Skip to main content

The complexity of universal text-learners

  • Technical Contributions
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1279))

Abstract

The present work deals with language learning from text. It considers universal learners for classes of languages in models of additional information and analyzes their complexity in terms of Turing degrees. The following is shown: If the additional information is given by a set containing at least one index for each language from the class to be learned but no index for any language outside the class then there is a universal learner having the same Turing degree as the inclusion problem for enumerable sets. This result is optimal in the sense that any further learner has the same or higher Turing degree. If the additional information is given by a set which contains exactly the indices of the languages from the class to be learned then there is a computable universal learner. Finally, if the additional information is presented as an upper bound on the size of some grammar that generates the language then a high oracle is necessary and sufficient.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lenny Adleman and Manuel Blum (1991): Inductive Inference and Unsolvability. Journal of Symbolic Logic 56:891–900.

    Google Scholar 

  2. Dana Angluin (1980): Inductive Inference of Formal Languages from Positive Data. Information and Control 45:117–135.

    Article  Google Scholar 

  3. Ganesh Baliga, John Case and Sanjay Jain (1996): Synthesizing Enumeration Techniques for Language Learning. Proceedings of the Ninth Conference on Computational Learning Theory (COLT) 169–180.

    Google Scholar 

  4. Janis Barzdins and Karlis Podnieks (1973): The Theory of Inductive Inference. Proceedings of the Conference on Mathematical Foundations of Computer Science (MFCS) 9–15.

    Google Scholar 

  5. Leonard Blum and Manuel Blum (1975): Towards a Mathematical Theory of Inductive Inference. Information and Control 28:125–155.

    Article  Google Scholar 

  6. Lance Fortnow, William Gasarch, Sanjay Jain, Efim Kinber, Martin Kummer, Steven Kurtz, Mark Pleszkoch, Theodore Shaman, Robert Solovay and Frank Stephan (1994): Extremes in the Degrees of inferability. Annals of pure and Applied Logic 66:231–276.

    Article  Google Scholar 

  7. Rusins Freivalds and Rolf Wiehagen (1979): Inductive inference with additional information. Elektronische Informationsverarbeitung und Kybernetik 15:179–185.

    Google Scholar 

  8. William Gasarch and Mark Pleszkoch (1989): Learning via queries to an oracle. Proceedings of the Second Annual Conference on Computational Learning Theory (COLT) 214–229.

    Google Scholar 

  9. Mark Gold (1967): Language Identification in the Limit. Information and Control 10:447–474.

    Article  Google Scholar 

  10. Sanjay Jain and Arun Sharma (1993): Learning with the Knowledge of an Upper Bound on Program Size. Information and Computation 102:118–166.

    Article  Google Scholar 

  11. Sanjay Jain and Arun Sharma (1993): On the non-existence of maximal inference degrees for language identification. Information Processing Letters 47:81–88.

    Article  Google Scholar 

  12. Klaus-Peter Jantke (1979): Natural properties of strategies identifying recursive functions. Elektronische Informationsverarbeitung und Kybernetik 15:487–496

    Google Scholar 

  13. Susanne Kaufmann and Frank Stephan (1997): Robust Learning with Infinite Additional Information. To appear at EuroCOLT 1997. Long version is available as: Forschungsberichte Mathematische Logik 23/1996 des Mathematischen Institut an der Universität Heidelberg, 1996.

    Google Scholar 

  14. Hartley Rogers, Jr. (1967): Theory of Recursive Functions and Effective Computability. McGraw-Hill Book Company, New York.

    Google Scholar 

  15. Piergiorgio Odifreddi (1989): Classical Recursion Theory. North-Holland.

    Google Scholar 

  16. Daniel Osherson, Dick de Jongh, Eric Martin and Scott Weinstein (1997): Formal learning theory. in Handbook of Logic and Language, edited by J. van Benthem and A ter Meulen. Elsvier, pp. 737–775.

    Google Scholar 

  17. Daniel Osherson, Michael Stob and Scott Weinstein (1986): Systems that Learn. Bradford — The MIT Press, Cambridge, Massachusetts., Massachusetts.

    Google Scholar 

  18. Daniel Osherson, Michael Stob and Scott Weinstein (1988): Synthesizing inductive expertise, Information and Computation 77(2):138–161.

    Article  Google Scholar 

  19. Daniel Osherson, Michael Stob and Scott Weinstein (1991): A Universal Inductive Inference Machine. Journal of Symbolic Logic 56:661–672.

    Google Scholar 

  20. Robert Soare (1987): Recursively Enumerable Sets and Degrees. Springer-Verlag Heidelberg Heidelberg. *** DIRECT SUPPORT *** A0008123 00012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bogdan S. Chlebus Ludwik Czaja

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stephan, F.C., Terwijn, S.A. (1997). The complexity of universal text-learners. In: Chlebus, B.S., Czaja, L. (eds) Fundamentals of Computation Theory. FCT 1997. Lecture Notes in Computer Science, vol 1279. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0036205

Download citation

  • DOI: https://doi.org/10.1007/BFb0036205

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63386-0

  • Online ISBN: 978-3-540-69529-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics