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Abstract. The intermittent assertion method proposed by Burstall [BJ and subse­

quently popularized by Manna and Waldinger [MW] is axiomatized using a fragment 

of temporal logic. The proposed proof system allows to reason about while-programs. 

The proof system is proved to be arithmetically sound and complete in the sense 

of Harel [HJ. The results of the paper generalize a corresponding result of Pnueli 

[PJ proved for unstructured programs. 

The system decomposes into two parts. The first part allows to 

prove liveness properties using as axioms theorems of the second part allowing to 

prove simple safety properties. 

The completeness proof is constructive and provides a heuristic for proving 

specific liueness formulas. 

1 • INTRODUCTION 

In 1977 Pnueli [PJ introduced temporal logic as a tool for reasoning 

about sequential and concurrent programs. This approach received subsequently a lot 

of attention and since then several proof systems based on temporal were proposed. 

These proof systems allow to prove more complicated properties of concurrent pro­

grams than partial correctness or deadlock freedom (see e.g. [MP 1J, [MP 2], [OL]l. 

However, most of these systems allow to reason about unstPuatured programs 

only. The only exception is the proof system of Owicki and Lamport [DLJ. We find 

that in order to reason about structured programs a firm theoretical bas~s should 

be first established. In our opinion this was not done in [OL] where various obvious 

or less obvious axioms and proof rules are missing. 

To clarify these issues we carry out our analysis in the framework of 

while-programs. Several (but not all) of the introduced axioms and proof rules are 

also valid in the case of parallel programs. 
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By W we denote the class of while-programs which is defined as usual. 

The programs from W use variables, expressions and Boolean expressions of the 

language L. They are denoted by the letters S,T. 

We allow formulas of the form at S and after S for S E W. They are 

called eontroi fomrutas and are denoted by t.he letter C. 

From assertions and control formulas we can built up certain formulas 

which will be called mi:i:ed fo1'TT!Utas. They are of the form C A p. Mixed formulas 

are denoted by the letter µ. 

The first subsystem discussed in section 4 allows two type of formulas 

c A p ~ c· A q and c A p ~ C' A q. If in the first type of a formula c = C' 

we omit C'. We also omit all assertions of the form true. The formulas of the 

form µ 1 ~µ2 will be of main interest. We call them tiveness formuias. 

3. - SEMANTICS 

To interpret the meaning of the formulas allowed in the proof system we 

provide an appropriate class of models for them. These models have to take into 

account the semantics of programs as the formulas refer directly to them. There­

fore we define first the semantics of programs appropriate for our purposes. This 

semantics is a slight variant of the one introduced in [HP]. 

Let I be an interpretation of the assertion language L with a nonempty 

domain D. By an assignation we mean a function assigning to each variable x of 

L a value from the domain D. By a state we mean a pair which consists of a 

program S E W or an empty program E and an assignation. We denote states by 

the letter s. If s is a state then by s we denote the assignation being its 

component. For a set C of states we define C to be the corresponding set of 

assignations: C = {s : s E C}. 

The value of a term t in an assignation s (written as s(tll and a 

truth of a formula p of L in an assignation s (written as l=Ip(sll are defi­

ned as usual. 

We define now a transition relation "+" between states. Intuitively, 

for = <S -
<S1,s1> s ,s > and s1 = s -+ s means that one step in execution 

0 0 0 0 1 
Of s in assignation s leads to assignation s1 with s1 being the 

0 0 

remainder of s to be executed. If s 
0 0 

terminates in s1 then s1 is empty, 

i.e. s1 = E. We assume that for any program S: (E J SJ = (S J EJ = s. 

We define the relation by the following clauses 

il <x:=t,s> + <E,s1> 

where §1(y) = s(y) for y ix and s1(x] s(t] 

ii) If <S,s> + <S1,s1> then for any program T <S 1 T,s>-+ <S 1 
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iiil <if b then s1 else s2 fi, s>..,. <S 1,s> if l=Ib(sJ 

ivl <if b then s1 else s2 fi, s>..,. <S2 ,s> if llibCsl 

vl <while b do S od, s>-+ <S ; while b do s ad, s> if l=Ib(sl 

vil <while b do S od, s>-+ <E,s> if llib[s) 

vii) <E,s>-+ <E,s> 

Let * ..,. denote the transitive closure of -+. 

Given now a program T by an execution sequence of T we mean a maximal 

sequence of states s 0 ,s1, ... such that s 0 = <T,s0 > and for 

i = 0,1, .•. si-+ si+j holds. Clause vii) implies that each execution sequence is 

infinite. Execution sequences are denoted by the letters O,T • If o = s0 ,s 1, ... 

then by definitmon oi = si,si+ 1, ... 

For a program T we denote by the set of all of its execution 

sequences closed under the truncation operation oi,i.e. (J E ~T implies that for 

any i ;,, 0 Of course depends on the interpretation I. 

Having defined semantics of the programs we now define semantics of the 

control formulas. 

Let S be a subprogram of T. We define 

l=T,I at S[s) iff 3 CJ E ~T [s is an element of o) and s = <S;S' ,s> 

for some S' ; 

l=T,I after S(s) iff 3 s 1 3 CJ E ~T (s,s 1 are element of O) 

s 1 ..,.* s = <S' ,s> for some S' 

and if S' "fc E then for no such that s <S' "s2 >. 

Intuitively, l=T,I at S(s] holds if s is a state in an execution 

sequence of T such that the subprogram S is just to be executed in s. And 

l=T,I after S[s) holds if s is a state in an execution sequence of T such 

that the execution of the subprogram S has just terminated in s. [Note that our 

interpretation of after S, differs from that of [OL].)Of course the above defini­

tions are not sufficiently precise as various occurrences of S and S' in a 

do not need to correspond with the same program. To avoid the confusion we should 

actually assign to each subprogram of T a unique label. It is clear how to 

perform this process and we leave it to the re~der. 

Note that 

l=T,I at TCsl iff s = <T,s> and 

l=T,I after TCsl iff s = <E,s> and 3 o E ~T Cs is an 

elE!lment of O) • 
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The truth of assertions does not depend on the programs and we naturally 

put 

l=T.I p(sl iff l=I pC~l 

where p is a formula of L. 

The truth of mixed formulas and formulas of the form µ ~ p and C ~ C' 

is now defined in a natural way. 

Finally we define the truth of liveness formulas. It depends on an execu­

tion sequence as it states a property of execution sequences and not states. We 

define 

l=r.I µ1 ..,,. µ2Ccrl 

vj Cl=T,I µ1Csjl 

iff cr c ~T and 

>3 k<-: j l=T.I µ2 Csk)J 

To make the definition of truth uniform for all types of formulas conside­

red here we define 

l=T,I <P (crl iff l=T,I <P(s 0 J where cr = s 0 ,s1, ... 

for all formulas <P whose definition of truth depended on a state only. 

We now say that a formula <P of any type is true with respect to T and 

I, written as l=T.I <P. if for all a c ~T l=T,I <P Cal holds. 

This completes the definition of semantics. 

4.- A SUBSYSTEM FOR PROVING LIVENESS FORMULAS 

We present here the first part of the proof system called L which is 

desig~ed to prove the liveness formulas from a certain set of hypotheses. The proof 

system L consists of two parts. The first part specifies how the control moves 

through the program. It is motivated by similar pro~f rules and axioms given in 

[L] and [OL]. The while rule shows how to prove the liveness properties of a 

while loop. It is an obvious adaptation of the rule given in [HJ appropriate for 

proving the termination of while loops. 

The second part axiomatizes the temporal operator " 

to manipulate the liveness formulas. 

The first part consists of the following axioms and rules 

ASSIGNMENT AXIOM 

A1 : 1-1 at S A p[t/x] after S A p 

where S = x:=t is a subprogram of T. 

and shows how 

Here as usual, p[t/x] stands for the result of substituting t for the 

free occurrences of x in p. 
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CONCATENATION AXIOMS and RULE 

Let s - S1;S2 be a subprogram of T 

A2 

A3 

A4 

AS 

AS 

A7 

R1 

I-T 
at s :i at s 1 

I-T 
at 51 => at s 

I- T 
after 51 :> at s2 

I-T at s2 :> after s1 

if s2 is not a while construct 

I- T after s2 :> after S 

I-T 
after s :> after s2 

concatenation rule 

I-T after so :> -, p 

I- T at s2 11 p :> after 51 

where s2 = while b do s 
0 

od 

SELECTION AXIOMS AND RULES 

Let s = if b then s1 else 

A8 I-T at s /\ b /\ p ~at s1 /\ p 

A9 I-T at s /\ -, b /\ p -...at s2 /\ p 

A10 I-T 
after 51 :> after s 

A11 I-T 
after 52 :> after s 

R2 I-T 
after s 1 :> -, q 

I-T after S A q :> after s2 

R3 I-T 
after 52 :> -, q 

I-T 
after S A q :> after 51 

WHILE AXIOMS AND RULES 

Let s :: while b do s od 
0 

A12 I-T at s A b A p ~at S A p 
0 

A13 I- T at s A I b A p r-.. after s A p 

A14 I- after s => at S T 0 

52 fi be a subprogram of 

be a subprogram of T. 

T 
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R4 

+ The formula at·S attempts to describe the fact that the control is at the 

beginning of S for the first time. 

+ The form of at S depends on the direct context of the while loop S 

within T. It is defined as follows 

put 

If S appears in T in the form 

s11S then 

T1 : if b1 

T1 =while 

+ at S : after s1, 

+ 
then at S - at T1 A b1, 

If none of the above cases arises then T is of the form S;S1 
+ at S : at T. 

R5 : while-rule 

1-T at SA p(n+1) => b, 1-T at S0 /\ p(n+1) ,.-.. after S0 A p(n) 

1-T at SA 3 n p(nl "-Pat SA p(D) 

and we 

Here p(n) is an assertion with a free variable n which does not appear 

in S and ranges over natural numbers. 

The second part of the system L consists of the following rules 

RB,: reflexivity rule 

1-T µ1 "'µ2 

1""T µ1 r'-J'µ2 

R7 transitivity rule 

1-T µ1 ~µ2, 1-T µ2"'-Pµ3 

1-T µ1 ,.._,. µ3 

RB confluence rule 

1-T µ1 A b ........ µ2, 1-T µ1 " I b ~ µ2 

1-T µ1 ~µ2 

We also adopt without mentioning all axioms and proof rules of classical 

logic concerning ~ and A applied to formulas µ1 => µ2 and their special cases. 

The system L allows to prove 1-T C A p ~ C' whenever l=T.IC A p => C'. 

Thus if we wish to prove 1-T,I CA p ~ C' A q it suffices to prove I-TC A p => q. 
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In section 7 we present another part of the proof system which allows to prove 

such formulas directly from assertions. For a moment ws accept these formulas 

as axioms. 

Let A be a set of the formulas of the form 1-T µ ~ p. Given a liveness 

formula ~ we say that ~ oan be proved from A, written as A 1-T ~. if there 

exists a proof of ~ in the proof system L which uses some of the elements of 

A as axioms. 

5.- SOUNDNESS 

In order to prove soundness of the proof system L we should interpret 

the formulas in a model. However, not all models are appropriate here. The reason 

for it is that the while rule R5 refers to natural numbers. To ensure a correct 

interpretation of this rule ws should restrict ourselves to models which contain 

natural numbers. This leads us to a:rithmetioai interpretations defined in [HJ. We 

recall the definition 

be the minimal extension of L containing the language L 
p 

of Peano arithmetic and a unary relation nat(x). Call an interpretation I of L+ 

a:rithmetioaZ if its domain includes the set of natural numbers, I provides the 

standard interpretation for Lp' and nat(x], is interpreted as the relation "to be 

a natural number". Additionally, we require that there exists a formula of L+ 

which, when interpreted under I, provides the ability to encode finite sequences 

of elements from the domain of I into one element. (The la:t requirement is 

needed only for the completeness proof.] Our proof system is suitable only for asser­
+ 

tion languages of the form L , and an expression such as p(n] is actually a 

shorthand for na~(n) A p(n]. 

Given now a program T and an arithmetical interpretation I denote by 

Th(T,Il the set of all formulas of the form 1-T µ ~ q for which 

I= µ ~ q. T,I 

We have the following theorem 

SOUNDNESS THEOREM 

Let T be a program from W and let I be an arithmetical interpreta-

tion. For any liveness formula ~ if Th(T,Il 1-T~ then l=T,I ~. D 

Nots that any liveness formula true or provable in a context of T refers 

to subprograms of T only. 

6.- COMPLETENESS 

The following theorem states completeness of the subsystem L. 
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COMPLETENESS THEOREM 

Let T be a program from (II and let I be an arithmetical interpreta­

tion. For any liveness formula cp if I =T, I cp then Th(T, I l I -T<P. 

The proof of the theorem relies on the following important proposition. 

Proposition 1 : Let S 

if Th(S,IJ 1-s cp then 

be a subpragram of T. Then far any liveness formula <P 

Th(T,IJ I-Tip. 

Proof The proof of 

"I- " by "I- '' in it S T · 

l-5cp becomes a proof of 1-T<P if we replace everywhere 

0 

This proposition has a semantic counterpart. 

Proposition 2 : L]3t S be a subpragram of T. Then for any liveness formula <P 

if l=s.rcp then l=r.I<P· 0 

The proof of the theorem proceeds by structural induction with respect to 

T. Given cp = µ ,...,...µ• we find in each case a chain of the intermediate mixed 

formulas µ0 ,µ 1, ... ,µk such that µ = µ0 ,µk = µ' and for each 

i,.0,. . ., k-1 I =Tµi !"-f' µi +1. This chain is so chosen that for every i=O, ... , k-1 

either l=sµi ..--..µi+ 1 for a proper subprogram S of T or µi µi+ 1 can be proved 

directly. In the first case by the induction hypothesis Th(S,I) l-5µi ,,..,.µi+ 1 so 

Th(T,IJ 1-Tµi --..µi+ 1 by proposition 1. In the latter case one either applies the 
axioms or proof rules directly or makes use of the induction hypothesis. Depending 
on the case the length of the chain varies between 2 and 5. In some cases more than 
one chain is needed and the confluence rule is used to obtain the desired result. 

7.- A SUBSYSTEM FOR PROVING FORMULAS OF THE FORM 1-Tµ ::o p 

The subsystem presented in section 4 used as axioms formulas of the form 

1-Tµ ::o p. Such a choice of axioms is unsatisfactory for our purposes as these for­

mulas refer to programs and the properties expressed by them are not always easy 

to verify. Note for example that l=T,I after TA p ::o q is equivalent to 

l=T.I{true} T {p ::o q} in the sense of Hoare's logic (see e.g. [A]). 

To remedy this deficiency we provide nGWanother part of the proof system 

called S appropriate for proving this type of formulas. 

The system S allows to prove arbitrary true formulas of the form 

I-TC ::o p so also I-TC A p ::o q since C A p ::o q = C ::o (p ::o ql. 

Two types of formulas are allowed in the system S µ ::o p and C ::o C'. 

The system consists of the following axioms and rules : 

ASSIGNMENT RULE 

S1 : let S - x:=t be a subprogram of T: 



1-T at S ::i p [t/x] 

1-T after S ::i p 

SELECTION RULES 

25 

Let S = if b then s 1 else s 2 fi be a subprogram of T 

S2 : I-T at s :::> p if s1 does not 

I- at s1 ::i P A b a while loop 
T 

begin with 

S3 I-T 
at s :::> p if s2 does not begin with a 

I- at s2 ::i A I b while loop 
T 

p 

S4 I-T 
after s1 ::i P· I-T after s 2 ::i r 

I-T 
after S :::> p v r 

CONCATENATION AXIOMS 

Axioms A2 - A7 

WHILE RULES 

Let S = while b do S0 od be a subprogram of T 

S5 : 

S6 

S7 

1-T at S :::> p if s 
0 

I-Tat S0 A b a while 
:::> p 

I-Tat S ::i p 

I- T 
after S :::> p A I b 

I-
+ 

T 
at S ::i p, 

at S0 ::i p A b 1-T after S0 ::i p 

1-T at S ::i p 

does not 

loop 

begin with 

The second premise of rule S7 means that there exists a proof of 

1-T after S0 ::i p in the system from the assumption 1-T at S0 ::i p A b. This 

expresses in the system a property corresponding to {p A b} S0 {p} in the sense 

of Hoare's logic. Note that for any I l=I{p Ab}S0{p} implies 

[l=T,I at S0 ::i p A b ~ l=T,I after S0 ::i p] but not necessarily conversely. 

+ 
at S is defined in section 4. 

INITIALIZATION AXIOM 

B1: 1-TatT::itrue. 

Let A be a set of assertions. We say that a formula 1-T C ::i p ean be 

pPoved fPom A, written as A 1-T C ::i p, if there exists a proof in the above 

system which uses some of the elements of A as axioms. 
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We denote by Th(I) the set all assertions true in I. 

The following theorem states arithmetical soundness and completeness of 

the system S. 

THEOREM Let T be a program from W and let I be an arithmetical interpretatiori. 

Then for any formula C ~ p 

Th(IJ 1-T C ~ p iff l=T,I C ~ p. 

The 'completeness proof, i. e. the implication .. ..,, proceeds by induction 

with respect to a certain well-ordering defined on the control ·formulas. This 

ordering is defined as follows. Consider the directed graph representing the 

flowchart of T with nodes being the control £ormulas. Remove now from this 

graph all edges causing cycles, i.e. edges leading from after S to at S 
0 

for 

any subprogram S = while b do S od -- - o-
of T. The resulting graph defines the 

well-ordering in question. Due to the lack of space the details of the proof are 

omitted. 

The converse implication, i.e. the soundness proof is straightforward. 

A precise proof re~uires techniques similar to those of section 3.7 of [A] to deal 

properly with rule S7. 

COROLLARY Let T be a program from W and let I be an arithmetical interpreta­

tion. Then for any liveness formula lfJ 

Th(Il 1-T lfJ iff I =r.r lfJ. D 

Here I-T refers to the provability in the final proof system which 

contains ali mentioned axioms and rules. 

Proofs will appear in the full version of the paper. 
Acknowledgements. We are grateful to D. Lehmann for suggesting a simplified comple­

teness proof of the system L and to E.-R. Olderog for critical remarks concerning 

the first version of the paper. 
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