruence induced by the positive GSOS format is also
~-bisimulation equivalence. So although it may be the case that the general

pure tyftltyxt GSOS

~/
positive GSOS

1
DE SIMONE format

FIGURE 2

SOS AND BISIMULATION AS A CONGRUENCE 207

GSOS format can be used to define certain operations which cannot be
defined using positive rules only, the use of negations in the definition of
operators does not introduce any new distinctions between processes!

The notion of testing associated with the (positive) GSOS format allows
one to observe traces of processes, to detect refi1sals, and to make copies

of processes at every moment. Our format allows one in addition to test
whether some action is possible in the future: operators can have a
lookahead. This can be seen as a weak form of global testing (Abramsky,
1987).

A notable difference between the GSOS format and our format is that
the GSOS format always leads to a computably finitely branching transition
relation whereas our format does not necessarily do so. We argue that,
even though finiteness and computability are very desirable properties, the
statement of Bloom, Is trail, and Meyer (1988) that any "reasonably struc­
tured" specification should induce a computably finitely branching trans­
ition relation is too strong and discards a large number of interesting
applications.

2. PRELIMINARIES

In this paper we will work with a very simple notion of a signature. Only
one sort is allowed; there are only function symbols and no predicate
symbols; there is no overloading and no recursion construct. Throughout
this paper we assume the presence of an infinite set V of variables with
typical elements x, y, :::,

2.1. DEFINITION. A (single sorted) signature }; is a pair (F, r) where:

- F is a set of fimction symbols disjoint with V,

- r: F---> N is a rank jimction which gives the arity of a function
symbol; if f E F and r(f) = 0 then f is called a constant symbol.

2.2. DEFINITION. Let }; = (F, r) be a signature. Let W £ V be a set of
variables. The set of £-terms over W, notation T(J;, W), is the least set
satisfying:

Ws;; T(.E, W),

if fE F and t 1 , ... , t rlfl E T(J;, W), then f(t 1 , ... , t ,1n) E T(J;, W).

T(J;, 0) is abbreviated by T(£) and T(.E, V) is abbreviated by lf(J;);
elements from T(£) are called closed or ground terms, elements from
lf(J;) are called open terms. Var(t) s:::; V is the set of variables in a term
!Elf(£).

208 GROOTE AND VAANDRAGER

2.3. DEFINITION. Let I= (F, r) be a signature. A substitution u is a
mapping in V _, U(I'). A substitution er is extended to a mapping
u: lr(I) ___, lr(l') in a standard way by the following definition:

-- cr(f(t I' ... , t r(/))) =/((J(t I), ... , O'(t r(fl)) for fE F and t I' ... , t r(f) Elf (E).

If u and p are substitutions, then the substitution (J .·• p is defined by

(Jo p(x) = u(p(x)) for X E V.

2.4. Note. Observe that we have the following identities:

(J p(t) = u(p(I))

(](/) = t

t E lf(I)

for tET(I).

3. TRANSITION SYSTEM SPECIFICATIONS

In this section a formal definition is given of the notion of a transition
system specification. Also the notion of a proof of a transition from such
a specification is defined.

3.1. DEFINITION. A transition system specification (TSS) is a triple
(I, A, R) with I a signature, A a set of labels, and R a set of rules of the
form

{t;~ t;[iEf}

t --"-+ t'

where I is an index set, t ;, t;, t, t' E lr(I), and a;, a EA for i EI. If r is a rule
in the format above, then the elements of { t; ~ t; Ii EI} are called the
premises or hypotheses of r and t--"-+ t' is called the conclusion of r. A rule
of the form

0
t --"-+ t'

is called an axiom, which, if no confusion can arise, is also written as
t-"-+ t'. An expression of the form t-"-+ t' with a EA and t, t'Ell(E) is
called a transition (labelled with a). The symbols r/J, ljJ, x, ... are used to
range over transitions. The notions "substitution," "Var," and "closed"
extend to transitions and rules as expected.

SOS AND BISIMULATION AS A CONGRUENCE 209

3.2. ~EFJNITION. Let P = (.L, A, R) be a TSS. A proof of a transition If;
from P is a well-founded, upwardly branching tree of which the nodes are
labelled by transitions t ~ t' with t, t' E u(.I') and 11 EA. such that:

-- the root is labelled with If;,

- ~f x is the label of a node q and { x i I i E n is the set of labels of the
nodes directly above q, then there is a rule

in Rand a substitution (J: v~u(l') such that x=CJ(rjJ) and 1.,=u(i?,l for
i E J.

If a proof of If; from P exists, we say that If; is prornhle from P. notation
P f- 1/1. A proof is closed if it only contains closed transitions.

3.3. LEMMA. Let P=(l',A,R) he a TSS, let aEA, and let t.t'ET(l')

such that P f- t ~ t'. Then t ~ t' is prov11hle hy a closed proof

Proof As P f- t ~ t' there is a proof tree T for t ~ t'. Define the sub­
stitution (J: V ~ T(L.') by (J(X) = t for all x E V (in fact, any closed term will
do). Applying (J to all transitions in the proof Toft~ t' yields a tree T'
containing only closed transitions. Now one can easily check that T' is a
proof of t ~ t'. I

TSSs have been used mainly as a tool to give operational semantics to
(concurrent) programming languages. As a running example we therefore
present below a TSS for a simple process language.

3.4. EXAMPLE. Let Act= {a, h, c, ... } be a given set of actions. We con­
sider the signature l'(BPA~1) (Basic Process Algebra with c5 and t:) as intro­
duced in Vrancken (1986) . .L(BPA~1) contains constants a for each a E Act,

a constant (5 that stands for deadlock or inaction, comparable to NIL in
CCS and STOP in TCSP, and a constant i; that denotes the empty process,
a process that terminates immediately and successfully. It is comparable to
SKIP in TCSP and skip in CCS. Furthermore the signature contains
binary operators + (alternative composition) and · (sequential composition).

As labels of transitions we take elements of Act, =Act v (v } . Here "
(pronounce "tick") is a special symbol used to denote the action of success­
ful termination. At the end of a process this action indicates that execution

has finished.
Define the TSS P(BPA'.;) as (l'(BPA'.\). Act,, R(BPA'.,)l where R(BPA~)

is defined in Table l. In the table a ranges over A.et, , unless further restric­
tions are made. Infix notation is used for the binary function symbols.

210

l. a~t:

3.
x~x'

x+y~x'

5.
x~x'

xy~x'y

GROOTE AND VAANDRAGER

TABLE 1

The Rules of Ri BPA'.,)

a=/=Y 2.

4.

a=/=Y 6.

€~8

y~y'

x+y~y'

x~x' y~y'
xy~y'

One can easily check that the tree in Fig. 3 constitutes a proof of the
transition (£·(a+ h)) · c __!!__; 1: • c from P(BPA~).

3.4.l. Remark. Even though similar semantic interpretations have
been given to (extensions of) E(BPA'.1) at a number of places, the rules of
Table 1 seem to be new. Vrancken (1986) does not use inductive rules to
give semantics to BPA'.;. Instead, operations are defined directly on process

graphs. In (Baeten and van Glabbeek, 1987) there are no transitions
labelled with J. Instead, a unary termination predicate l is used. The
analogue of our rule 6 in their setting is

x L y __!!__; y'

x · r __!!__; y'

Such a rule does not fit in the framework of this paper. We have chosen
not to deal here with predicates like l because the additional complexity
would distract attention from the main issues in this paper. Moreover, a
unary predicate p(x) can always be coded in our setting by adding a new
label al' and rules such that

p(x)~3y: x-2.. y.

FIGURE 3

SOS AND BISIMULA TION AS A CONGRUE!'iCF. 211

We think that it will not be too difficult to extend the framework of this
paper with predicates.

3.5. E~AMPLE. ~ur next example shows that the range of applications
of TSSs is not restncted to the area of operational semantics: cverv Term
Rewriti~g System (TRS) can be viewed as a TSS. A Term Rrnriting -.5r.1tl:'m

(TRS) is defined as a pair (E0 , R0) with 1'0 a signature and R0 a set of

reduction or rewrite rules of the form r: (1, s) with r the name of the rewrite
rule and t, SE lf(Eo)- Here, t contains at least one function svmbol and
Var(s) £ Var(t). -

A TRS (E0 , R0) can be viewed as a TSS (E, A, R). Take E=X" as the
signature and define the alphabet A as the set of all names r of rules
r: (t, s) E R 0 . R contains for every r: (t, s) E R0 a rule

and for every function symbol/ in E rules

f(x l' ... , X, ... , X rlfl)-'--. f(x 1, ... , y, ... , X,1 Ii)

to allow reductions in contexts. One can easily prove that there is a ont'

step rewrite t ->, s in the TRS (see Kl op, 1987) for a definition) iff the

corresponding TSS proves t-'--> s.
Apparently, the intersection of the class of TSSs which correspond to

TRSs and the class of TSSs for which it is proved in Theorem 5.10 that
bisimulation is a congruence is of no interest: Theorem 5.10 requires that
not more than one function symbol occur in the source of an axiom.

4. TRANSITION SYSTEMS AND STRONG BISIMULATION EQUIVALENCE

An operational semantics makes use of some sort of (abstract) machines
and describes how these machines behave. Often one takes as machines
simply nondeterministic automata in the sense of classical automata

theory, also called labelled transition systems (Keller, 1976).

4.1. DEFINITION. A (nondeterministic) automaton or lahel!t'd transition

system (LTS) is a structure (S, A, ->)where:

-- S is a set of states,

-- A is an alphabet,

-- -> £ S x A x S is a transition rt'lation.

212 GROOTE AND VAANDRAGER

Elements (s, a, s') E --+ are called transitions and are written as s ~ .s'.
The intended interpretation is that from state s the machine can do an
action a and thereby get into state s'.

4.1.1. Remark. Often transition systems are provided with an addi­
tional fourth component: the initial state. For our purpose some small
technical advantages are gained by working with transition systems that do
not contain this ingredient. All considerations of this paper can trivially be
extended to transition systems with initial state.

The notion of strong bisimulation equivalence as defined below is from
Park (1981).

4.2. DEFINJTION. Let (!{ = (S, A, --+) be a labelled trans1t10n system.
A relation R £ S x S is a (strong) bisimu!ation if for all s, t with s R t:

1. Whenever s _E..; s' for some a and s', then, for some t', also t ~ t'
and s' Rt'.

2. Conversely, whenever t _E..; t' for some a and t', then, for some s',
also s _E..; s' and s' R t'.

Two states s, t Es are bisimilar in a, notation a: s <.:::::> t, if there exists a
bisimulation containing the pair (s, t). Note that bisimilarity is indeed an
equivalence relation on states.

4.3. DEFINITION (TSSs, transition systems, and bisimulation). Let
P= (I, A, R) be a TSS. The transition system TS(P) specified by P is given
by

TS(P) = (T(I), A,--+ p),

where relation --+ P s; T(I) x Ax T(I) is defined by t---"-+ Pt'~ P f- t ~ t'.
We say that two terms t, t' E T(I) are (P-)bisimilar, notation t <.:::::>" t', if

TS(P): t <.:::::> t'. We write t <.:::::> t' if it is clear from the context what P is. Note
that <.:::::> P is also an equivalence relation.

4.4. EXAMPLE. For the TSS P(BPA~) of Example 3.4 we can derive the
identities (a)-(e) below. In (f) it is shown that the left distributivity of .
over + does not hold in bisimulation semantics. As in regular algebra we
often omit the · in a product x · y and we take . to be more binding
than +.

(a) ee <:? e

(b) b <:? b + b

SOS AND BISIMULATION AS A CONGRUENCE

b

v v

FIG. 4. Examples 4.4(a) and (b).

(c) (w + i;b)(c(db) + b) <:::::_> (a((c + 6)d) + b(c(d + d)))D

(d) bi;<:::::_> b

(e) i;b <:::::_> b

(f) ab+ac'/:!a(b+c)

213

b +b

b

The parts of the automaton belonging to (a), (b), (c), and (f) are drawn
in Figs. 4-6. A dotted line indicates that a pair of states is in the bisimula­
tion relation. Furthermore, a state is always related to itself. In showing
that two states are related, only the states that can be reached from these
states are relevant and therefore only these states are drawn. In Figs. 5 and
6 two separate automata are drawn instead of a combined one, to make
the pictures clearer.

In Fig. 6 the states a(b + c) and r.(b + c) in the right transition system
cannot be related to any of the states in the left transition system.

5. COMPOSITIONAL TRANSITION SYSTEM SPECIFICATIONS

TSSs do not always generate automata for which strong bisimulation
is a congruence. A number of examples follow in the sequel. But if the

.. , '·

d

FIG. 5. Example 4.4ic).

6431100/2-5

a

(a((c + 8)d) + b(c(d + d)))O

b

(c((c +o)d))0 (<(c(d + d)))O

(cd)O (c(d + cf))l!i

214 GROOTE AND VAANDRAGER

?
a(b+c)

' ... ' ..
a

f.b
. . ·.··· ? . ".

......

".. 8
.... '.

FIG. 6. Example 4.4(f).

rules in TSS satisfy the format below (and an additional small technical
requirement is met), strong bisimulation turns out to be a congruence.

5.1. DEFINITION. Let E = (F, r) be a signature and let P = (E, A, R) be
a TSS. A rule in R is in tyft format if it has the form

{t;~ Y;liel}

f(xi. .. ., Xn) ~ t

with I an index set, f E F, r(f) = n, x; (1 :(i :(n) and Y; (i E /) all different
variables from V, a;, aeA, and l;, tET(E) for iel.

A rule in R is in tyxt format if it has the form

{t;~ Y;iiel}

x~t

with I an index set, x, Y; (i E /)all different variables from V, a;, a e A, and
t;, t E l(E) for i El. P is in tyft/tyxt format if every rule in R is either in
tyft format or in tyxt format. A transition system a is called tyft/tyxt
specifiable if there exists a TSS Pin tyft/tyxt format with a= TS(P).

5.2. Note. Observe that there does not have to be any relation at all
between the premises and the conclusions in a rule satisfying our format.
In fact our format explicitly requires the absence of certain relations
between occurrences of variables in the premises and in the conclusion.
Note that not only the TSS P(BPA'.;) of Example 3.4 in tyft/tyxt format,
but also any TSS obtained from P(BPA'.;) by dropping some rules. The
transition system specifications related to term rewriting systems (see
Example 3.5) are in general not in tyft/tyxt format.

SOS AND BISIMULA TION AS A CONGRUENCE 215

5.3. EXAMPLE. Below we describe a TSS that models a simple
typewriter that can be used to type strings and that has the option to delete
the last character of the typed string using '"backspace." The signature
consists of the binary function symbol * denoting concatenation, and
constant symbols A (empty string) and a, b, ... , y, z. As alphabet we take
A== {a, b, ... , y, z, L1 }. Here, L1 stands for a backspace. Rules for the
typewriter can be given as follows:

X~X*a for a E {a, b, ... , y, z}

a~)~ for a E {a, b, .. ., y, z}

X*a~X for a E {a, b, .. ., y, z }.

This description of the typewriter is not in tyfi/tyxt format, because the lhs
of the last axiom contains two function symbols. A TSS for the typewriter
in tyft/tyxt format is more involved. We need an auxiliary label empty,
which denotes that an expression consists of the empty string. We also need
more rules:

empty

x~x'

for a E {a, b, .. ., y, z}

for a E {a, b, ... , y, z}

y * x~ y * x'

x--.!.+ x' y
empty

y'
for e E {empty, L1 }.

x * y-.!.+ x'

We come back to this example in Section 5.11.2.

5.4. Well-Foundedness. A TSS with the rule

f(x, Y2) ~Yr g(x', Yr)-4 Y2
l' I X--->X

can be in tyft/tyxt format. However, we have a circular reference. In
general y 1 will depend on f(x, y 2) and thus on y 2 while Y2 depends on
g(x', yr) and thus on Yr. We exclude this type of dependencies, as they give
rise to complicated TSSs. For this purpose the notion of a dependency
graph is introduced.

5.4.1. DEFINITION. Let P = (.E, A, R) be a TSS. Let S = { t;-".!.. t; Ii EI}

be a set of transitions of P. The dependency graph of S is a directed
(unlabelled) graph with:

216 GROOTE AND VAANDRAGER

Nodes: Uis/ Var(li~ r;),
Edges: { (x, y) [xE Var(ti), yE Var(t;) for some iE!}.

A set of transitions is called well~(ounded if any backward chain of edges
in the dependency graph of these transitions is finite. A rule is called well­
founded if the set of its premises is so. Finally, a TSS is called well~founded

if all its rules are well-founded.

5.4.2. EXAMPLE. The dependency graph of the set of premises of the
rule in Section 5.4 is given in Fig. 7. The rule is not well-founded since the

graph clearly contains a cycle.

5.5. DEFINITION. Two TSSs P and P' are transition equivalent if

TS(P) = TS(P').

Hence, two TSSs are trans1t10n equivalent if they have the same
signature, the same set of labels, and if the sets of rules determine the same
transition relation. The particular form of the rules is not important. In
Example 3.4, for instance, we can replace rule 6 of Table 1 by the rule

I

x~ b y--54 y'

xy--54 y'

The resulting TSS P'(BPA~) is transition equivalent to P(BPA ~)· This is
because whenever P(BPA~) proves a transition of the form t ~ t', t' is
syntactically equal to b. Observe that P'(BPA~) is not in tyft/tyxt format.
We will come back to this in Section 5.13.

To deal with closed terms, only the tyft format is necessary and the tyxt
format is not needed:

5.6. LEMMA. Let P =(I, A, R) be a (well-founded) TSS in tyft/tyxt for­
mat. Then there is a transition equivalent (well-founded) TSS P' =(I, A, R')
in tyft format.

Proof Let E= (F, rank). Define R' by:

- every tyft rule of R is in R',

(\
x Y1

___/
FIGURE 7

Y2 -------x'

SOS AND BISIMULATION AS A CONGRUENCE 217

. -;-- for eve? tyxt _rule r ER an~ f~r every function symbol fE ;: r1 is
m R , where rl IS obtamed by subst1tutmg f(x I' ... , x rank II I) for x in r with
{x1, ... , Xrank(f>} £ V- Var(r).

If the old t_vxt rules were well-founded, then the new rules will be well­

founded too and in tyft format. Suppose that t __::__. t' is a transition in

TS(P). Then, by definition of TS(P) and Lemma 3.3, there is a closed proof

from P of this transition. Now one can easily see that this is also a proof

for t -E.+ t' from P'. A similar argument gives that every transition of
TS(P') is also a transition of TS(P). I

5.7. DEFINITION. Let P =(.I', A, R) be a TSS and let r be a rule in R.

A variable in Var(r) is called free if it does not occur in the left hand side

of the conclusion or in the right hand side of a premise.

5.8. DEFINITION. Let P = (.I', A, R) be a TSS. A rule r E R is called pure

if it is well-founded and contains no free variables. The TSS P is pure if all
its rules are pure.

5.9. LEMMA. Let P= (.I', A, R) be a wel!~(ounded TSS in ty/(tyxt

format. Then there is a transition equivalent pure TSS P' =(I', A, R') in tyfi

format.

Proof By the previous lemma we can assume that P is in tyft format.

Replace every rule with free variables by a set of new rules. The new rules

are obtained by applying every possible substitution of closed terms for the

free variables in the old rule. If the old rules were well-founded and in t.1/1

format then the new rules will be pure and in t.i:ft format. Now, every

closed proof T for a transition t 1 -..:!..+ t 2 from P is also a proof for t 1 __::__. t:

from P' and vice versa. I
We now come to the first main theorem of this paper. It says that strong

bisimulation is a congruence for all operators defined using a well-founded

TSS in tyft/tyxt format.

5.10. THEOREM. Let I= (F, r) be a signature and let P= (l', A, R) bi! a
TSS. ff P is well-founded and in tyft/tyxt format then strong hisinmlation is

a congruence for all function symbols; i.e., for all jimction symbols fin F and

all closed terms u;, V;E T(.I') (1:::;;; i::;;;r(f)),

Before we commence with the proof of this theorem, we present a num­

ber of examples which show that the condition in the theorem that the TSS

be in tJft/ tyxt format cannot be weakened in any obvious way. At present,

643!100/2-6

218 GROOTE AND VAANDRAGER

we have no example to show that the condition that the TSS is well­
founded cannot be missed: we just have not been able to prove the theorem
without it. However, non-well-founded TSSs are quite pathological and we
know of no application. In Section 7 it will be shown that non-well­
founded rules are ill-behaved with respect to modularization.

5.11. COUNTEREXAMPLES.

5.11.1. EXAMPLE. The first example shows that in general the
variables in the source of the conclusion must all be different. The crucial
part of the example is a rule that one could call a syntactical tester. In case
of the alternative composition, it tests whether the left and right argument
of the + are syntactically identical. The TSS which we have in mind is
obtained by adding to P(BPA~5) the axiom x + x ~ fJ. We then have
a~ ae, but a+ a "t: a+ ae as a and ae are not syntactically equal.

5.11.2. EXAMPLE. In general, not more than one function may occur
in the source of the conclusion. Take the TSS P(BPA~) extended with the
axiom ab ~ fJ. As in Example 4.4(b) b ~ b + b, but in the new situation
we do not have any more that ab ~ a(b + b) as a(b + b) cannot do an
initial ok-transition. Another example illustrating this point is obtained by
adding the axiom x + (y + z) ~ (J to P(BPA~). Again we have h ~ b + b,
but now it is not the case that b + (b + b) ~ b +h.

As a last example of this kind we mention the typewriter of Section 5.3.
The first specification is not in tyft/tyxt format, because it contains the
axiom x * a -4 x with * and a function symbols. Now A. *a~ a but
a* (A.* a) +J: a* a. Bisimulation is a congruence for the tyjt/tyxt version of
the typewriter. The reader may also check that the identities ;, * t <::>
t *A.~ t and (s * t) * u ~ s * (t * u) with s, t, u closed terms over the
signature hold for the second version of the typewriter but not for the first
version.

5.11.3. EXAMPLE. Our next example shows that on the right hand
side of a premise, function symbols are not allowed to occur. We can add
prefixing operators a: (·) to P(BPA~) for each a E Act and define the
operational meaning of these operators with rules:

a: x-..!:.+ x.

If we now add moreover the rule

x-..::... (J

a:x~(J

we have problems because a:a:fJ+J:a:a:(fJ+b) even though b<::>b+b.

SOS AND BISIMULATION AS A CONGRIJENCE 219

. 5.11.4. ~XAMPLE. The variables in the right hand sides of the arrows

m the premises must in general be different. This is shown by adding the
rule ~

x~ yx'~ y

x ·x' ~ 1J
a =F "'/

to P(BPA'.;l. Now a'=.'a<:, but aa~({rn)a.

5.11.5. EXAMPLE. If variables in the left hand side of the conclusion

and the right hand side of the premises coincide, problems can arise too.
Add the rule

x---"--> y

x+y~b

to P(BPA~i) and observe that <:e '=:.' c, but a+ ci; ~a+ 1;.

5.12. We now prove Theorem 5.10.

Proof Let I:= (F, r) be a signature and let P = (L', A. R0) be a

well-founded TSS in tyft/tyxt format. We have to prove that '=:.' P is a

congruence. Let R s:; T(E) x T(E) be the least relation satisfying:

":?p~R,

for all function symbols fin F and terms 11,. r; (l :S; i :S; r(/)i in

T(I:),

It is enough to show that R s:; '=:.' P because then R = '=:.' P and it follows

from the definition of R that '=:.' P is a congruence for all fin F. In order to

prove that R s;;; <::::> P it is enough to show that R is a bisimulation. For

reasons of symmetry it is even enough to show only one half of the transfer

property: if u R v and u--"-+ Pu' then there is a t'' such that r---"--> Pr' and

u' R v'. If u R v then by definition of R either 11 '=:.' r v or, for some function

symbol fin F, u =.f(u 1 , ••• , url/J) and v ==.f(v 1 , ••• , l\c/Jl with u; R r, for all i.

As <::::> P trivially satisfies the transfer property, only the second option needs

to be checked. Summarizing, we have to prove the following statement:

Whenever P f-f(u 1, ••• , ur1n)---"--> u' and u,R v; for I :S; i:S;r(f) then

there is a v' such that P f- /(v 1 , .. ., v r<f 1) ---"--> i-' and z/ R 1-'.

Lemma 3.3 says that there is a proof T of f(111, u,111)---"--> u' that

contains only closed transitions. We prove the statement with ordinal

220 GROOTE AND VAANDRAGER

induction on the structure of T. Lemma 5.9 allows us to assume
throughout the proof that the rules in R0 are pure and in !Jfi format.

Let r be the last rule used in proof T, in combination with a substitution

a. Assume that r is equal to

It follows that

(I) f'=f
(2) a(x;)=u;for l~i~r(f)

(3) a(t) = u'.

Our aim is to use the rule r again in the proof off(l' 1 , ••• , v ,,11) ..._.::_. v' for
some v' by finding a proper substitution a'. Consider the dependency graph
G of the premises of r. Because r is ty(i, each node in G has at most finitely
many incoming edges. Because G is well-founded we can define for each
node x of G, depth(x) EN as the length of the maximal backward chain of
edges (use Ki:inig's lemma). Define

X = { x; 11 ~ i :::::; r(f l}

Y={J;liEI}

Y,, = { y E YI depth (y) = n } for n;;::,: 0.

Observe that for any variable x EX, depth(x) = 0, and that the sets Y,, form
a partition of Y. We will define a substitution a' that satisfies the following
properties:

a(y) R a"(y)

PI- a'(t, ~ J;)

for 1 ~i~r(f)

for yEXu Y

for i E !.

(!)

(2)

(3)

Substitution CJ' will be constructed in a stepwise fashion. To begin with we
define

for 1 :::::;i~r(f)

a"(y) = a(y) for yEv-(xu,,V0 Y,,)
We still have to define a' on U,,> 0 Y,,. As soon as CJ' has been defined for
all variables in Xu Y0 u ··· u Ym (m?:O), we can state the following
properties a(m) and f3(m):

a(m): a(y) R a'(y)

/J(m): P f-a'(t;~ yJ
for y E XU Y0 u · · · U Ym

for Y;E Y0 u · ·· u Y,,,.

SOS AND BISIMULATION AS A CONGRUENCE 221

One can easily check that cx(O) and P(O). Let n>O. Suppose that a' has
been defined already for all variables in Xu Y0 u ... u Y,, 1 in such a way
that properties cx(n - 1) and P(n - 1) hold. We show how to define er' on
all variables of Y,, such that cx(n) and P(n) hold. This is sufficient for com­
pleting the definition of a er' that satisfies properties 1-3: property I is met
by definition, properties 2 and 3 follow because a' satisfies properties cx(n),
resp. /3(n), for all n EN.

Pick an element y* E Y 11 • There is a unique i EI with y* =)';. Because
Y; E Yn and rule r is pure, Var(t ;) ~Xu Y0 u · · · u Y,, .. 1 • Now use that a'

satisfies cx(n-1) to obtain that for all variables yEVar(t;): a(y)Rer'(y).
Next we use the following

FACT. Let t E T(.E) and let p, p': V ~ T(E) be substitutions such that for
all x in Var(t), p(x) R p'(x). Then p(t) R p'(t).

Proof Straightforward induction on the structure of term t using the
definition of R. I

We obtain that er(t;) R a'(t;). Since also P f- er(t;) ~ er(y;), we can
distinguish, by definition of R, between two cases:

(1) a(t;)'.:±per'(t;). In this case we can find a weT(E) such that
P f- a'(t;) ~ w and er(y;) R w. We then define a'(y*) = er'(y,) = w.

(2) There is a function symbol g in F and there are terms w1, wj for

1 ~j~r(g) such that

and

w;Rwj for 1 ~j~ r(g).

But now we can apply the induction hypothesis which gives that we can
find a w such that P f- g(w'1 , ••• , w~!gl) ~ w and er(y;) R w. We define

a'(y*) =a'(Y;) = w. .
In the same way we can define er' for the other elements of Y,,. It is not

hard to see that after this cx(n) and P(n) hold.
Let for i E /, T; be a proof of er'(t;~ y;). Construct a proof~· with root

er'(f(x x .)-!!...+ t) and as direct subtrees the proofs T; (1 E !). Define
I' ... , r(.f) a I s· f ll

v' = a' (t). Clearly T' is a proof for /(v 1, ... , v rtli) __,. l' · me~ ~r a
x E Var(t), a(x) R a'(x) (use that r is pure), it foll?ws by an ~ppl~catlon of
the previously stated fact that a(t) R er'(t) or, equivalently, u R v · I

222 GROOTE AND VAANDRAGER

5.13. The implication in Theorem 5.10 cannot be reversed. So given a
TSS for which bisimulation is a congruence, this TSS need not be well­
founded and in n·tt/trxt format. This is obvious because for any TSS, a
transition equivai~nt TSS can be obtained by adding all derivable transi­
tions as rules. And if bisimulation is a congruence for the one it is a
congruence for the other. If one starts from a well-founded TSS in tyfi/tyxt
format, the result will in general not be t_i1i/tyxt. For instance, in the case
of P(BPA~;) one adds the rule a· (x + y)....::... D · (x + y).

Even after derivable rules are removed, a TSS for which bisimulation is
a congruence need not be well-founded and in tyji/tyxt format. The TSS
P'(BPA'.;) described in Section 5.5 contains no derivable rules and is not in
trft/fl·xt format. But, as observed in that section, it is transition equivalent
t~ the TSS P(BPA'.;) which is in tyft/tyxt format. Hence, bisimulation
equivalence is a congruence.

It is worth noting that if one adds new operators and rules to P'(BPA~),
the congruence property can get lost, even if the rules for the new operators
are tyft. In order to see this, consider the TSS obtained by adding to
P'(BPA'.;) encapsulation or restriction operators Z! ff for H s; Act and the tyj{
rules

" ' x----> x
a~ H.

We then obtain a<::>ZJ 1h 1(a), but a·b"i!Z!:hl(a)-h.
The examples above do not rule out the following weakened variant of

the reverse implication of Theorem 5.10: if Pisa TSS for which bisimula­
tion is a congruence, then TS(P) can be specified by a well-founded TSS
in tyfi/tyxt format. Below we present a TSS that eliminates this variant of
the reverse implication. Consider the TSS P that has constant symbols a,
b, and o, a binary function symbol j; labels a, h, c, and rules

a....::... o
h....::... 0

/(a)_:_,. o.

The last rule is not tyft/tyxt, but it is not hard to see that <:::> P is a
congruence. We claim that there exists no TSS in tyf!/tyxt format that is
transition equivalent to P. In order to prove this claim, it is, by Lemma 5.6
and the proof of Lemma 5.9, sufficient to show that no TSS P' in tyft
format and without free variables in the rules can be transition equivalent
to P. Suppose there were such a P'. Since P' 1-- f(a) _:_,. (), there is a closed

SOS AND BISIMULATION AS A CONGRUENCE 223

of/(a) ~ii such that only the root of Tis labelled withf(a) ~ii.
er nodes in T are labelled with either a~ (), h ~ 8, or b _!c_., ii.
the last rule used in T, in combination with a substitution <J. Rule

'e of the form

f(x)~ t

t hard to see that for i E J, t, must be equal to x, a, or b. Clearly
l. Let <J 1 be the same as CJ except that <J 1 (x) =h. Let i EI. Then
· t;) is either a~ c5, b ~ c5, or h _!c_., c5. Moreover CJ 1 (t) = 6. Thus
construct a proof from P' of transition f(b) ~ 6 by taking r as a

:': with substitution a' and appending proofs of a~ c5, b ~ c5 and
on top of that at the appropriate places. Contradiction.
in this case we have that adding tyft rules may destroy the

:':nee property (take the axiom a _!c_., 6).

Remark. The examples of Section 5.13 show that there is another
for using TSSs in t.ijt/ tyxt format, namely their extensibility without
ering congruence properties. We conjecture that, whenever a TSS
LS a non-tyft/tyxt rule, it is possible to extend this TSS (except for
rivial cases, for instance if the non-tyft/tyxt rules are derivable) with
)er of tyft rules in such a way that for the resulting TSS bisimulation
a congruence.

6. SOME APPLICATIONS

his section we give some examples of TSSs and applications of the
ience theorem.

The Silent Move. In process algebra it is current practice to have
stant '"r" representing an internal machine step that cannot be
1ed. In order to describe the "invisible" nature of r, the notions of
at ion congruence (Milner, 1980) and rooted-r-bisimulation (Bergstra
Clop, 1988) have been introduced. As observed by van Glabbeek
) it is not necessary to introduce a new notion of bisimulation: one
Jst work with the standard notion of strong bisimulation if one is
g to add some Plotkin style rules that capture the notion of a hidden,
al machine step.
ow we assume that r is an element of the set Act of actions that
s as a parameter of the TSS P(BPA;;J. The TSS P(BPA;0) is obtained
lding to P(BPA~) the rules ofTable2 (aEAct,i).
e possible interpretation that one can give to a transition t ~ t'

:) is that the system that is modelled can evolve from state t to state

224

7.

8.

9.

GROOTE AND VAANDRAGER

TABLE 2

Rules for the Silent Move r

x4y y~z
x4z

x~y y4z
x~z

t' during a certain positive time interval in which an occurrence of action

a can be observed. Then t ~ t' means that no action can be observed

during such an interval. Rules 8 and 9 can be viewed as logical conse­

quences of this interpretation. It is consistent with the interpretation of

transitions and the rules of Table l and Table 2 to assume that execution

of a process a takes a positive amount of time; the observation of the action

a, however, takes place at the beginning. Rule 7 says that when the action

a is observed, the process a that executes this action may still perform some

internal activity before it terminates successfully.

The TSS P(BPA;,0) is in pure tyfi/tyxt format. Thus strong bisimulation

is a congruence. One can prove that the theory BPA;,,5, as presented in

Table 3 (a ranges over Act), is a sound and complete axiomatization of the

model induced by the TSS P(BPA;,,,) modulo strong(!) bisimulation. This

means that, if '-='mi denotes rooted-r-bisimulation (i.e., observation

congruence), we have the following situation:

TABLE 3

The Axiom System BPA:,

x+y = y+x Al QT= a
x +(y +z) = (x +y)+z A2 TX + X = TX

x+x = x A3
(x +y)z = xz +yz A4

a(-rx +y) = a(TX +y)+a.x

(xy)z = x(yz) AS

x+o=x A6
8x = o A7

a= x A8
X(= x A9

Tl
T2
T3

SOS AND BISI MULA TJON AS A CONGRUENCE 225

a

T T

T

F10. 8. (a= m).

In Figs. 8-10 we give three examples corresponding to the r-laws of

Milner (1980). In Fig. 8 two separate transition systems are drawn. In

Figs. 8 and 10 a may not equal r. In Fig. 9 the relevant states of r + <: and

r are drawn, as the equation r + e = r is equivalent to the axiom T2. It is

left to the reader to check that the transition systems are strongly bisimilar.

6.2. Recursion. There are many ways to deal with recursion in process

algebra. One approach is to introduce a set Z of process names. Elements

of Z are added to the signature of the TSS as constant symbols. The recur­

sive definitions of the process names are given by a set E = { X = t x IX EE l
of declarations. Here the t x are ground terms over the signature of the TSS

(hence, they may contain process names in E). If X = fx is a declaration.

then this means that the behaviour of process X is given by its body t 1 .

Formally this is expressed by adding to the TSS rules

fx~ y

X~y

FIG. 9. (r+t:=r).

T

226 GROOTE AND VAANDRAGER

a(Tx +y)+ax

'T

FIG. 10. (a(rx+ y)=a(rx+ y)+ax).

for every declaration X = t x· Now observe that these rules are pure tyft.
Hence it follows that if one adds recursion to a well-founded TSS in
tyjt/tyxt format in the way described above, bisimulation remains a

congruence.
A slightly different way of dealing with recursion is followed by Olderog

and Hoare (1986) and Hennessy (1988). Here axioms X ~ tx appear
saying that by some internal activity, a process name can expand to its
body. This type of rules also satisfies our format.

6.3. The State Operator. In many cases where operational semantics of
a language is defined using Plotkin style rules, values play a role (see for
instance (America et al., 1986; Plotkin, 1983)). Here, states of the transition
system are generally configurations, i.e., pairs < t, a) of a process expres­
sion t and a valuation a. In this section we argue that it is often possible
to give inductive rules for these languages within the tyft/tyxt format using
the extended state operator A er of Baeten and Bergstra (1988).

We add the state operator to the setting of BPA~~ of Section 6.1. Let S
be a set of states. For each a ES we add a function symbol A,, to the
signature. An expression Aa(t) represents a process that transforms the
state a during successive transitions of t as specified by a function effect:
S x Act x Act~ S while influencing the actual labels of the transitions oft
as specified by a function action: Act x S ~ 2A<I. action(a, a) defines the set
of actions that can be performed by A "(t) if t performs an a. effect(a, a, b)
defines the resulting state if Aa(t) actually transforms under h E action(a, a).

Note that the extra argument b is necessary as the action function defines
a set of possible actions that can be performed by A"(t). The environment
may determine which action from this set actually will occur. The functions

SOS AND BISIMULATION AS A CONGRUENCE 227

effect and action are inert for r; i.e., action(r, u) = { r} and effect((J, r, a)= a
for every a E A et. The rules for the state operator are ((J E S: a, h E A er 1:

x.....!!..+ x'

A,,.(x) __!!.._, Aetfoct(a,u.hJ(x')

x -..:o4 x'

A,,(x) ~ A,,(x')

h E action(a, (J)

Clearly the above rules are pure tyft, so bisimulation will be a congruence.
As a typical application we consider a small subset of CSP. Actions in Act
are of the form r, g!e, g'?u, or [u := e], where v ranges over a set 'I' of
program variables and e ranges over natural number expressions built from
'I·, constants for the natural numbers, and the usual operations such as +,
-, x. g!e means "write the value of expression e to channel g," g'1i• means
"read a value from channel g and assign this value to v" and [v := e]
means "assign the value of expression e to t•." We assume the presence of
an interpretation function [.] that, given a valuation (J of the variables,
yields for each expression a natural number. As state space S we take all
valuations in 'f.--+ N. Let u[n/u] be the valuation u except for the fact that
variable v is mapped on n. Now we can define the functions action and
effect as follows:

action(O', g!e) = {g![e]"}

action(O', g?v) = {g'?n In EN}

action(a, [v := e]) = { r}

effect((J, g!e, g!n) = (J

effect((J, g'?v, g'?n) = O'[n/v]

effect((J, [v := e], r) = (J["/v]

Function effect is inert in the cases that are not specified. As an example
consider a process that is capable of reading a value from channel g 1 and
sending the square of that value to channel g2 :

A,,.(g 1'?v · [w := u x u] · g 2 !w)

A particular sequence of transitions of this process is:

!11'?3

It is not difficult to extend the combination of BPA ;,1 and the state
operator with a parallel combinator. Then, communication can be defined
such that we have value passing between several processes. We will not give
a detailed elaboration of this because that would go beyond the scope of
this article. However, we would like to stress that in some sense the

228 GROOTE AND VAANDRAGER

extended state operator is more powerful than the approach with a global
state using configurations. The extended state operator can in a very
natural way be used to model that certain data are local to some processes.

7. MODULAR PROPERTIES OF TRANSITION SYSTEM SPECJFICA TIONS

Often one wants to add new operators and rules to a given TSS. There­
fore, a very natural operation on TSSs is to take their componentwise
union. Given two TSSs P0 and P 1 we use the notation P 0 83 P 1 to denote
the resulting system. A nice property to have in such a situation is that the
outgoing transitions in TS(P0) of terms in the signature of P0 are the same
as the outgoing transitions of these terms in TS(P0 83P 1). This means that
p0 (£JP 1 is a conservative extension of P0 : any property which has been
proved for the states in the old transition system remains valid (for the old
states) in the enriched system.

In this section we study the question what restrictions we have to impose
on p0 and P1 in order to obtain conservativity. First we give the basic
definitions.

7.1. DEFINITION. Let L;= (F;, r;) (i = 0, 1) be two signatures such that
fE F0 11 F1 ~r0(f)=r1 (f). The sum of 1'0 and I 1, notation I: 0EBI:1, is the
signature

7.2. DEFINITION. Let P;=(L;,A;,R;) (i=O, I) be two TSSs with
I 0 (fJ I: 1 defined. The sum of P 0 and P 1, notation P 0 ffi P 1, is the TSS

7.3. DEFINITION. Let P; =(I:;, A;, R;) (i = 0, 1) be two TSSs with
P=P0 (f;P 1 defined. Let P=(I:,A,R). We say that Pisa conservative
extension of P0 and that P 1 can be added conservatively to P0 if for all
SE T(I: 0), a EA, and tE T(I:),

Pl-s~ t<=>P0 f-s__l!_, t.

Note that the implication P I- s ~ t <= P 0 I- s __!!_;. t holds trivially.

7.4. Remark. Let P; = (I:;, A;, R;) (i = 0, I) be two TSSs with
P = P 0 EBP1 a conservative extension of P0 . Then P is also a conservative
extension of P0 up to bisimulation; i.e., for s, tE T(E0),

S ':::>pt<=> S ':::>Po f.

SOS AND BISIMULA TION AS A CONGRUENCE 229

7.5. COUNTEREXAMPLES. We want to study the question in which cases

a TSS P 1 can be added conservatively to a TSS P 0 . However, we restrict

ourselves to the case where both P0 and P1 are in tyft/tyxt format. Below,

5 examples are presented that illustrate different situations where we do not
have conservativity.

7.5.1. EXAMPLE. If P 1 has a rule with a function symbol that already

occurs in I 0 in the lhs of the conclusion, then problems arise quite soon.

If P 0 = P(BPA~) and P 1 contains a single rule

x+y~6,

then 6 <:::?Po 6 + 6 but not 6 <:::?Po(!) p 1 6 + 6.

7.5.2. EXAMPLE. Conservativity can get lost if free variables occur in

a premise of a rule in P 0 . In order to see this consider the TSS P 0 with

constant symbols a, b, a label a, and rules

a--"-+ a

x--'!...+ y

b--'!...+ y

It is not hard to see that a <:::? b. However, if we add constant symbols c, d,

and a rule c--"-+ d it follows that a':/! b.

7.5.3. EXAMPLE. Conservativity can get lost also if free variables

occur in the conclusion of a rule in P0 . Let the signature of P0 consists of

two constant symbols a and b. The set of labels contains only a and there

are two axioms:

a--"-+ a

b--'!...+ x.

It is not hard to see that a<:::? Po b. However, if we add a TSS P 1 which

contains a constant symbol c and no rules, then a':/! Po(!) p 1 b.

7.5.4. EXAMPLE. Conservativity up to bisimulation can be violated if

we add tyxt rules to a given TSS. Let P0 consist of P(BPA'.;). In P0 we have

a <.=::> a + 6. This i~ no longer true if we add a TSS P 1 which contains a

single axiom x -.Y..+ x.
Another example of this kind is given by Rules 8 and 9 in Table 2 of

Section 6.1. Consider P(BPA'.;) to which Rule 7 has been added. None of

the r-laws holds in this system. However, if Rules 8 and 9 are added the

230 GROOTE AND VAANDRAGER

r-laws do hold. Hence, Rules 8 and 9 do not preserve conservativity up to

bisimulation.

7.5.5. EXAMPLE. Our last example shows that non-well-foundedness
of p0 can disturb conservativity. Suppose P 0 consists of P(BPA'.,) and a

circular (non-well-founded) rule

ok ok
X1 +Yi--> Y2 X2+ Y2--> Y1

X1 +x2~ Y1 + Y2

One can easily see that i5 <::.> p 11 () + i5. However, adding a TSS P 1 with a
single axiom ok ~ ok makes i5 ':/!Po tB P, i5 + o.

The next theorem shows that in some sense the examples above give a
complete overview of the situations in which we do not have conservativity.

7.6. THEOREM. Let P0 = (l'0 , A0 , R0) be a TSS in pure tyfi/tyxt format
and let P 1 = (E 1, A 1, R 1) be a TSS in tyft format such that there is no rule
in R1 that contains a function symbol from E 0 in the left hand side of its
conclusion. Let P = P 0 EB P 1 be defined. Then P 1 can he added conservatively
to P 0 .

Proof We use the same type of strategy as in the proof of
Theorem 5.10. Let P = (E, A, R). Let s E T(E0), a EA, and s' E T(.E) with
p f- s--"-+ s'. Let T be a proof of s--"-+ s' from P. With ordinal induction on
the structure of T we prove that T is also a proof of s---"-+ s' from P 0 . Let
r be the last rule which is used in T. Because s E T(L 0) and all rules of P 1

are tyft and contain no function symbols from Lo in the left hand side of
their conclusions, r must be in R 0 . Suppose r is pure tyfi (the case that r
is pure tyxt is completely analogous and omitted). Suppose in particular
that r is equal to

{t;~Y;[iEf}

f(x 1 , ••• , x,1n)--"-+ t

Let rJ be the substitution that relates rule r to the last step in proof T. We
then have

rJ(f(X 1 , •• ., x,1n)) = S,

rJ{t) = s'.

Consider the dependency graph G of the premises of r. As in the proof of
Theorem 5.10 we define, for each node x of G, depth(x) EN as the length
of the maximal backward chain of edges. Further we define

SOS AND BISIMULATION AS A CONGRUENCE

X= {x;I I ~i~r(f)}

Y= {Y;liE/}

Yn={yE Yldepth(y)=n} for n?: 0.

231

With induction on n we prove that O"(X) is in T(l.'0) for all xeXu Y.
Because s E T(l.'0) and a(f(x 1 , ... , xr1n) = s, O"(x) E T(l.'0) for all x e X. Let
neN and suppose that c;(x)E T(l.'0) for all xEXu Y0 u ... u Yn_ 1• Let
y* E Yn. There is a unique iE I with y* = Y;· Because J';E Yn and ruler is
pure, Var(t;)~Xu Y0 u ··· u Yn_ 1 • But now we can apply the induction
hypothesis: since s;=a(t;)ET(I0), s;=a(y;)ET(I0) too. Since y* is
chosen arbitrarily, a(y) E T(l.'0) for all yE Yn- This finishes the induction
on n so that we have shown that O"(y) E T(l.'0) for all x e Xu Y. Since
Var(t) ~Xu Y, we may conclude that s' = O"(t) E T(L'0). I

7.7. In our view the counterexamples which show that the original
system has to be pure and no rule from the added system may contain a
function symbol of the original system on the lhs of its conclusion are quite
strong. It will be difficult to strengthen Theorem 7.6 by weakening these
constraints. Because modularity is an important and desirable property
and because TSSs which are not pure are ill-behaved with respect
to modularity, one might decide, for this reason, to call such TSSs
unstructured.

The main reason we had for including Theorem 7.6 in this paper is that
we need it in the next section. We expect that a lot more can be said about
modular properties of TSSs than we have done here.

8. TRACE CONGRUENCES

In this section we study the trace congruences induced by the pure
tyft/tyxt format. Intuitively, two processes s and t are (completed) trace
congruent if for any context C[] which can be defined using the pure
tyft/tyxt format, the (completed) traces of C[s] and C[t] are the same. It
seems reasonable to require that, whenever new function symbols and rules
are added to a TSS in order to build a context which can distinguish
between terms, these new ingredients may not change the original
transition system: the extension should be conservative. If it would be
allowed to introduce new transitions in the original transition system, then
we could add rules like

/'nr(s) / l'm(l) y' x x,y
x + y _1'_m_(s_+_1)-+ x' + y'

232 GROOTE AND VAANDRAGER

and make syntactically different terms always have outgoing transitions
with different labels. As a result completed trace congruence would just be
svntactic equality between terms.
• The results of the previous section show that for a TSS in tyft/tvxt

format it is in general rather difficult to determine a class of TSSs which
can be added to it conservatively. Consequently it is also difficult to charac­
terize the completed trace congruence induced by this format. However, for
TSSs in pure tyft/tyxt format such a class exists: by Theorem 7.6 every TSS
in tyft format can be added conservatively to a TSS in pure tyft/tyxt
format. For this reason we decided to work on a characterization of the
completed trace congruence induced by the pure tyfi/tyxt format and leave
the general tyft/tyxt format for what it is.

8.1. DEFINITION. Let a= (S, A, -t) be a LTS. A states Es is a termina­
tion node, notation s +;, if there are no t ES and a EA with s ~ t.
A sequence a 1 *.·.*a,, EA* is a completed trace of s if there are states

h h d "' "' an CT() . h s0 , .•. ,SnESsuc t ats0 =san s0 --->S1~···--->s"f> .. s 1st esetof
all completed traces of s. Two states s, t ES are completed trace equivalent
if CT(s)=CT(t). This is denoted as s=crt.

8.2. DEFINITION. Let ff be some format of TSS rules. Let P = (L', A, R)
be a TSS in ff format. Two terms s, t E T(.E) are completed trace congruent
with respect to ff rules, notation s =.,.- t, if for every TSS P' = (L'', A', R')
in ~ format which can be added conservatively to P and for every I EB ..E'­
context C[], C[s] =er C[t]. sand t are completed trace congruent within
P, notation s = P t, if for every .E-context C[], C[s] =er C[t].

8.3. Note. In the sequel we define a number of equivalence relations on
the states of transition systems. If P = (L', A, R) is a TSS and s, t are terms
in T(L') then, whenever we say that s and t are equivalent according to a
certain equivalence relation, what we mean is that the states s and t of the
transition system TS(P) are equivalent according to this relation.

8.4. Overview of results of Section 8. Abramsky (1987) and Bloom,
Istrail, and Meyer (1988) give rules to define operators with which one can
distinguish between any pair of non-bisimilar processes. We cannot obtain
this result with pure tyft/tyxt rules, but we show that the notion of
completed trace congruence with respect to pure tyft/tyxt rules exactly
coincides with 2-nested simulation equivalence for all image finite processes.
What we in fact prove is best illustrated by Fig. 11. The arrows indicate set
inclusion. "IF" stands for Image Finite and indicates that we need image
finiteness of processes for the proofs of inclusions 3, 5, and 6. For m E N,
::;m ism-nested simulation equivalence. ~ 2'm is the equivalence induced by
the set .!em of Hennessy-Milner formulas in which no negation symbol

SOS AND BISIMULAT!ON AS A CONGRUENCE 233

4

FIGURE 11

occurs nested m times or more. In the right corner of Fig. 11 we have an
auxiliary equivalence notion t:;."'. In Sections 8.5-8.7 these notions are
made precise and the inclusions are proved. It immediately follows that
both triangles collapse for image finite transitions systems. In particular we
prove the following Theorem 8.4.2.

8.4.1. DEFINITION. An LTS (7[= (S, A, ->) is image ji'nite if for all
s ES and a EA the set { t I s-3..+t} is finite.

8.4.2. THEOREM. Let P = (L', A, R) he a TSS in pure tJft/tyxt format
such that TS(P) is image finite. Lets, t E T(I). Then

?

S =:pure ry/i/ ryx r t <=> S :::; - ! <=> S "' .'.!'" ! .

Proof Direct from Theorem 8.5.8, Corollary 8.6.7, and Corollary
8.7.6 of this section. I

We are quite sure that, if one uses infinitary Hennessy-Milner logic as in
(Milner, 1989), the restriction of image finiteness in Theorem 8.4.2 can be
dropped. Because we wanted to keep the presentation as simple as possible,
we preferred to leave this generalization as an exercise to the reader.

In Section 8.8 we show that, using the results that were needed to
characterize the completed trace congruence for the pure tyft/tyxt format,
it is easy to prove that the trace congruence with respect to this format
coincides with simulation equivalence for image finite processes.

Bloom, Istrail, and Meyer have studied the completed trace congruence
induced by tree rules. Tree rules differ from pure tyft/tyxt rules in that they
may only have variables in the premises and there may not be a single
variable in the left hand side of a conclusion. Hence, one could also call
this type of rules "pure XJft rules." They proved the following theorem
(Bloom, 1988):

8.4.3. THEOREM (Bloom, Istrail, and Meyer). Let P =(I, A, R) be a
TSS in tree rule format such that TS(P) is image finite. Lets, t E T(Z). Then

S =tree rules f <::> S ,._. .!/'2 t ·

234 GROOTE AND VAANDRAGER

This result. which is close to our characterization theorem, has not been

published. A sketch of the proof is included at the end of this section. We

were aware of the result of Bloom, Istrail, and Meyer before we proved the

characterization theorem for the pure tyfi/tyxt format. However, all proofs

in this section arc entirely our own.

8.5. Nested Simulation Equivalences.

8.5.1. DEFINITION. Let (t = (S, A, ~) be a L TS. A relation R SS x S

is called a simulation if it satisfies:

whenever s R t and s_!!_.,s' then, for some t' ES, also t_!!_., t' and

s' Rt' .

. 1· can he simulated hy t, notation s .S t, if there is a simulation containing

the pair (s, t). sand t are simulation equivalent, notation s ::; t, ifs S t and

t s s.

Note the difference between simulation equivalence and bisimulation

equivalence: in the case of a bisimulation equivalence, there should be a

single relation which is a simulation relation in two directions; in the case

of simulation equivalence it is required that there be two simulation

relations, one for each direction.

8.5.2. DEFINITION. Let a= (S, A, ~) be a LTS and let 0: be an

ordinal number. We define the relation S, s S x S inductively as follows:

s .S' t iff for each f3 < rx there is a simulation relation R s (.S 11) 1

with s Rt.

Two states s and t are rx-nested simulation equivalent, notation s ::; 't, if

s .S' t and t .S' s.

8.5.3. LEMMA. Let (JC= (S, A, ~) be a LTS. Let a., f3 he ordinal num­

bers with f3 < rx. Let s, t ES. Then:

0.

I.

2.

3.

.S 0 =SxS

.S 1 = .S and ::; 1 = ::;
c>cc/I
~ -~

4. ::; ' s; _$' f; ::; /I

5. <::::> s; ::;11

6. s_s>+ 1 tiffthereisasimulationrelation Rs(::;~) 1 withsRt.

Proof Straightforward using the definitions. I

SOS AND BISIMULA TION AS A CONGRUENCE 235

Besides the above lemma, there are many other interesting facts about
nested simulations that one may try to prove. In particular it is interesting
to see what are the exact relationships between nested simulation equiva­
lences and bisimulation equivalence. Below some results are presented
which clarify these relationships. Since these results are a bit outside the
scope of this paper, all proofs have been omitted.

8.5.4. COUNTEREXAMPLE. Below we present a counterexample which
shows that the inclusion of Lemma 8.5.3.5 is strict. In order to present the
example it is useful (although not necessary) to introduce the summation
operator L· This operator, which for instance occurs in (Milner, 1989),
does not fit the framework of this paper because it may have an arbitrary,
possibly infinite number of arguments. If t i (i E /) are terms, then L;E / f; is
a term too. Its behaviour is described by rules (for all a EA, jE /)

One has to assume an upper bound on the cardinality of the index set I in
order to make the collection of terms setlike. In our framework the
operator L: can be coded by viewing L; E / t i as a constant. Besides the L:
operator, we use b and + as in P(BPA'.;) and prefixing operators a: (·) as
in Section 5.11.3. We define the following terms:

If r:x is a limit ordinal, then

s0 = c:b

t0 =s0 +b:b

s,+ 1 =a:t,

s, = I d:s11

/I<>

s,= I d:(S,+d:t11)
/J<"

t, = s, + d:S,.

A part of the transition system is displayed in Fig. 12. One can prove that
for every ordinal a: s, ~" t, and s, <t: t,. However, within a fixed transition
system ~" and <.::? will coincide when a is large enough:

236 GROOTE AND VAANDRAGER

~
s

a a c
a a
~~~s 

2 l 0 b 

FIGURE 12 

8.5.5. THEOREM. Let a= (S, A, ...... ) be a LTS and let :x be the smallest 
regular cardinal larger than the cardinality ol all sets { s' Is-..::... s'} (a EA, 
sE S). Then 

s ::;: , t ~ s <::::> t. 

This theorem implies in particular that for image finite transition systems 

the intersection for all m EN of m-nested simulation equivalence coincides 

with bisimulation equivalence. 
Another implication is that if, relative to some transition system, '.'.::;" is 

different from <.::.>, ::;/I and ::;:;·are different for all fJ < y::;;: et. 

8.5.6. Nested Simulations and Completed Trace Equivalence. Simula­

tion equivalence does not refine completed trace equivalence. Take for 

example the simulation equivalent processes a and a6 +a. The completed 

trace sets are {a* j} and {a, a* j}, respectively. However, it is not 

hard to see that for m ~ 2, m-nested simulation equivalence does refine 

completed trace equivalence. 

8.5.7. LEMMA. Let I:= (F, r) be a signature and let P =(£,A, R) be a 
TSS. If P is well-founded and in t}ft/tyxtformat, then for all ordinals a,'.::;:' 

is a congruence for all function symbols in F. 

Proof Completely analogous to the proof of Theorem 5.10. Let P be 

well-founded and in tyft/tyxt format. It is sufficient to show that for all 

ordinals a, all f E F, and all closed terms u ;, v; E T( E) ( l ::;;: i::;;: r(f) ), 

We prove this statement with induction on a. Let a be an ordinal and 

suppose the statement is proved for fJ <a. Let R <;; T(E) x T(.2:) be the least 

relation satisfying 

- for all function symbols f in F and terms u;, v; (I ::;;: i::;;: r(f)) in 
T(E), 



SOS AND BISIMULATION AS A CONGRUENCE 237 

It is enough to show R s; S x. Let {J < :x. Since, by Lemma 8.5.3.3. 
S ~ <;; ( 5::/) 1, and because, by the induction hypothesis. ::;:/ is a con-
gruence we have that R s; ( S 11 ) 1• In order to show that R <;; S ,_ it 
remains to be shown that R is a simulation relation. i.e., if u R r and 
u .-::_.Pu'. then there is a t'' such that v _q_,, P v' and u' R v'. The proof of this 
fact can in essence be copied from the proof of Theorem 5.10. I 

The next theorem states the validity of inclusion 1. 

8.5.8. THEOREM (Inclusion l ). Let P =(I. A, R) be a TSS that is in 
pure t_yft/tyxt format. Then 

+-2 c -
-+ - =pure ryff./tyxt• 

Proof Let s,tET(I:) with s=t 2 t. Let P'=(I:'.A'.R') be a TSS in 
pure t_yft/tyxt format that can be added conservatively to P and let C[ ] 
be a L"(f)L"'-context. Since PIJ)P' is a conservative extension of P. s =t 2 t 

within TS( P IJ) P' ). Now we use that =:; 2 is a congruence for operators in 
pure tyft/tyxt format (Lemma 8.5.7) and get C[s] =:; 2 C[t]. Since =:; 2 

refines completed trace congruence, C[s] =CT C[t]. Because P' and C[ ] 
were chosen arbitrarily this gives us: s =pure ryti/tyxr t. I 

8.6. Testing Hennessy-Milner Formulas. Next we give the definitions of 
Hennessy-Milner logic (HML) and prove the second inclusion in Fig. 11. 
Most definitions are standard and can also be found in (Hennessy and 
Milner, 1985 ). The notion of HML-formulas of alternation depth m seems 
to be new, although the set of HML-formulas of alternation depth I (the 
formulas without negation) is exactly the set .ft of (Hennessy and Milner, 
1985 ). 

8.6.1. DEFINITION. The set Y of Hennessy-Milner logic (HML) 
j(mnulas (over a given alphabet A = {a, b, ... } ) is given by the following 
grammar: 

<P ::= T l<P /\<PI 11,b I (a) <,b. 

Let a= (S, A, --->) be an L TS. The satisfaction relation I= s; S x Y is the 

least relation such that 

-- s I= T for all s E S, 

- s I= <P /\ !/J iff s I= <P and s I= l/J, 
-- s I= 1 <P ifT not s I= l,b, 
- s I= <a) efJ iff for some t E S: s .-::_. t and t I= <,b. 



238 GROOTE AND VAANDRAGER 

We adopt the following notations: 

- F stands for 1 T, 

- rjJ v if; stands for 1(1r/J /\ 11/t), 

- [a]1 stands for -i(a) -ir/J. 

It is not difficult to see that any HML formula is logically equivalent to a 
formula in the language 2" which is generated by the following grammar: 

r/J ::= TIFI r/J /\ r/Jlr/J v r/JI (a)r/JI [a]r/J. 

8.6.2. DEFINITION. Let a= (S, A, -4) be a LTS and let .% be a set of 
HML formulas. With ~ ~· we denote the equivalence relation on S induced 
by.%: 

We will call this relation x· formula equivalence. 

We recall a fundamental result of Hennessy and Milner ( 1985 ): 

8.6.3. THEOREM (Hennessy and Milner). Let a= (S, A, -4) be an 
image finite LTS. Then for all s, t ES, 

s <::::> t <;:> s ~ !.!' t. 

8.6.4. DEFINITION. For m EN define the set Y"' of HML-formulas 
given by: 

-- .st:i is empty, 

·-- Ym+ 1 is from the following grammar: 

We leave it as an exercise to the reader to check that the equivalence 
induced by Yrn formulas is the same as the equivalences induced by the sets 
.ff~.> and ff~" l which are given by 

- fa >=x·~ 1 =0. 

- % ~ l 1 is defined by 

- % ~ ~ 1 is defined by 

r/J ::=ljt (for if;E%~1 >) IT! Flr/J /\ r/Jlr/J v r/JI [a]r/J. 



SOS AND BISIMULATION AS A C'ONGRUENC'E 239 

8.6.5. EXAMPLE. Consider the terms s;, t; as defined in Section 8.5.4. 
Define for O<m<w the formula <p,,,E2,,, by <p,=<h)T/\ <c)T and 
<f1m+1=(a)1<p,,,. It is easily checked that for i~O: S;fF<fJ;+i and 
t;f=<fJ;+L· 

8.6.6. THEOREM (Testing !/12 Formulas). Let P0 = (E0 , A 0 , R 0 ) be a 
TSS in pure tyft/tyxt format. Then there is a TSS P 1 = (l' 1, A 1 , R 1 ) in pure 
tyft format, which can be added conseniatively to P0 , such that completed 
trace congruence within P 0 EB P 1 is included in !112 formula equivalence. 

Proof P 1 is constructed in the following way. The set A 1 consists of 
A0 together with 5 new labels: 

A 1 = A 0 u { ok, left, right, syn, skip}. 

Signature I: 1 contains a constant c5, unary function names a: for each 
a EA 1 , and binary function symbols+ and Sat. Observe that the signature 
is finite if the alphabet A0 is finite. For c5 and + we have just the same rules 
as in BPA~ and a: denotes prefixing as in Example 5.11.3. The most 
interesting operator is the operator Sat. Its first argument is intended to be 
a coding of some !/12 formula. The Sat operator tests whether its second 
argument satisfies the 2 2 formula which is represented by its first 
argument. The rules of the Sat operator are given in Table 4. In the table 
a ranges over A 1• Because P 1 is in tyft format, I: 0 n l' 1 = 0 and P 0 is pure 
tyft/tyxt, it follows from Theorem 7.6 that P 1 is a conservative extension 
of P0 . 

TABLE 4 

A Test System for 2'2 Formulas 

Sat(x,y) 01) Sat(x',y) 

x~x1, Sat(x1,y)~y1 
x~x,, Sat(x,,y)~y, 

Sat(x,y) Ok)y,+y, 

x~x', x'4x" 
y...27y', Sat(x",y)~y'' 

Sat(x,y)~y" 

2 

3 



240 GROOTE AND VAANDRAGER 

!!'2 formulas are encoded using the following rules: 

C T = skip ; 6, 

cl/> A if;= lejt:C!/> + right:Cif;, 

C, 1 =skip:C1 , 

C<a>1>=syn:a:C1 . 

We claim that for i/JE!f'2 , Sat(C1 , t) has a completed trace ok iff tf=ijJ. 
With this claim, which we prove below, we can finish the proof of 
Theorem 8.6.6: whenever for some s, t E T( ..[ 0 EB .E i) with s 1' :.e, t, there is an 
.!!'2 formula !/Jo such that sf= !/Jo and t I* !/Jo (or vice versa). Us-ing the claim 
this means Sat(C10 , s) -::/:.er Sat(C,p0 • 1). 

Before we present a formal proof of the claim, we give some intuition 
about how Sat(C1 , t) tests the formula ijJ on t. If rjJ = T, testing is 
straightforward: C r =skip:(; and skip indicates to Sat that it can do an ok 
step (rule 1). Hence, Sat(skip:<5, t)~ Sat(6, t) and it is not hard to check 
that Sat( 6, t) cannot do a next step. 

Testing of /\ ad (a) is almost as straightforward as testing the formula 
T and resembles the definition off=. The intuitive meaning of the constant 
symbols left:, right:, and syn: is respectively: transform to the left/right 
part of a formula and synchronize the next action of the coded formula and 
the tested process. Testing 1 contains a little trick. First, the positive part 
of a formula is tested, which possibly yields a first ok and then the negative 
parts are tested. This can give rise to another ok. For instance the test 
Sat(C ,1>, t) performs an initial ok step as its positive part is empty and 
then tests for the !!'1 formula 1 whether t f= i/J. If there is no negative part 
that holds, the test does not yield another ok action and there is a com­
pleted trace ok. If a negative part is true, the test will yield another ok step 
and the ok trace is extended to the trace ok * ok, which is not ok because 
now ok ~ CT(Sat( C1 , t) ). Next we give a formal proof of the claim. 

LEMMA. Let t E T(.E0 EB 2 1) and let 1 E.!/',,. Then 

(i) t f= ijJ => CT(Sat( C1 , t)) = { ok}, 

(ii) t 1;i= ijJ => CT(Sat( C1 , t)) = 0. 

Proof Induction on the structure of efy. 

(a) ijJ is T. Then t f= efJ. The only move of Sat( Cl/>, t) is 
Sat(CrP, t) ~ Sat(b, t) and Sat(l!, t) has no outgoing transitions. Both 
implications hold. 

(b) iP is i/J 1 /\ r/J 2 • If tf=i/J then tf=ijJ 1 and tf=efy 2 • By induction 
CT(Sat(C11 , t))= {ok} and CT(Sat(C12 , t))= {ok}. Since all outgoing 



SOS AND BISIMULATION AS A CONGRUENCE 241 

transitions of Sat(C4,, t) are proved using Rule 2 in Table 4, one can easily 

see that CT(Sat(Cq,, t))= {ok}. If on the other hand tf/=r/J then either 

tf!=r/J, or tf/=r/J 2 • Hence by induction either CT(Sat(Cq, 1,t))=0 or 

CT( Sat( C q, 2 , t)) = 0. Thus Sat( C q,, t) can have no outgoing transitions and 

CT(Sat( Cq,, t)) = 0-
(c) r/J is (a)r/J'. If tf=r/J then there is at' such that t___!!_,, t' and 

t'f=r/J'. By induction CT(Sat(Cq,-,t'))={ok). Outgoing transitions of 

Sat(Cq,, t) can only be proved using Rule 3 and inspection of this rule 

allows us to conclude that CT(Sat(Cq,, t))= {ok}. If tf/=r/J then for all r' 

with t~ t', t'f/=r/J'. Hence by induction CT(Sat(Cq,.t'))=0. But this 

implies CT(Sat(Cq,, t)) = 0 since Rule 3 cannot be applied. I 

CLAIM. Let t E T(I 0 EBI 1 ) and let r/J E !£2 • Then 

Proof ( =>) Induction on the structure of r/J. 

(a) rjJ is 1lf;, lf;E!i'1 • We have tf/=lf;. By the lemma above, 

CT(Sat(C"" t))=0. By Rule!, Sat(C</>, t)~ Sat( Cl/I, t). Hence ok is in 

CT(Sat( Cq,. t)). 

(b) rjJ is T. Rule 1 gives Sat(Cr,t)~Sat(r5,t)f>. Hence 

okECT(Sat(Cq,, t)). 

(c) rjJ is r/J 1 /\ r/J 2 • Since tf=r/J we also have tf=r/J 1 and tf=r/J 2 • B_ 

induction okECT(Sat(Cq,1• t)) and okECT(Sat(C<P2 , t)). Since all outgoing 

transitions of Sat( C <P, t) are proved using Rule 2, one can easily see that 

ok E CT(Sat( C<P, t)). 

(d) r/J= (a)f. Since tf= (a)r/J', there is at' such that/_!!_..,. t' and 

t' f= rjJ'. Induction gives that ok E CT( Sat( C <P , t') ). Hence there is a termina­

tion node t" such that Sat( C q,·, t') ~ t". Now an application of Rule 3 

gives that okECT(Sat(Cq,, 1)). 

( =) Induction on the structure of r/J. 

(a) rjJ is 1lf;, lf;E!i'1 • If Sat(C<P, t) does a move, then the last rule 

applied in the proof must have been Rule 1 and the transition must be 

Sat(Cq,, t) ~Sat( Cl/I, t). Because okE CT(Sat(C<P, t)), Sat( Cl/I, I) can have 

no outgoing transitions. Since if; E !£1 , the lemma allows us to conclude 

that t f/= if;. Hence t f= r/J. 

(b) rjJ is T. Since t f= T the implication holds. 

(c) r/J is r/; 1 /\ t/J 2 . If Sat(C<P, t) does a move then the last rule 

applied in the proof of this transition must have been Rule 2. 

Since okECT(Sat(Cr/>,t)), it must be that okeCT(Sat(C<P 1,t)) and 



242 GROOTE AND VAANDRAGER 

okeCT(Sat(C,p2 , t)). But this means that we can apply the induction 
hypothesis to obtain t F= <Pi and t F= <P 2. Hence t F= <P. 

(d) <P is <a><P'. If Sat(C,p, t) does a move then the last rule applied 
in the proof must have been Rule 3. So, because oke CT(Sat(C,,, t)), there 
are t', t" with t--5!.+ t', Sat(C,,., t')~ t", and t" a termination node. This 
implies that ok e CT(Sat( c,,., t') ). By induction t' F= t,6'. Hence t F= tP· 

This completes the proof of Theorem 8.6.6. I 

8.6.7. COROLLARY (Inclusion 2). Let P be a TSS in pure tyft/tyxt 
format. Then 

=.pure tyft/tyxt ~ "'_!L}2' 

8.7. In this section it will be shown that Inclusions 4, 5, and 6 hold. As 
an immediate corollary it follows that Inclusion 3 holds. 

8.7. L THEOREM (Inclusion 4 ), Let a= (S, A, --+) be a LTS. Then for 
alls, t ES and m EN, 

s ~"' t=>s- !I'm t. 

Proof Suppose that s .Sm t and s F= <P for some <PE .<t',,,. We prove 
t F= <P with induction on m. The case m = 0 is trivial. So suppose m > 0. We 
prove t I= <P with induction on the structure of <P. 

(a) tP is -, l/J, l/t E .<t'm _ 1 • By definition of s ,S"' t we have t ,S"' - 1 s. 
Application of the induction hypothesis gives t ~ l/t and hence t F= tP· 

(b) <P is T In this case t F= <P trivially holds. 

(c) <P is <Pi A i/J 2 . From sf=<P it follows that sf=<P 1 and sf=<P2 . By 
induction t F= <P 1 and t F= <P 2 , Hence, t F= <P-

( d) <P is <a> <P'. There exists an s' such that s ~ s' and s' F= <P'. 
Since s S"' t, there exists an m-nested simulation R containing (s, t ), 
Hence, for some t' ES, t--!!.+ t' and s' R t'. So s' .Sm t'. By induction t' f= <P' 
and thus t F= i/J. I 

We define .t;m and ~:;' as auxiliary notions. Roughly speaking, s ~:· t 
means that s and t are m-nested simulation equivalent to depth n. ~m is 
the intersection of~;;' for all n. 

8.7.2. DEFINITION. Let a= (S, A, --+) be a LTS. Define for m, n EN 
relations .S,,:;' £ S x S by 

- s 5,,;;' t always, 

- s .S,,~ t always, 



SOS AND BISIMULATION AS A CONGRUENCE 243 

s S~':i t iff t ~<;:;~'+ 1 s and whenever s ~ s' then there 1s a t' 
such that t -!4 t' and s' 5;~' + 1 t'. 

We write 

s .t:";.7,' t ifs s;7 t and t .$~' s, 

s .t:;. m t if for all n: s ,t:;;;• t, 

s Sm t if for all n: s .S,7,' t. 

8.7.3. LEMMA. Let m, n EN. Then .S~'+ Is s;:· and-:;;;'+ Is "'":+7,'. 

Proof Straightforward simultaneous induction on m and n. I 

8.7.4. THEOREM (Inclusion 5). Let a= (S, A,->) be a LTS which is 
image finite. Then for all s, t E S and m E N: 

S'"'-' 2'm t=>s .t',;.m f. 

Proof Suppose that s .'],,"' t. With induction on m we show that there 
is a </; E !!;,, such that sf=</; but t If</;. It cannot be that m = 0. So take m > 0. 
Since s $ m t, there must be an n such that s .Cf,_;;• t. With induction on n we 

show that there exists a </; such that sf=</; but not t f= </;. 
It cannot be that n = 0. Take n > 0. If t .c:; .. r;:- 1 s then we can find, by the 

induction hypothesis, a if; E !!;,, _ 1 such that t f= if; and s FF ijJ. Hence sf= 1 if; 
(the formula 1 ijJ is in Sf"') and t FF 1 ijJ. If, on the other hand, t s,.;;• 1 s, 

then it must be that for some a EA and s' ES with s ~ s' we have that for 

all t' with t -!4 t': s' $~'- 1 t'. Now a first possibility is that there is no t' 

such that t -!4 t'. In this situation sf= <a) T, r If <a) T and we are done. 
The other possibility is that there is a nonzero, but due to the image finite­
ness, finite number of states r 1 , .• ., t P that can be reached from t by an 

a-transition. Since s' $7,'_ 1 t; for 1 ~ i ~ p, we have by induction that there 

are </;;E!f;,, such that s'f=</;; and t;lf</; 1• Consider the 2'"'-formula <P= 
</; 1 /\ ·•• /\ rPp· Since s'f=<P and t,lfr/J, sf= <a>rft and tlf <a)<fa. I 

8.7.5. THEOREM (Inclusion 6). Let a= (S, A,->) be a LTS which is 

image finite. Then for all s, t ES and m EN, 

s,t:;m t=s ~m t. 

Proof Suppose that s .S,. m t. With induction on m we prove that s .Sm t. 

The case m = 0 is trivial. So suppose m > 0. We prove that .S"' is an 
m-nested simulation relation. Whenever v .S,."' w then for all n, v ;:::.,.;;' w. 
Hence by definition of .s nz, w s.;;· - I v for all n. Thus ll' c::: .. m I v and by 
induction w .s m . I v. So the relation .s m is contained in the relation 

(.S"'- 1)- 1. It remains to be shown that .S"' is a simulation relation. 



244 GROOTE AND VAANDRAGER 

Suppose v E, 111 w and v ~ v'. Since for all n > 0, v 5,;;' w there is for each 
n a w11 such that w ~ w,, and v' E~.-;;1 1 Wn- Due to the image finiteness 
there must be a w* that occurs infinitely often in the sequence wi. 1t· 2 , .... 

Because for all n .c:;.;;1 _ 1 2 c:;.;;' by Lemma 8.7.3, we have that for all n > O, 
t, c"' 11·* and therefore v c.~"' 1r*. This concludes the proof that ~~"' is an ,,,_·>11 } '-'' r v7 

m-nested simulation. I 

8.7.6. COROLLARY. Let a= (S, A,~) he a LTS which is image finite. 
Then for alls, t ES and m EN, 

S !:;m t<=>S ~m t<=>S ~ Y'm t. 

Proof Immediate from Theorems 8.7.1, 8.7.4, and 8.7.5. I 
8.8. Trace Congruence. Using the above results, we can easily charac­

terize the "trace congruence" induced by pure tyft/tyxt rules as simulation 
equivalence or !!'1 formula equivalence (for image finite LTSs). We just 
repeat the argumentation above for trace congruence instead of completed 
trace congruence. First the notion of trace congruence is defined. 

8.8.1. DEFINITION. Let a= (S, A, ~) be a LTS. A sequence 
a 1 * ... * a11 EA* is a trace of s if there are states s 1 , s 2 , ... , s,, ES such that 
s ~ s 1 __;:.:,. ••. ~ s n- T(s) is the set of all traces of s. Two states s, t ES are 
trace equivalent if T(s) = T(t). This is denoted s =T t. 

8.8.2. DEFINITION. Let ff be some format of TSS rules. Let 
P = (l', A, R) be a TSS in ff format. Two terms s, t E T(E) are trace 
congruent with respect to ff rules, notation s =.~ t, if for every TSS P' = 
(I', A', R') in ff format which can be added conservatively to P and for 
every l'EBl"-context C[ ], C[s] =T C[t]. 

8.8.3. THEOREM. Let P =(I, A, R) he a TSS in pure tyft/tyxt format 
such that TS(P) is image finite. Let s, t E T(I). Then 

S =. ;ure r;:/i!tyxt t <=> S !::; t <=> S ~ 2'i t. 

Proof In fact most of the work has already been done. The 
equivalence of !::; and ~ _,,,1 follows from Corollary 8.7.6. The implication 
s =;ure i.vfi/ryxi t => s !::; t follows by Lemma 8.5.7 and the observation that 
simulation equivalence refines trace equivalence. The reverse implication 
can be proved using the same test system as in the proof of 
Theorem 8.6.6. I 

8.9. Characterization Theorem for Tree Rules. The characterization 
Theorem 8.4.3 for tree rules of Bloom, Istrail, and Meyer follows from 



SOS AND BISIMULATION AS A CONGRUENCE 245 

Theorem 8.5.8, Corollary 8.7.6, and the following Theorem 8.9.1. In fact this 
combination gives a result which is even stronger than the result of Bloom, 
Istrail, and Meyer as we allow more general rules in the original system 
and our test system is finite if the alphabet of the old system is finite (they 
did not look at finite test systems for :l'2 formulas). The next theorem also 
strengthens Theorem 8.6.6 because now only tree rules are used. But, as the 
proof of this theorem is rather tricky, we chose to give the simpler variant 
first. 

8.9.1. THEOREM. Let P0 = (.E0 , A 0 , R0 ) be a TSS in pure tyft/tyxt 
format. Then there is a TSS P 1 =(E1,A 1, R 1) in tree rule format, which can 
he added conservatively to P 0 , such that completed trace congruence within 
P0 (f) P 1 is included in :l'2 formula equivalence. Moreover, if alphabet A 0 is 
finite, then the components of P 1 are finite too. 

Proof' (Sketch). The alphabet A 1 consists of A 0 together with 8 new 
labels: 

A 1 =A 0 u { ok, ko, left, right, si::e, neg, ( ), i} . 

.E 1 contains b, +, and prefix-operators a for every a EA 1 • In R 1 we find the 
usual rules for these operators. Furthermore E 1 contains binary operators 
II 11 which model parallel composition with synchronization of actions in a 
set HSA 1 • For these operators R 1 contains rules (aEA 1 ): 

x~x' y--'!...,, y' 
af. H 

x II /1 y--'!...,, x' 11 ff y x II ff y--'!...,, x II H y' 

x~ x', y~ y' 
aE H. 

x II ff y --'!...,, x' II If y' 

Next I.: 1 contains a binary operator Sat which sets whether its second 
argument satisfies the :£'2 formula which is encoded using the rules below. 
Further it contains the auxiliary operators Context, skip-i, and ok-to-ko. 
The rules in R 1 for these operators are displayed in Table 5 (where a EA 1 ). 

If A 0 is finite then clearly A 1, E 1, and R 1 are finite too. Let the mapping 

s: ![1 --+ N be given by 

s(T) = 0 

s( <P /\ t/l) = 1 + s( <P) + s( t/l) 

s( (a ) </J) = 1 + s( <P) 

and let the .E 1 terms S,, (n~O) be given by 

S 0 = ok:b 



246 GROOTE AND VAANDRAGER 

TABLE 5 

A Test System for 2~ Formulas with Tree Rules Only 

x4x' 
Sat(x,y) Ok)8 Context(x,y)4Context(x',skip-i(y)) 

left, X ri1<ht'x 
X -"--7X/, ~ r x~x' 

Sat (x,y) ~Sat (x1,y)ll(ok l Sat (x,,y) Context (x,y) ~ ok -to -ko (y) 

x~x'--!7x", y~y' 
Sat (x,y)4Sat (x",y') 

x~x'~x" 
skip-i (x)~x" 

x~x',x~x'' x~x' 
Sat (x,y) ~Context (x', Sat (x",y )) ok-to-ko(x) k0 )8 

,;£2 formulas are coded as follows: 

C7 = ok:b 

Cq," l/J = left:Cq, + right:Cl/J 

C ,q, = size:S.,1q,, +neg: Cq, 

C<u>,;,= ( ):a:C<t>. 

We now briefly explain the way in which the above construction 
works. We have the following claim: 

CLAIM. Let efJ E 2'z and t E T(I'0 EBI 1 ). Then t F efJ ijf Sat( C,;,, t) has a 
completed trace with an ok action but without a ko action. 

It is not hard to see that the above claim is correct in case efJ E .,.:f1 • This 
is a direct consequence of the next lemma which can be proved easily by 
means of induction on the structure of efJ: 

LEMMA 1. Let f/JE!f,, with s(efJ)=n and let tE T(I0 EBI 1). Then: 

- fFefJ=> {in*ok} s.CT(Sat(C</>, t))S. {in*ok} u {iml 1 ~m~n}, 

- tff-~==>CT(Sat(Cq,, t))s. {iml I ~m~n}. 

The problem is what to do with negations. The key idea of our solution 
is that if one applies the skip-i operator s( efJ) times on Sat( C q,, t ), the trace 
set of the resulting process consists of ok if t F efJ and will be empty 
otherwise. So what we have to do is to place a skip-i operator around 
Sat(Cq,, t) in a structured way s(</J) times and next apply a renaming of ok 
into ko. This is of course done using the binary operator Context. The first 



SOS AND BISIMULA TION AS A CONGRUENCE 247 

argument of this operator gives instructions on how to build a context 
around the second argument. In case a formula 1 rjJ has to be tested, our 
construction works in such a way that (after some i-steps) an ok step will 
always be generated, whereas a subsequent ko action is generated only 
when the tested process satisfies r/J. One can prove the following lemma: 

LEMMA 2. let rjJ E Y)1 with s( rjJ) = n and let t E T( E0 EfJE 1 ). Then: 

t I= rjJ = CT(Context(S," Sat(Cq,, I)))= {i" * ok * ko }, 

- tfl=r/J=CT(Context(S11 , Sat(C,p, t)))= {i" * ok}. 

Using Lemma 2, the claim can be proved with straightforward induction 
on the structure of r/J. Theorem 8.9.1 is an immediate consequence of the 

claim. I 

9. COMPARISON WITH OTHER FORMATS 

In this section we will give an extensive comparison of our format with 
the formats proposed by de Simone ( 1984, 1985) and Bloom, Istrail, and 
Meyer ( 1988 ). First both formats are described. 

9.1. DEFINITION. Let l:= (F, r) be a signature and let A be a set of 
labels. A De Simone rule (over I: and A) takes the form 

where: 

-- fE F and r(f) = /, 

- Jc;; {I, ... ,/}, 

{x;~ Y;liEI} 

f(x1, ... ,x1)-'!...,t' 

-· x 1 , ••• , x 1 and y; ( i EI) are distinct variables 

(for l ~ i ~ / let x; = Y; if i EI and x; = X; otherwise), 

t is a term in T(l:, {x'1 , ••• , x;}) in which each x; occurs at most 

once. 

Clearly the de Simone format as presented above is included in our 
ty.fi/tyxt format. One should note, however, that de Simone assumes in 



248 GROOTE AND VAANDRAGER 

addition that the set of labels is an (infinite) commutative monoid. 
Moreover he includes (unguarded) recursion in the language together with 
the standard fixed point rules. 

9.2. DEFINITION. Let I:= (F, r) be a signature and let A be a set of 
labels. A GSOS rule (over I: and A) takes the form 

h1j 

{ x, -4 y If 11 ~ i ~ I, 1 ~ j ~ m;} u { x; -f+ I I ~ i ~ I, 1 ~ J ~ n;} 

f(X1, .. .,x,)~t 

where the variables are all distinct,/ E F, I= r(f ), m,, n, ~ 0, a ii, b ii E A, and 
t is a term in T(I:, {x;, Yi;I l ~i~l, 1 ~j:;;;m;}). 

A GSOS rule system is a triple (I:, A, R) with I: a signature, A a set of 
labels, and R a set of GSOS rules over I: and A. 

We should mention here that the above definition is simplified in order 
to make comparison possible and only gives an approximation of the 
notion of a GSOS rule system as it is defined by Bloom, Istrail, and Meyer 
( 1988 ). There a GSOS rule system contains some additional ingredients for 
dealing with guarded recursion and there are a number of finiteness 
constraints. The feature with distinguishes GSOS rules from the other rules 
in this paper is the possibility of negative premises. This makes it not 
immediately clear how (and if) a GSOS rule system determines a transition 
relation. 

9.2. l. DEFINITION. Let (I:, A, R) be a GSOS rule system. A transition 
relation --> s T(L) x Ax T(I:) agrees with the rules in R if 

- Whenever an instantiation by a substitution a of the premises of 
a rule is true of the relation, then the instantiation of the conclusion by a 
is true as well. 

- Whenever t ~ t' is true, then there are a rule r and an instantia­
tion a such that t ~ t' is the instantiation of the conclusion of r by r:J, and 
the instantiations of the premises of r by r:J are true. 

It is not hard to show that for any GSOS rule system, there is a unique 
transition relation which agrees with the rules. If a GSOS rule system only 
contains positive rules then it is a TSS according to our definition. 
Moreover in this case the unique transition relation which agrees with the 
rules according to the definition above is just the same relation as the one 
defined in Definition 3.2 using the notion of proof trees of transitions. 

The following example from Bloom, Is trail, and Meyer ( 1988) shows 
that in general the GSOS format cannot be combined consistently with the 



SOS AND BISIMULA TION AS A CONGRUENCE 249 

tyft/tyxt format. There are 4 operators in the signature: j; g, c, and d. We 
have an action a and the following rules: 

x~ yy~z 

f(x )-!!..+ d 

x-+ 
g(x)-!!..+ d 

(' -!!..+ g(f( (') ). 

There is no transition relation which agrees with these rules. In particular, 
f(c) can move iff it cannot move. 1 

9.3. EXAMPLES. Below we list some examples that illustrate the differ­
ences between the formats. 

9.3.1. Glohal Closure Properties. Rules in tyxt format fit neither 

de Simone's format nor the GSOS format. One could say that tyxt rules, 

like for instance the r rules of Table 2, express certain "global closure 

properties," a form of operational behaviour which is in general inde­

pendent of the particular function symbol at the head of a term. 

9.3.2. Contexts. Often it is very useful to have function symbols in 

the left hand side of a premise. However, this is not allowed by the 

de Simone or GSOS format. In Section 6.2 we saw that these rules can be 

used to model recursion. Also in the system of Table 4 for testing .!£2 

formulas, this type of rules play an important role. In (Baeten and 

van Glahbcek, 1987 ), operators i:" are described that erase all actions from 

a set Kc~ Act. We can add these operators to P(BPA'.;l together with the 

following rules from ( Baeten and van Glabbeek, 1987 ): 

/; K ( X) -!!..+ /;I\ ( )') 

x -"-> y 1;" ( y) ~ ;:; 
aE K. 

l:K(X)~;:; 

The same type of trick can also be used to describe the "atomic version 

operator." This operator was introduced by de Bakker and Kok ( 1988) for 

giving semantics to concurrent Prolog. Here we give our own variant of 

this operator, using our own notation. The interested reader who wants to 

1 In (Ciroote, 1989 ), ii is investigated in which cases a spccifica!ion in nty/l/nly.11 format is 

consistent. A general method, hascd on !he stratification technique in logic programming, is 

presented to show consistency of sets of rules. It is shown that various results from this paper 

extend smoothly to a setting where rules may contain negative premises. 

M\ JOO 2 X 



250 GROOTE AND VAANDRAGER 

know how this type of operator can be used to give semantics to con­
current Prolog is referred to (de Bakker and Kok, 1988 ). Take as starting 
point the signature of BPA~. But as labels of transitions we now take not 
elements of A.et, , but elements of the set of finite sequences over Act,,,:. 
Write a for the sequence consisting of the single symbol a E Act,/. With CJ(J' 

we denote the concatenation of the sequences (j and a'. The set of rules 
of the TSS contains the rules of R(BPA~) (but now the labels should be 
interpreted as sequences!) and moreover the following rules: 

x~y 

[x]~ y 

x--:.:.. y [y]--:.:.. z 

[x] ..'!'!.., z 

The rules express that only successful sequences, i.e., sequences ending on 
"/, can happen in the scope of an atomic version operator. The rules are 
in tyfi format. Hence, strong bisimulation is a congruence in this setting. 

9.3.3. Lookahead. All operators defined with the de Simone or GSOS 
format have a lookahead of at most 1. Hence the following operator, which 
can be viewed as the inverse of the split operator of van Glabbeek and 
Vaandrager ( 1987 ), cannot be defined: 

x~ y y~ z 

combine(x)--:.:.. combine(:::.) 

Other examples of operators with a lookahead are the BK and the atomic 
version operator as described above. As a last example we mention the 
abstraction or hiding operator from ACP, (here I r;;_ Act): 

x~x' 
a El 

x~x' 

If we add these rules to the system P(BPA:0 ) as described in Section 6.1, 
then we can derive 

Observe that the rules that contain a function symbol r 1 all have a 
lookahead of 1 (i.e., the length of the maximal path in the dependency 
graphs of the rules is 1 ). As operators on transition systems the r / have an 



SOS AND BISIMULATION AS A CONGRUENCE 251 

unbounded lookahead, due to the presence of tyxt rules with a lookahead 
of 2 in P(BPA;,1 ). 

9.3.4. Copying. In contrast to de Simone's format, the GSOS format 
and also our format can describe operators which copy their arguments. 
The system call fork of Unix ( 1986) is a typical example of an operation 
that one would like to describe using copying. One can think of a rule such 
as 

fork(x)--1:..+ parent(x) II child(x). 

Below we present another example where copying occurs naturally. It 
describes an operational semantics of the natural numbers which is based 
on the idea of counting: the process associated to an integer expression 
performs as many actions as the value which is denoted by this expression 
under the standard interpretation. We consider the signature containing a 
constant symbol 0, a unary function symbol succ, and binary function 
symbols + and x. There is only one transition label, namely !. The 
operational semantics of the operators is described by the following rules: 

suet( x) ___!__, x 

x ___!__, x' 

x + y ___!__, x' + y x + y ___!__, x + y' 

x ___!__, x' )' ___!__, y' 

xxy__!__, (x'xy')+(x'+y') 

Observe that two expressions denote the same value under the standard 
interpretation iff they are bisimilar. 

9.3.5. Branching. The ability to copy arguments is not the only dif­
ference between de Simone's format and the GSOS format. A rule such as 

x--!!..+ x', x ~ x" 

f(x)~ f(x') 

fits the GSOS format but not de Simone's format. In this rule we see a 
branching in the dependency graph at node x. 

9.3.6. Catalysis. A similar example is obtained if we add to P(BPA'.;) 
the following rule which fits the GSOS format: 

x~x',y~ J'' 

Cat(x, y) ~ Cat(x, y') 

Here we have a situation, not allowed by de Simone's format, where a 
potential ok-action of the first component makes it possible for the second 
component to proceed. But when it proceeds the first component remains 



252 GROOTE AND VAANDRAGER 

unchanged. Hence, one can view the first component as a catalyst of the 
second component. 

9.3.7. Priorities. In (Baeten, Bergstra, and Klop, 1986) an operator is 
introduced to describe priorities in ACP, whereby some actions have 
priorities over others in a non-deterministic choice. The operator turns out 
to be quite interesting and has been used in a number of applications. In 
(Baeten, Bergstra, and Klop, 1986) the operator is defined using equations, 
but if one uses Plotkin-style rules then it is inevitable to use negative 
hypotheses. 

Consider the GSOS rule system P(BPA;;) and assume that the set Actv' 
of labels is finite. Assume furthermore that a partial order > is given on 
Act . ../ such that J is not in the ordering. Now we can add a unary operator 
8 to the rule system, with for each a EA,; a rule 

b 
x--.!!.+ x', 'r/b > a:x -f-+ 

8(x)~ 8(x') 

The rule expresses that in the scope of a 8-operator an a action can occur 
unless an action with a higher priority is possible. Cleaveland and Hen­
nessy ( 1988) describe priorities using tyxt rules with negative hypotheses. 
Another example of an operator that is defined using rules with negative 
premises is the broadcast operator as described by Pnueli ( 1985 ). 

9.4. Completed Trace Congruences. The differences between the formats 
presented thus far can be understood also if we look at the completed trace 
congruences which they induce. In Section 8 we saw that the trace con­
gruence induced by (variants) of the pure tyft/tyxt format coincides with 
ftl2 formula equivalence. 

The main theorem which de Simone proved about his format is that all 
operators defined using his type of inductive rules can also be defined by 
Meije-SCCS "architectural" expressions. Similar results have not yet been 
proved for the GSOS or the tyft/tyxt format. Now it is a standard result 
that the completed trace congruence induced by languages such as Meije­
SCCS, ACP, and CSP coincides with failure equivalence ( = F) (see for 
instance (Bergstra, Klop, and Olderog, 1988)). Hence the completed trace 
congruence induced by de Simone's format is failure equivalence (it is not 
too difficult to give a direct proof of this fact). 

Bloom, Istrail, and Meyer ( 1988) characterized the completed trace con­
gruence induced by their format in terms of the equivalence corresponding 
to the following set of formulas: 2 

2 The formulas as defined in (Bloom, Istrail, and Meyer, 1988) were called limited modal 
formulas and may also contain F and v. However, it is easily proved that this addition does 
not increase their distinguishing power. 



SOS AND BISIMULA TION AS A CONGRUENCE 253 

9.4.1. DEFINITION. The set £2J of denial (HML)formulas (over a given 
alphabet A = {a, b, ... } ) is given by the following grammar: 

r/J ::=TI~/\ r/11 [a] FI (a)r/J. 

9.4.2. THEOREM (Bloom, Is trail, and Meyer, 1988 ). Let P = (E, A, R) 
be a GSOS rule system such that the associated transition system is image 
finite. Then =asos= ~::.<· 

Some additional insight is provided by the following characterization of 
denial equivalence which is due to Larsen and Skou ( 1989 ). 

9.4.3. DEFINITION. Let a= (S, A,--+) be a LTS. A relation R <;; Sx S 
is a i-bisimulation, also called a ready simulation, if it satisfies: 

1. whenever s R t and s _::.... s' then, for some t' E S, also t _::.... t' and 
s' Rt', 

2. whenever s R t and t _::.... t' then, for some s' ES, also s _::.... s'. 

Two states s, t ES are i-bisimilar (or ready simulation equivalent) in a if 
there exist a ~-bisimulation containing the pair (s, t) and a ~-bisimulation 
containing the pair ( t, s ). 

9.4.4. THEOREM (Larsen and Skou, 1989). Let a= (S, A,--+) be an 
image finite LTS. Then two states are ~-bisimular just in case they satisfv 
exactly the same denial formulas. 

It is a trivial exercise to show that 

The examples of Figs. 13, 14, and 15 show that these inclusions are strict. 

9.4.5. Testing Denial Formulas. The question arises whether all 
features of the GSOS format are really needed to test denial formulas. In 

a a a 

b b c 

F1G. 13. Completed trace equivalent but not de Simone congruent. 



254 GROOTE AND VAANDRAGER 

a a a 

b b b b 

c d c d 

F1G. 14. de Simone congruent but not GSOS congruent. 

particular it is interesting to know whether the negative premises add any­
thing to the discriminating power of the format. Surprisingly, as was first 
observed by van Glabbeek ( 1988 ), this is not the case: GSOS congruence 
coincides with positive GSOS congruence. Below we present a system in 
positive GSOS format for testing denial formulas. The system is simpler 
than the original system of van Glabbeek. Moreover our system has the 
advantage of being finite in case the alphabet of the old system is finite. 

9.4.6. THEOREM. Suppose we have a TSS P0 =(E0 ,A 0 ,R0 ) in GSOS 
format. Then there exists a TSS P 1 = (E 1, A 1 , R 1 ) in GSOS format with all 

premises positiDe and nonbranching, which can be added conservatively to P 0 , 

such that completed trace congruence within P 0 EBP 1 is included in denial 
equivalence. Moreover, !/alphabet A 0 isfinite, then the components of P 1 are 
.finite too. 

a 

b 

c d c d c 

FIG. 15. GSOS congruent but not pure tyft/tyxt congruent. 



SOS AND BISIMULATION AS A CONGRUENCE 255 

Proof The set A 1 consists of A 0 together with 6 new labels: 

A 1 = A 0 u { ok, ko, left, right, [ ], < ) }. 
Signature E 1 contains a constant CJ, unary function names a: for each 

a E A1' and binary function symbols +, II, Sat, Sat[ J• Sat<» and Sat right· 

The rules for CJ, a:, and + are as usual. II is just arbitrary interleaving. The 
Sat operator tests whether its second argument satisfies the denial formula 
which is represented by its first argument. The rules for the II-operator and 
the various Sat-operators are given in Table 6. In the table, a ranges over 
A 1• One can check that P 1 can be added conservatively to P 0 • 

Denial formulas are encoded using the following rules: 

Cr=CJ 

C ,p " I/I = left: C q, + right: C I/I 

C[a]F= [] :a:CJ 

C<a>,p= ( ):a:C,p. 

CLAIM. Let t E T(E 0 EBE i) and let t/J be a denial formula. Then t f= t/J 
if! Sat(Cq,, t) has a completed trace with as many ok's as t/J has (a)'s, and 
no ko. 

Proof Rather straightforward induction on the structure of t/J. I 
9.4.7. Comparison of Testing Abilities. The notion of testing which 

underlies CCS/CSP/ACP, and hence de Simone's format, is well-known 

TABLE 6 

A Test System for Denial Formulas 

x~x' 
Sat(x,y)~Satu(x',y) 

x~x' 
Sat(x,y) ~Sat 0 (x',y) 

x~x' 
Sat(x,y)"1!4Sat(x',y)llSat,;gh1(x,y) 

x-4x' vzy' 
Satn(x,y)~8 

Sat 0 (x,y) Ok)Sat(x',y') 

x~~f 

xl[y-4xl[y' 



256 GROOTE AND VAANDRAGER 

(see for instance (De Nicola and Hennessy, 1984; Bergstra, Klop, and 
Olderog, 1988) ): these languages allow one to observe traces and deadlock 
and to block actions from a certain moment onwards. This makes it 
possible to detect refusals indirectly: one concludes that a certain action 
can be refused after an initial trace because deadlock occurs if all the other 
actions are blocked. The construction in the proof of Theorem 9.4.6 clearly 
shows which notion of testing underlies the (positive) GSOS format: the 
format allows one to observe traces of processes, to detect refusals, and to 
make copies of processes at every moment. In the general GSOS format 
refusals can be observed directly: one can define a context which performs 
an ok step if its argument cannot do a certain action. In the positive GSOS 
format refusals can also be observed, but only indirectly. The key feature 
which distinguishes the positive GSOS format from the de Simone format 
is the capacity to make copies of processes at every moment. Observe that 
the only rule in Table 6 that does not fit de Simone's format is the rule 
dealing with the left action. In this rule the x and y are copied. In many 
situations copying is a natural operation which can be realised physically 
by for instance a core dump procedure. 

The construction in the proof of Theorem 8.9.1 shows that the additional 
testing power needed to bring one from denial equivalence to 22 formula 
equivalence only consists of the ability to see whether some action is 
possible in the future: there should be operations with a lookahead (in fact 
the proof of Theorem 8.9.1 shows that a lookahead of 2 is already enough). 
Using operators with a lookahead one can investigate all branches of a 
process for positive information and one can see whether a certain tree is 
possible. In particular one can see whether there exists a branch in which 
a certain action is present. In the same way as one can observe in 
de Simone's format that a certain action is refused because deadlock occurs 
when the other actions are blocked, one can conclude in the tyft/tyxt for­
mat that a tree is refused. The ability to see in the future of a process can 
be considered as a weak form of global testing. Global testing is the same 
as what Milner (1981) calls controlling the weather conditions. Abramsky 
( 1987) describes global testing as "the ability to enumerate all (of finitely 
many) possible 'operating environments' at each stage of the test, so as to 
guarantee that all nondeterministic branches will be pursued by various 
copies of the subject process." Because an operator with lookahead is not 
able to see negative information (such as the absence of some action) 
directly, and because it is also not able to force all nondeterministic 
branches to be pursued by some number of copies, lookahead does not 
give one the full testing power of global testing. Since global testing is 
needed in order to distinguish between processes which are not bisimilar, 
this explains why the fully abstract semantics induced by our format is still 
below bisimulation equivalence. Global testing in the above sense seems 



SOS AND BISIMULATION AS A C'ONGRL:ENCE 257 

very unrealistic as a testing ability and in direct conflict with the observa­

tional viewpoint of concurrent systems. Recently, however, Larsen and 

Skou ( 1989) have pointed out that if one assumes that every transition in 

a transition system has a certain minimum probability of being taken, an 

observer can-due to the probabilistic nature of transitions-with 

arbitrarily high degree of confidence, assume that all transitions have been 

examined, simply by repeating an experiment many times (using the 

copying facility). This idea gives some plausibility to the notion of global 

testing. In fact Larsen and Skou ( 1989) deviced some testing algorithms 

which allow them, with a probability arbitrary close to 1, to distinguish 

between processes that are not bisimilar. 
Unless one believes in fortune telling as a technique which has some 

practical relevance for computer science, lookahead as a testing notion is 

not very realistic. Still, this lookahead pops up naturally if one looks at the 

maximal format of rules for which bisimulation is a congruence and we 

showed that rules with a lookahead are often useful. Therefore we think 

that, just like bisimulation equivalence, !£12 formula equivalence is an 

interesting equivalence that is worth studying, even though it does not 

correspond to a very natural notion of testing. 

9.4.8. Finiteness and Decidability. In their paper "Bisimulation can't 

be traced," Bloom, Istrail, and Meyer ( 1988) argue that bisimulation equiv­

alence cannot be reduced to completed trace congruence with respect to 

any reasonably structured system of process constructing operations. They 

present the GSOS format, which they believe to be the most general format 

leading to reasonably structured systems, and then show that the con­

gruence induced by this format is denial formula equivalence. Although the 

pure tyft/tyxt format cannot trace bisimulation equivalence, it can trace 

more of it than the GSOS format. This implies that not all pure fJjt/tyxt 

rules are structured according to the definition of Bloom, Istrail, and 

Meyer ( 1988 ). And indeed what is wrong in their opinion with our rules is 

that they might lead to transition systems with a transition relation whir 

is infinitely branching or not computable. The various finiteness constra; 

which are present in the definition of the GSOS format in (Bloom, Ist1 

and Meyer, 1988 ), are motivated by the requirement that the transi1 

relation should be computably finitely branching. We think that, althou 

it is certainly important to have finiteness and decidability, it is much to1 

strong to call any TSS leading to a transition relation which does not have 

these properties "not reasonably structured" (this is what Bloom, Is trail, 

and Meyer ( 1988) seem to do). Since our format gives us the expressiveness 

to describe the invisible nature of r (see Section 6.1) it is to be expected 

that, in general, we also have the infinite branching and undecidability of 

the models of CCS/ ACP r based on observational congruence. If one 



258 GROOTE AND VAANDRAGER 

disqualifies infinitary and undecidable TSSs right from the start, then one 
misses a large number of interesting applications. Of course the question of 
what type of TSSs do lead to computably finitely branching transition 
systems is a very interesting one. It seems that if one generalizes the 
positive GSOS format in the direction of the tyft/tyxt format, infinite 
branching arises quite soon. The example in Fig. 16, for instance, which is 
due to Bard Bloom, illustrates that function symbols in the premises are 
"dangerous." 

In the example we have prefixing and fJ as usual and moreover a 
constant w with rules 

w-..!....x 

w-..!.... I :x 

The part of the transition system which is displayed in Fig. 16 shows that 
w has an infinite number of outgoing transitions. Another example 
illustrating the same point is obtained by adding recursion to P(BPA~) in 
the style of Section 6.2 with the "unguarded" recursive definition 
X <= Xa +a. It is easy to give examples of tyxt rules or tree rules which lead 
to infinite branching or undecidability. It is an open question to find a 
format in between positive GSOS and tyft/tyxt which always leads to 
computably finitely branching transition relations. 

In our view one reason rules with a lookahead are important is that they 
make it possible to have different levels of granularity of actions and to 
express that an action at one level can be composed of several smaller 

w 8 

f 1 

1:8 

f 1 

I: 1:8 

f 1 

1: 1: 1:8 

f 1 

FIGURE 16 



SOS AND BISIMULATION AS A CONGRUENCE 259 

actions at a lower level. The system of Table 6 for testing denial equiv­
alence is an excellent example of a situation where the GSOS format forces 
one to do in two steps what one would like to do in only one. 

ACKNOWLEDGMENTS 

We thank Bard Bloom for a very interesting and stimulating correspondence. Discussions 
with him had a pervasive influence on the contents of this paper. We also thank Rob 
van Glabbeek for many useful comments and inspiring discussions. Finally, we thank the 
referee of this paper. 

RECEIVED February 27, 1989; FINAL MANUSCRIPT RECEIVED November 20, 1990 

REFERENCES 

ABRAMSKY, S. ( 1987), Observation equivalence as a testing equivalence, Theoret. Comput. Sci. 
53, 225-241. 

AMERICA, P., DE BAKKER, J. W., KOK, J. N., AND RUTTEN, J. J.M. M. (1986), Operational 
semantics of a parallel object-oriented language, in "onference Record of the 13th ACM 
Symposium on Principles of Programming Languages (POPL), St. Petersburg, Florida," 
pp. 194--208. 

BAETEN, J. C. M., AND BERGSTRA, J. A. (1988), Global renaming operators in concrete 
process algebra, Inform. and Comput. 78, 205-245. 

BAETEN, J. C. M., BERGSTRA, J. A., AND KLOP, 1. W. (1986), Syntax and defining equations 
for an interrupt mechanism in process algebra, Fund. Inform. 9, No. 2, 127-168. 

BAETEN, J. C. M., AND VAN GLABBEEK, R. J. (1987), Merge and termination in process 
algebra, in "Proceedings, Conference on Foundations of Software Technology and 
Theoretical Computer Science, Pune, India" (K. V. Nori, Ed.), pp. 153-172, Lecture Notes 
in Computer Science, Vol. 287, Springer-Verlag, Berlin/New York. 

DE BAKKER, J. W., AND KoK, J. N. (1988), Uniform abstraction, atomicity and contractions 
in the comparative semantics of concurrent Prolog, in "Proceedings, Fifth Generation 
Computer Systems 1988 (FGCS 88), Tokyo, Japan," pp. 347-355. 

BERGSTRA, J. A., AND KLOP, J. W. (1988), A complete inference system for regular processes 
with silent moves, in "Proceedings, Logic Colloquium 1986" (F. R. Drake and 1. K. Truss 
Eds.), pp. 21-8-, North-Holland, Hull; also appeared as Report CS-R8420, Centrum vo• 
Wiskunde en Informatica, Amsterdam, 1984. 

BERGSTRA, J. A., KLOP, J. W., AND OLDEROG, E.-R. (1988), Readies and failures in th, 
algebra of communicating processes, SIAM J. Comput. 17, No. 6, 1134-1177. 

BLOOM, B. (November 1988), personal communication. 
BLOOM, B., ISTRAlL, S., AND MEYER, A. R. (1988), Bisimulation can't be traced: Preliminary 

report, in "Conference Record of the 15th ACM Symposium on Principles of Programming 
Languages (POPL), San Diego, California," pp. 229-239. Full version appeared as Technical 
report TR 90-1150, Cornell University, Ithaca, New York, August 1990. 

BouooL, G. (1985), Notes on algebraic calculi of processes, in "Logics and Models of 
Concurrent Systems" (K. Apt, Ed.), pp. 261-303, NATO ASI Series F13, Springer-Verlag, 
Berlin/New York. 

CLEAVELAND, R., AND HENNESSY, M. (1988), Priorities in process algebra, in "Proceedings, 
3rd Annual Symposium on Logic in Computer Science (LICS), Edinburgh," pp. 193-202. 

DE NICOLA, R., AND HENNESSY, M. (1984), Testing equivalences for processes, Theoret. 
Comput. Sci. 34, 83-133. 



260 GROOTE AND VAANDRAGER 

VAN GLABBEEK, R. J. (1987 ), Bounded nondeterminism and the approximation induction 
principle in process algebra, in "Proceedings STACS 87" (F. J. Brandenburg, G. Vidal­
Naquet, and M. Wirsing, Eds.), pp. 336-347, Lecture Notes in Computer Science, Vol. 247, 
Springer-Verlag, Berlin/New York. 

VAN GLABBEEK, R. J. (November 1988), personal communication. 
VAN GLABBEEK, R. J., AND VAANDRAGER, F. w. (1987), Petri net models for algebraic theories 

of concurrency, in "Proceedings, PARLE conference, Eindhoven, Vol. II (Parallel 
Languages)" (J. W. de Bakker, A. J. Nijman, and P. C. Treleaven, Eds.), pp. 224-242, 
Lecture Notes in Computer Science, Vol. 259, Springer-Verlag, Berlin/New York. 

GROOTE, J. F. (1989), "Transition System Specifications with Negative Premises," Report 
CS-R8950, Centrum voor Wiskunde en Informatica, Amsterdam; extended abstract in 
"Proceedings, CONCUR 90, Amsterdam" (J.C. M. Baeten and J. W. Klop, Eds.), 
pp. 332-341, Lecture Notes in Computer Science, Vol. 458, Springer-Verlag, Berlin/ 
New York. 

HENNESSY, M. (1988), "Algebraic Theory of Processes," MIT Press, Cambridge, MA. 
HENNESSY, M., AND MILNER, R. ( 1985), Algebraic laws for nondeterminism and concurrency, 

J. Assoc. Comput. Mach. 32(1 ), 137-161. 
KELLER, R. M. (1976), Formal verification of parallel programs, Comm. ACM 19(7), 371-384. 
KLOP, J. W. (1987), Term rewriting systems: A tutorial, Bull. European Assoc. Theoret. 

Comput. Sci. 32, 143-182. 
LARSEN, K. G., AND SKou, A. (1989), Bisimulation through probabilistic testing, in 

"Conference Record of the 16th ACM Symposium on Principles of Programming 
Languages (POPL), Austin, Texas," pp. 344-352. 

MILNER, R. (1980), "A Calculus of Communicating Systems," Lecture Notes in Computer 
Science, Vol. 92, Springer-Verlag, Berlin/New York. 

MILNER, R. (1981 ), Modal characterization of observable machine behaviour, in "Proceedings 
CAAP 81" (G. Astesiano and C. Bohm, Eds.), pp. 25-34, Lecture Notes in Computer 
Science, Vol.112, Springer-Verlag, Berlin/New York. 

MILNER, R. (1983), Calculi for synchrony and asynchrony, Theoret. Comput. Sci. 25, 267-310. 
MILNER, R. (1989), Communication and Concurrency, Prentice-Hall, Englewood Cliffs, NJ. 
OLDEROG, E.-R., AND HOARE, C. A. R. ( 1986), Specification-oriented semantics for com-

municating processes, Acta Jn.format. 23, 9-66. 
PARK, D. M. R. (1981), Concurrency and automata on infinite sequences, in "Proceedings, 

5th GI Conference" (P. Deussen, Ed.), pp. 167-183, Lecture Notes in Computer Science, 
Vol. 104, Springer-Verlag, Berlin/New York. 

PLOTKIN, G. D. (1981 ), "A Structural Approach to Operational Semantics," Technical Report 
DAIMI FN-19, Computer Science Department, Aarhus University. 

PLOTKIN, G. D. (1983), An operational semantics for CSP, in "Proceedings IFIP TC2 Work­
ing Conference on Formal Description of Programming Concepts-II, Garmisch, 1982" 
(D. Bj<ilrner, Ed.), pp. 199-225, North-Holland, Amsterdam. 

PNUELI, A. ( 1985 ), Linear and branching structures in the semantics and logics of .reactive 
systems, in "Proceedings ICALP 85, Nafplion" (W. Brauer, Ed.), pp. 15-32, Lecture Notes 
in Computer Science, Vol. 194, Springer-Verlag, Berlin/New York. 

DE SIMONE, R. ( 1984 ), "Calculabilite et expressivite dans l'algebre de process us paralleles 
Meije, These de 3• cycle, Univ. Paris 7. 

DE SIMONE, R. (1985), Higher-level synchronising devices in Meije-SCCS, Theoret. Comput. 
Sci. 37, 245-267. 

UNIX (1986), "Programmer's Reference Manual, 4.3 BSD Edition," Computer Systems 
Research Group, University of California, Berkeley. 

VRANCKEN, J. L. M. (1986), "The Algebra of Communicating Processes with Empty Process," 
Report FYI 86-01, Dept. of Computer Science, University of Amsterdam. 


