Skip to main content

A system of knowledge representation based on formulae of predicate calculus whose variables are annotated by expressions of a “fuzzy” Terminological Logic

  • Logics
  • Conference paper
  • First Online:
Advances in Intelligent Computing — IPMU '94 (IPMU 1994)

Abstract

In this paper one presents a system for introducing assertions in a knowledge base (kb). These assertions are represented as formulae of Predicate Calculus (PC) whose variables are annotated by concepts of Terminological Logic (TL). The system answers questions by using methods of inference both from PC and TL. The terminological language used is characterized by a fuzzy treatment of concepts. The main contribuitions are: a unification algorithm which closes the semantic gap between PC and TL; introduction of uncertainty in subsumption; use of subsumption to simplify the tracing of the proof; use of Partial Evaluation to link assertional and terminological reasoning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chang,C. and Lee, R., Symbolic Logic and Mechanical Theorem Proving, Academic Press, New York San Francisco London (1973)

    Google Scholar 

  2. DeJong, G. F. and Gratch, J., Steve Minton, Learning Search Control knowledge: An Explanation Based Approach, in: Artificial Intelligence 50 (1991) 117–127

    Google Scholar 

  3. Donini,F.M., Lenzerini, M. and Nardi, D., The Complexity of Existential Quantification in Concept Languages, in: Artificial Intelligence 53 (1992) 309–327

    Google Scholar 

  4. Doyle, J. and Patil, R.S., Two theses of knowledge representation: language restrictions, taxonomic classification, and the utility of representation services, in: Artificial Intelligence 48 (1991)261–297

    Google Scholar 

  5. Dowty, D. Wall, R. and Peters, S., Introduction to Montague Semantics, D. Reidel Publishing Company (1985)

    Google Scholar 

  6. Dubois, D.and Prade, H., Théorie des Possibilités, MASSON (1985)

    Google Scholar 

  7. Ershov, A. P., Mixed Computation: Potential Applications and Problems for Study in: Theoretical Computer Science 18(1982) 41–67

    Google Scholar 

  8. Gazdar, F., Klein, E., Pullum, G. and Sag.I, Generalized Phrase Structure Grammar, in: Harvard University Press, Cambridge, 1985

    Google Scholar 

  9. Gazdar, G. and Mellish, Natural Language Processing in LISP

    Google Scholar 

  10. Grover,C., Briscoe, E., Carrolis, G. and Boguraev, The Alvey Natural Language Tools Grammar, in: University of Cambridge, Computer Lab.

    Google Scholar 

  11. Harmelen, F. and Bundy, A., Explanation-Based Generalisation = Partial Evaluation, in: Artificial Intelligence 36 (1988) 401–412

    Google Scholar 

  12. Jones,S.L.P., The Implementation of Functional Programming Languages

    Google Scholar 

  13. Minton, S., Carbonell, J. G., Knoblock, C.A., Kuokka, R.,Etizioni, O., and Gil, Explanation Based Learning: A Problem Solving Perspective, in: Artificial Intelligence 40 (1989)63–118

    Google Scholar 

  14. Nebel, B., Reasoning and Revision in Hybrid Representation-Lectures Notes in Artificial Intelligence n.422

    Google Scholar 

  15. Nillson, N. (1980) Principles of Artificial Intelligence, Tioga Publishing Co; Palo Alto, California.

    Google Scholar 

  16. Patel-Schneider, P.F., Undecidability of Subsumption in NIKL, in: Artificial Intelligence 39 (1989) 263–272

    Google Scholar 

  17. Pereira, F.C.N., Incremental Interpretation, in: Artificial Intelligence 50(1991) 37–82

    Google Scholar 

  18. Shesov, S.D. and Myasnikov, A.G., Logical-Semantic Structure of a Terminology and its Formal Properties, in: Nauchno-Teckhnicheskaya Informatsiya, Seriya 2, Vol. 21, N.3,1987

    Google Scholar 

  19. Toussain,Y., Methodes Informatiques et Linguistiques Pour L'aide à la Specification de Logiciel, Phd thesis (1992), Université Paul Sabatier Toulouse, France

    Google Scholar 

  20. Vilain, M., The Restricted Language Architecture of a Hybrid Representation System, Proceedings IJCAI-85, Los Angeles, CA (1985)

    Google Scholar 

  21. Westerstâl,D., Quantifiers in Formal and Natural Languages, in: Handbook of Philosoph. Logic, Gabbay, D. et Guenthner, F.,Eds.D.Reidel Publ. Co., 1989, chap.1, pp 1–131

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bernadette Bouchon-Meunier Ronald R. Yager Lotfi A. Zadeh

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maria da Silva, R., Pereira, A.E.C., Netto, M.A. (1995). A system of knowledge representation based on formulae of predicate calculus whose variables are annotated by expressions of a “fuzzy” Terminological Logic. In: Bouchon-Meunier, B., Yager, R.R., Zadeh, L.A. (eds) Advances in Intelligent Computing — IPMU '94. IPMU 1994. Lecture Notes in Computer Science, vol 945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0035974

Download citation

  • DOI: https://doi.org/10.1007/BFb0035974

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60116-6

  • Online ISBN: 978-3-540-49443-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics