
INFORMATIQUE THÉORIQUE ET APPLICATIONS

BIRGIT JENNER

BERND KIRSIG
Characterizing the polynomial hierarchy by
alternating auxiliary pushdown automata
Informatique théorique et applications, tome 23, no 1 (1989), p. 87-99
<http://www.numdam.org/item?id=ITA_1989__23_1_87_0>

© AFCET, 1989, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1989__23_1_87_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Informatique théorique et Applications/Theoretical Informaties and Applications
(vol 23, n° 1, 1989, p. 87 à 99)

CHARACTERIZING THE POLYNOMIAL HIERARCHY
BY ALTERNATING AUXILIARY

PUSHDOWN AUTOMATA

by Birgit JENNER (*) and Bernd KIRSIG (*)

Abstract. - An alternating auxiliary pushdown hierarchy is defined by extending the machine
model of the Logarithmic Alternation Hierarchy by a pushdown store while keeping a polynomial
time bound. Although recently it was proven by Borodin et al. that the class of languages accepted
by nondeterministic logarithmic space bounded auxiUary pushdown automata with a polynomial
time bound is closed under complement [1], it is shown that, surprisingly, the further levels ofthis
alternating auxiliary pushdown hierarchy coincide level by level with the Polynomial Hierarchy.
Furthermore, PSP ACE can be characterized by simultaneously hgarithmic space and polynomial
time bounded auxiliary pushdown automata with unbounded alternation. Finally, it is shown that
both results generalize to arbitrary space bounds.

Résumé. - Nous définissons une hiérarchie pour les machines alternantes à pile en étendant le
modèle de la hiérarchie logarithmique alternante par une pile auxiliaire, tout en gardant une borne
en temps polynomial. Bien qu'il a été démontré récemment par Borodin et al. que la classe des
langages acceptée par un automate à pile non déterministe en espace logarithmique et en temps
polynomial est fermé par complémentation, nous montrons que les niveaux supérieurs de cette
hiérarchie des machines alternantes à pile auxiliaire coïncident niveau à niveau avec la hiérarchie
polynomiale — un résultat assez surprenant. De plus nous montrons que PSP ACE est caractérisé
par des automates bornés en espace logarithmique et en temps polynomial, en permettant une
alternation non bornée. Finalement nous montrons que les deux résultats généralisent aux espaces
non bornés.

1. INTRODUCTION

Recently some very interesting and especially unexpected results in complex-
ity theory answered questions which have been unsolved for a long time such
as the collapse of the Logarithmic Alternation Hierarchy [8, 7], the collapse
of the Logarithmic Oracle Hierarchy [11], and most of all the closure of
nondeterministic space classes under complémentation [6, 14]. In this area,

C1) Universitât Hamburg, Fachbereich Informatik, Rothenbaumchaussee 67/69, D-2000 Ham-
burg 13, R.F.A.

Informatique théorique et Applications/Theoretical Informaties and Applications
0296-1598 89/01 87 13/S3.30/© Gauthier-Villars

88 B. JENNER, B. KIRSIG

too, falls the surprising result by Borodin et al that even LOG(CFL\ the
closure of the context-free languages under logarithmic space bounded many-
one réductions, is closed under complémentation [1]. This class has been
introduced and investigated by Sudborough [13] and can be interpreted as
an extension of NSPACE(log n). Obviously, Borodin et al.'s result means:

A Sf PDApt = AUf PDApt = LOG(CFL\

where A Sf PDA (resp., A Uf PDA) dénotes the class of languages acceptable
by A 2f-(resp., A ü^-machines with additional pushdown store andpt means
restriction to polynomial time. An ^4Xf-(resp., A lijf)-machine is a logarith-
mic space bounded alternating Turing machine which starts in an existential
(resp., universal) configuration and alternâtes at most k — l times during each
computation (cf. [3]). Note that a language L is in the fc-th level of the
Logarithmic Alternation Hierarchy Aü,f if and only if there is an
A Xjf-machine accepting L.

Now, knowing that the Logarithmic Alternation Hierarchy
{AHf, AHf \k^0] collapses at its first level [6] one wonders if with the
result of [1] an analogously defined alternating auxiliary pushdown hierarchy
{AT,fPDApV AUf PDApt\k^0} (in the following called the "AY*PDApt-
Hierarchy") collapses at its first level, too. This does not seem to be the case,
since we can show that this would imply NP= P = LOG(CFL\ because
logarithmic space bounded alternating auxiliary pushdown automata which
are restricted to polynomial time and a fixed number of alternations during
computations exactly characterize the Polynomial Hierarchy { Sf, n f | k ̂ 0 }
(cf. [12]). In particular, we show:

which means that the fe-th level of the Polynomial Hierarchy is just the
/c-hlst level of the A Y? PLUprHierarchy.

This result not only yields another characterization of the Polynomial
Hierarchy besides the three well-known characterizations by bounded itéra-
tion of nondeterministic polynomial time Turing réductions, bounded quanti-
fication of P-predicates, and alternation bounded polynomial time machines,
but also shows that with one additional alternation the working tape of the
latter machines can be restricted to logarithmic space plus a pushdown store.

Furthermore, it is proven that PSPACE = AllfPDApt (the subscript GO
denoting unbounded alternation). Since PSPACE —AP [3] this shows that
alternating polynomial time machines accept the same languages if their

Informatique théorique et Applications/Theoretical Informaties and Applications

ALTERNATING PUSHDOWN HIERARCHY 89

working tape is restricted to logarithmic space plus a pushdown store. Note
that this question for machines without alternation P = ? DAPDA(\ogn)pt

(= LOG(DCFL) [13]) is still open. Since EXPTIME equals AY%PDA [9],
this result further sheds some new light on the relationship between PSPACE
and EXPTIME which is known to be APSPACE, the class of languages
recognized by alternating polynomial space bounded machines [3], The différ-
ence between these two classes can now be stated as the différence between
logarithmic space bounded alternating auxiliary pushdown automata with a
polynomial time bound and those without such a time bound.

Finally, we show that both results generalize to arbitrary space-constructi-
ble bounds.

2. THE A Y* PD Apt HIERARCHY

We assume the reader to be familiar with the standard notation and results
of complexity theory in [5]. In addition, we dénote the complement of a
language L by Co — L and for a class of languages sé we define

{ \ }
In what follows we first define the ^ S^PZ) 4prHierarchy. As outlined in

the introduction this hierarchy is defined in terms of simultaneously polyno-
mial time and logarithmic space bounded alternating auxiliary pushdown
automata. To our knowledge there has not yet been an investigation of
auxiliary pushdown automata which are both time bounded and alternating.
The concept of,an (nondeterministic, resp., deterministic) auxiliary pushdown
automaton (with arbitrary space bound and without any time bound) was
introduced and investigated in [2], In [13] investigations of logarithmic space
bounded auxiliary pushdown automata which are restricted to a polynomial
time bound followed. There it was shown that the class of languages which
are recognized by nondeterministic (resp., deterministic) such automata
coincides with the closure of the context-free languages (resp., deterministic
context-free languages) under logarithmic space réductions:

n)pt = LOG(CFL) [13],

DAPDA(\og n)pt = LOG(DCFL) [13].

On the other hand, alternating pushdown automata were introduced and
investigated in [3] and their auxiliary versions (without a time bound) in [9],

vol. 23, n° 1, 1989

9 0 B. JENNER, B. KIRSIG

For the définition of alterning S(n)-space bounded auxiliary pushdown
automata and the family of languages which are accepted by them (ALT-
AUX-PDA(S(n))) we refer to [9; Sect. 3] or [10].

For given monotone 5(n)^logn, T(ri)^>n let Al?Jn)pdaT{n) dénote an
S(n)-space bounded T(rc)-time bounded alternating auxiliary pushdown
automaton and AY%pdapt any such machine which satisfies S(n) = O(log n)
and T(n) = O (nk\ k ^ 1. Let A Sf PDApt : = {L (M) | M is an A Jgpda^ }.

For a given AY%pdapî M define for ail Zc^l : M is an
AXfpdapt(resp.,AUfpdapt) if M starts in an existential (resp., universal)
state and makes at most k — 1 alternations between existential and universal
states during each computation.

With this we define the ^42^PD^4pt-Hierarchy as follows (for the définition
oiDAPDA(logn)pt,cf. [13]):

DÉFINITION 2 .1 : For Zc^l iet

A Zf PDApt : = { L (M) | M is an A X?pdapt}

and
Anf PDApt : ={L(M)\M isanAUfpdapt},

and for sake of completeness let

pt: =AUfPDApt: =DAPDA{\ogn)pv

Then the AY?PDApt-Hierarchy is the set {A"Lf PDApv AUf PDApt|fc^0}.
Note that as in the case of the Logarithmic Alternation Hierarchy the base

class of the ^IS^PD^-Hierarchy is characterized by deterministic machines.
Furthermore, note that AT,f PDApt and AZfPDApî, fc^O, are closed

under logarithmic space réductions, as can be shown by standard techniques.
Obviously, the ,4 E*̂ P£Mpt-Hierarchy shares the structure of the Logarith-

mic Alternation Hierarchy. It holds for ail fe^O:

A n f PDApt = Co-AJ.f PDApt

and
ALf PDApt U A n f PDApt g A Zf+ x PDApt D A Uf+ x PDApV

Note that obviously NSPACE (log n) g ^ Z f PDApt for ail fe^l, and note
that the relationship between the base level of our hierarchy DAPDA (log n)pt

and NSPACE (log n) is still unsolved. None of the two classes is known to
contain the other and no language to separate them has been found yet.

Since an A Sf pdapt is just a nondeterministic polynomial time bounded
log n-space bounded auxiliary pushdown automaton, it holds for the first

Informatique théorique et Applications/Theoretical Informaties and Applications

ALTERNATING PUSHDOWN HIERARCHY 9 1

level of our hierarchy (cf [13]):

A2,f PDApt = NAPDA(\og n)pt = LOG(CFL)
and

A Uf PDApt = Co- NAP DA (log n)pt = Co-LO G(CFL).

Now, these classes have recently been shown by Borodin et ah to coincide:

PROPOSITION 2.2: [1] Alf PDApt = AUf PDApt.
This is surprising, since in the following section we are going to show that

the further levels of the A Y? PZMp,-Hierarchy coincide level by level with
the Polynomial Hierarchy [12] {£f, n f |/c^0} jumping over the base level
l>o=P. Thus it seems that to the , 4 1 ^ PD ̂ -Hierarchy the usual collapse
arguments cannot be applied all the way down to the first level. Hence we
have a much stronger result than just the inclusion of the fe-th level of the
Logarithmic Alternation Hierarchy in the fc-th level of the AYfPDApt-
Hierarchy which is obvious since an A^Lfpdapt is nothing but an
A Uf -machine with additional pushdown store.

3. THE MAIN RESULT

We are going to prove first that the 4 1 ^ PD ̂ -Hierarchy essentially
coincides with the Polynomial Hierarchy. This is done by showing each
inclusion separately. We use two lemmata.

LEMMA 3.1: A^f+1PDApt^"Lf for all fc^O.

Proof: The proof is by induction on k. The basis fc = 0 is immédiate, since
AI,fPDApt equals LOG(CFL) [13], which is well known to be a subset of
P. Assume for induction that A 2jf+ A PDApt g 2f, and hence
AUf+xPDApt^Uft Let LeAJLf+2PDApv L^X*,$$X, and let M be the
AT,f+2pdapt accepting L. W.l.o.g. we assume M to alternate at least once.

Now, define

BM : = {w$c|weX*, c i sa universal configuration of M,
and M started in configuration c accepts w}.

As can easily be verified, BM can be recognized by an AUf+1pdapt that
simulâtes M starting in configuration c. Thus BMeAUf+1PDApt which
implies BMGÎîf by the induction assumption. But now, obviously, a word
w e l * is an element of L if and only if there is a universal configuration c
which is reachable from the initial configuration of M on a computation

vol. 23, n° 1, 1989

92 B. JENNER, B. KIRSIG

path with existential configurations only and ceBM. Thus, an NP oracle
machine N with oracle set BM can accept L as follows: On input weX*N
simulâtes M until M alternâtes to a universal configuration c. Then N copies
c onto the oracle tape, queries the oracle, and accepts if and only if the
oracle answer is "YES", i.e., iff ceBM. Thus, LeATP(5M)gArP(nf) = £f+1.
As L was arbitrary chosen from A Tâf+2PDApV we conclude
AHf+2PDApt^2,f+1, thus proving the lemma. A

For the second lemma we first need some préparation.
For any k ^ 1 let us define Bk as the set of all boolean formulas

F(Xl9 . . ., Xk) over {0, 1, —i, A, V, -•, <-•} such that
(3Xi)Q/X2). . ,(QkXk)[F(X1, . . ., Xk)=l] where Qk stands for V if k even
and else for 3, Xt stands for the séquence of variable symbols xil9 xi2, . . . and
3Xt stands for 3x£13x i2. . .(and VIt- for VxaVx i2. . .), and F(Xi9 . . ., Xk)
dénotes a boolean formula containing no variable symbol xtj with i>k. Let
3 CNF(3DNF) dénote the set of boolean formulas in conjunctive (disjunctive)
normal form such that F is Cx A C2 A . . . A Cm (Ct v C2 v . . . v Cm) where,
for 1 ̂ ï ^ m , Ct is a disjunction (conjunction) of at most three literals. Define

Bm : = U B*.

Then as shown by Stockmeyer [12; Theorem 4.1 and Theorem 5.1] it
holds:

PROPOSITION 3.2: [12] Let k^l.

(i) If k is odd {even) then Bk C\ 3 CiVT (Bk f) DNF) is log-complete in Zf.
(ii) BWO3 CATF is log-complete in PSP ACE.
Now we are prepared to complete our main resuit.

LEMMA 3.3: Y,t^A"Lf+1PDApt for all k^h

Proof: By Proposition 3.2 (i) we know that for odd (even) k, k^zl,
BkC\3 CNF(Bk O 3 DNF) is Zf-complete. Since v4Sf+ x PD>4p, is closed under
logarithmic space many-one réductions, we only have to show
Bkn3CNFeAI,f+1PDApt (resp., Bkn 3DNFGAi:f+lPDApt) for odd
(resp., even) k.

Let k be odd. We will come up with an Allf+1pdapt M that recognizes
5 k O 3 CNF.

On input w M first checks if w is an encoding of a boolean formula
in 3 CNF with variable séquences X1 to Xk. Obviously, this can be done
deterministically in log-space and hence in polynomial time. If w is the
encoding of a formula F(Xly . . ., Xk) M has to accept iff 3Xl\fX2* . . 3Xk:

Informatique théorique et Applications/Theoretical Informaties and Applications

ALTERNATING PUSHDOWN HIERARCHY 9 3

F(XU . . ., Xk)=l. Now M does the following: For i= 1 to k M guesses an
assignment for Xt (universally, if i even, and existentially, if i odd) and stores
it (and the variable) in the pushdown, thereby separating one entry from the
other by using a séparation symbol $. (The pushdown will now contain for
any Xt a séquence like the following: xn $1 $xi2 0. . . $xa._1 $0x„.$ 1 $.)

As k is odd Xk is stored existentially. And since any variable symbol x&j

occurs exactly once on the pushdown for this linear time suffices. Now M
alternâtes and universally guesses a clause in F and checks for all variables
in the pushdown store (one after the other) — thereby emptying the pushdown
store —if it or its négation is contained in that clause and if its assignment
satisfies that clause. If one of the variables satisfies the clause M accepts
otherwise M rejects. As M opérâtes universally all clauses are checked and
M accepts iff F(Xl9 . . ., Xk) is satisfied. Checking one clause to be satisfied
requires at most linear time as in any clause there are only 3 variables and
M only has to empty the pushdown. Thus the total amount of time used by
M is polynomial. As the assignment to Xl9 . . ., Xk was generated alternating
existentially and universally M accepts iff 3 Xx V X2. . . 3 Xk :
F(Xl9 . . ., Xk) = l thereby using exactly k alternations.

The proof for even k and Bk O 3 DNF is similar. In this case the variables
and their assignments are stored by M as described above, but since k is
even, now Xk is stored universally and with one additional alternation M can
check (existentially) if there is one clause that can be satisfied which suffices
to check whether the entire 3DATF-formula is satisfied. •

Remark: By considering the case NP=Zf — AlLf PDApt as an example of
the idea of the proof, it becomes evident in what way the space used by a
polymial time bounded machine is equivalent to a (polynomial space bounded)
pushdown store plus one alternation. An NP-machine which recognizes
SATD3CNF, the set of all satisfiable formulas in conjunctive normal form
with at most three literals per clause, guesses an assignment to the variables
onto its tape and then checks for all clauses —one after the other —whether
they are all satisfied, thereby using the information stored on its tape more
often thanjust once.

In contrast, an A2,fpdapt guesses an assignment to the variables onto its
pushdown store and then —since reading erases the information stored on
the pushdown and the information therefore can be used only once —the
automaton checks by alternating, i. e., by using its universal guessing mechan-
ism, whether they are all satisfied.

With Lemma 3.1 and 3, 3 our main theorem is now immédiate,

vol 23, n° 1, 1989

9 4 B. JENNER, B. KIRSIG

THEOREM 3.4: Zf = A?,f+1PDApt for ail fe^l. A
Theorem 3.4. pro vides us with another machine model that characterizes

the Polynomial Hierarchy on and above its first level Note that the first
level of the hierarchy defined by these alternating machines is not NP but
LOG(CFL).

The tö-jump of the Polynomial Hierarchy is PSPACE, since
00

B(ùn3CNF={JBkr)3CNF is log-space complete for this class [12]. The
k

following theorem shows that even this set can be recognized by simultane-
ously polynomial time and log-space bounded alternating auxiliary pushdown
automata, granted unlimited alternation.

As is well known, alternating polynomial time equals polynomial space:

PROPOSITION 3.5: [3] AP^ PSP ACE.

With this the inclusion A^PDApt^ PSPACE is obvious, since
A1L%pdapts are restricted alternating polynomial time machines. But using
the same idea as in the proof of Lemma 3.3 we can show, too that PSPACE
is contained in AI,f PDAnt:

THEOREM 3,6: PSPACE = ATt%PDApv

Proof: It remains to show the left-to-right inclusion. Since AXf PDApî

is closed under logarithmic space many-one réductions with Proposi-
tion 3.2 (ii) it suffices to show that B^ O 3 CNF e A Ef PDApV But
w G Bm n 3 CNF o 3 k : w e Bk C\ 3 CNF, w.l.o.g. k odd, w encoding of
F(XU . . ., Xk). This implies that the assignment for the variables Xl9 . . ., Xk

can be pushed onto the pushdown store using k — 1 alternations, and with
one more alternation it can be verified that ail clauses are satisfied by the
technique described in Lemma 3.3. Hence Bn f) 3 CNF can be accepted by
an AJlfpdapr A

Note that with results of Ladner, Lipton, and Stockmeyer [10] we know
that for logarithmic space bounded alternating auxiliary pushdown automata
without a time bound there is no hierarchy above the second level:

P [2],

[10],

= AUf PDA = AUf+iPDA = PSPACE for all k^2 [10].

Informatique théorique et Applications/Theoretical Informaties and Applications

ALTERNATING PUSHDOWN HIERARCHY 9 5

Thus Theorem 3.6 shows that auxiliary pushdown automata with
unbounded alternation but polynomial time constraint are equivalent to those
with one (starting with an existential configuration) or more alternations but
without any time bound. Hence there is a trade-off between the number of
alternations and the time those machines are allowed to use. Note that
without any restrictions on both the number of alternations and the time
bound Ladner, Lipton, and Stockmeyer obtained ALf PDA = EKVYIME
[9, 10].

Further investigations show that the results obtained hère for logarithmic
space and polynomial time bounds (Theorem 3.4 and 3.6) generalize to
arbitrary space-constructible bounds.

For given monotone S(n)^logn and all k^l let A2k TIME(cs(rt))
(ATIME (cs (ll))) dénote the class of all languages that can be accepted by
alternating cs (n)-time bounded Turing machines with k — 1 alternations only
(with unbounded alternation).

Then it hoîds for space-constructible 5(n)^log n:

THEOREM 3.7:

(i) U ALjJin{PDAcsw = U ASkTIME(cs(n)) for all fc ^ 1,

(ii) Alt
sJn)PDAcs(n) = ATIME(c5(n)).

Proof: (i) " g " : Let L be accepted by an AHl¥[pdacs{n)M. L can be
reduced in nondeterministic time cs {n) to a set BM that is defined as follows:

BM : - { w $ X # c S < | w |) - | l c ! - | w | | K i s a universal configuration of M,

and M started in K accepts w using S (| w |) space and cs ('w ') time only }.

On input w the machine Computing a réduction from L to BM simulâtes
the nondeterministic computation of M on w until M alternâtes to some
universal configuration K. Then it outputs w$K# c S (| w |) ^ | x l ~ | w | . The simul-
ation and output consumes at most c5(l w ') time since M has that time bound.

But obviously BMeAUf PDApV since on input w$K#cS('w'}~!K'~'w' the
simulation of M by an A ïlf pdapî consumes

< | w |) -^ t - l w I j) space

and

vol. 23, n° 1, 1989

9 6 B. JENNER, B. KIRSIG

But with Lemma 3.1 we now obtain BMeIlf-19 and consequently

± => 3j:BMeATlk_1TIME(nÔ

lk^1 TIME(nj))

=> 3j : LeAI,kTIME((cs(n))Ó

=> Le U A"LkTIME{dS{n)).

(NTIMEcs(n) () dénotes the nondeterministic réduction mentioned above).

This complètes the proof of the left-to-right inclusion of (i).

"ü>": Let M an O (cs (n))-time bounded and /c-alternation bounded Turing
machine. W.Lo.g. we can assume that M alternâtes exactly k — 1 times during
each computation, and that M performs exactly cS{n) steps bef ore each
alternation. Now, by computing the following program an A7Ll^\pdacs{n)M'
can simulate M:

for i: = 1 to k + 1 do
begin
if i odd then

begin
• existentially guess a number x between 0 and cS(n);
m pop x — 1 configurations from the pushdown;
• accept if M can not reach the top configuration on the
pushdown in one step from the next to top configuration;

or if i ̂ k then
• existentially guess cS(n) configurations of M onto the push-
down such that the last of these configurations is an accepting
one if i = k and universal if i < k;
• alternate;

end;
if / even then

begin
• universally guess all numbers x between 0 and cs (n);
• pop x— 1 configurations from the pushdown;
• accept if M can reach the top configuration on the pushdown
in one step from the next to top configuration;

and if i ̂ k then
• universally guess cs in) configurations of M onto the pushdown
such that the last of these configurations is a rejecting one if
i = k and existential if i < k;

Informatique théorique et Applications/Theoretical Informaties and Applications

ALTERNATING PUSHDOWN HIERARCHY 9 7

• alternate;
end;

end

M' essentially guesses and checks all the configuration séquences of length
cs in) which could have been perf ormed by M between two alternations. These
séquences contain either only existential configurations or universal ones.

The existential séquences are existentially guessed onto the pushdown store
by M' and afterwards in universal mode checked to be a proper séquence
while the other branch of the universal part of the program continues by
guessing the following universal séquence of M which will be verified after-
wards in existential mode either by guessing an error or by continuing the
guessing of the following existential computation séquence. Since the machine
M is k*cS{n) time bounded all of its configurations are of length at most
k • cs (n). M' is S (n) space bounded and thus it can control that the length of
any configuration it pushes onto the pushdown does not exceed k * cs in\ With
the same space bound M' can count from 1 to cs{n) thus making sure that
exactly cs (n) configurations are pushed onto the pushdown.

In order to verify that a séquence of cs(n) configurations—each of them of
iength at most k' cS{n)—is a légal computation of M the machine M' guesses
in universal mode a number x between 0 and cS(n) to détermine a configur-
ation, and a number y between 0 and k- cS(n) to détermine a tape cell on M's
worktape. Then M' first pops x — 1 configurations from the pushdown and
then it pops the contents of the first y — 1 tape cells óf configuration x, reads
the symbol in cell y, and compares it with the content of cell y in configuration
x-f-1. If these two symbols are identical M' accepts. If M's read-write head is
positioned on cell y M' vérifies that the différence between the two configur-
ations corresponds to a légal move of M. Since M' is in universal mode when
checking the séquence of configurations M' guesses all combinations of x and
y and can accept only if the entire séquence is a légal computation of M.

For séquences of configurations that are guessed in universal mode M'
may accept if the séquence does not correspond to a légal computation since
the universal guessing mechanism guarantees that (on some other path of
M"s computation) there are also legal cömputations of M stored in the
pushdown. Now M' guesses existentially whether the séquence on top of the
push-down is a legal computation of M or not. For illégal cömputations M'
guesses a configuration x on the pushdown and accepts if M can not reach
this configuration in one step from configuration x + 1. For legal séquences
M' continues the simulation of M.

vol. 23, n° 1, 1989

98 B. JENNER, B. KIRSIG

Having checked k — 1 séquences the program constructs the /e-th séquence
such that the final configuration is accepting if k is odd and rejecting if k is
even. For k odd the correctness of the séquence (i. e., the reachability of an
accepting configuration) is verified as above. For k even the final séquence
(ending in a rejecting state) is constructed universally. Now M' accepts if it
can verify (by existentially guessing two configurations that do not correspond
to a légal move of M) that all those séquences ending in a rejecting state are
illégal computations of M. Consequently all légal séquences of M must have
ended in an accepting configuration.

Since M' has checked all séquences to be legal computations of M it accepts
if and only if these séquences correspond to an accepting computation of M.
Hence M' accepts if and only if M accepts.

This complètes the proof of (i).
(ii) A1Llin)PDAcs(n) = ATlME(cS{n)) can be shown analogously. •
Note that ATIME (cS(n)) equals DSPACE (cS(n)) [3].

4. DISCUSSION

As shown by Borodin et al [1] there are many ways to define hiérarchies
based on LOG(CFL) which collapse to this class. We have shown a way to
define a hierarchy based on LOG(CFL) (or rather LOG(DCFL)) that col-
lapses to LOG(CFL) if and only if NP =P=LO G (CFL), which is widely
conjectured to be false. This hierarchy, moreover, essentially coincides with
the Polynomial Hierarchy for which thus another characterization by simulta-
neously logarithmic space and polynomial time bounded alternating auxiliary
pushdown automata has been obtained.

By taking a closer look at the proof s of Theorems 3.4 and 3.6 it can be
seen that even a further characterization of the Polynomial Hierarchy and
PSPACE can be obtained, namely by simultaneously logarithmic space and
polynomial time bounded alternating auxiliary checking stack automata (for
non-alternating versions cf. [4]) which alternate at most fc — 1 times during
each computation (A"Lf CSApt). It holds T,f = AI>fCSApV for all fc^l. The
left to right inclusion holds since for odd k Bk f\ 3 CNF (resp., Bk C\3DNF
for even k) can be recognized by a k — 1 alternation bounded checking stack
automaton which checks the satisfiability of all the clauses contained in the
given 3 CNF formula by reading the information stored on its stack again
for each clause instead of using a further alternation. The other inclusion is
obvious since the Polynomial Hierarchy can be characterized by alternating

Informatique théorique et Applications/Theoretical Informaties and Applications

ALTERNATING PUSHDOWN HIERARCHY 9 9

polynomial time bounded Turing machines [3], Note that alternating checking
stack automata with the above space and time bounds and without a bound
on the alternation depth again characterize PSPACE, Le.,

REFERENCES

1. A. BoRODiN, S. A. CooK. P. W. DYMOND, W. L. RUZZO, and M. TOMPA, TWO
Applications of Complémentation via Inductive Counting, manuscript, Sept. 1987.

2. S. A. COOK, Characterizations of Pushdown Machines in Terms of Timebounded
Computers, Journ. of the ACM 18, Vol. 1, 1971, pp. 4-18.

3. A. K. CHANDRA, D. C. KOZEN, and L. J. STOCKMEYER, Alternation, Journ. of the
ACM 28, Vol. 1, 1981, pp. 114-133.

4. S. GREIBACH, Checking Automata and One-way Stack Languages, Journ. of Com-
puter and System Sciences, Vol. 3, 1969, pp. 196-217.

5. J. E. HOPCROFT, and J. D. ULLMAN, Introduction to Automata Theory, Languages,
and Computation, Addison-Wesley, Reading, Mass., 1979.

6. N. IMMERMAN, Nondeterministic Space is Closed Under Complement, Techn.
Report, Yale University, YALEU/DCS/TR 552, July 1987.

7. B. JENNER, B. KIRSIG, and K.-J. LANGE, The Logarithmic Alternation Hierarchy
Collapses: A2,f = AIlf (extended version), to be published in Information and
Computation.

8. K.-J. LANGE, B. JENNER, and B. KIRSIG, The Logarithmic Alternation Hierarchy

Collapses: AXf = AUf, Proc. of the 14th ICALP, Karlsruhe, July 1987, Lect
Notes in Comp. Sci., Vol. 267, pp. 531-541.

9. R. E. LADNER, R. J. LIPTON, and LJ . STOCKMEYER, Alternating Pushdown Automata,
Proc. of the 19th IEEE Symp. on Foundations of Comp. Sci., Ann Arbor, Mich.,
1978, pp. 92-106.

10. R. E. LADNER, L. J. STOCKMEYER, and R. J. LIPTON, Alternaiion Bounded Auxiliary
Push-down Automata, Information and Control, Vol. 62, 1984, pp. 93-108.

11. U. SCHONING, and K. W. WAGNER, Collapsing Oracle Hiérarchies, Census Functions
and Logarithmically Many Queries, Report No. 140, Universitàt Augsburg, May
1987.

12. L. J. STOCKMEYER, The Polynomial-time Hierarchy, Theoret. Comp. Sci., Vol. 3,
1976, pp. 1-22.

13. I. H. SUDBOROUGH, On the Tape Complexity of Deterministic Context-Free Lan-
guages, Journ. of the ACM 25, Vol. 3, 1978, pp. 405-414.

14. R. SZELEPCSÉNYI, The Method of Forcing for Nondeterministic Automata, Bull.
European Assoc. Theoret. Comp. Sci. No. 33, Oct. 1987, pp. 96-100.

vol. 23, n° 1, 1989

