Skip to main content

Communication in parallel systems

  • Invited Papers
  • Conference paper
  • First Online:
Book cover SOFSEM'96: Theory and Practice of Informatics (SOFSEM 1996)

Abstract

Efficient communication in networks is a prerequisite to exploit the performance of large parallel systems. For this reason much effort has been done in recent years to develop efficient communication mechanisms. In this paper we survey the foundations and recent developments in designing and analyzing efficient packet routing algorithms.

Supported in part by DFG-Sonderforschungsbereich 376 “Massive Parallelität: Algorithmen, Entwurfsmethoden, Anwendungen”, by DFG Leibniz Grant Me872/6-1, and by EU ESPRIT Long Term Research Project 20244 (ALCOM-IT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Aleliunas. Randomized Parallel Communication. In Proc. of the ACM SIGACT-SIGOPS Symp. on Principles of Distributed Computing, pp. 60–72, 1982.

    Google Scholar 

  2. N. Alon, F.R.K. Chung, R.L. Graham. Routing Permutations on Graphs via Matchings. SIAM J. Discrete Math. 7(3), pp. 513–530, 1994.

    Google Scholar 

  3. S. Bock. Optimales Wormhole Routing im hochdimensionalen Torus. Diploma thesis, Paderborn University, March 1996.

    Google Scholar 

  4. A. Borodin, J.E. Hopcroft. Routing, merging, and sorting on parallel models of computation. Journal of Computer and System Sciences 30, pp. 130–145, 1985.

    Google Scholar 

  5. A. Borodin, P. Raghavan, B. Schieber, E. Upfal. How much can hardware help routing? In Proc. of the 25th Ann. ACM Symposium on Theory of Computing, pp. 573–582, 1993.

    Google Scholar 

  6. R. Cypher, F. Meyer auf der Heide, C. Scheideler, B. Vöcking. Universal Algorithms for Store-and-Forward and Wormhole Routing. In 28th Ann. ACM Symp. on Theory of Computing, pp. 356–365, 1996.

    Google Scholar 

  7. T. Hagerup, C. Rüb. A Guided Tour of Chernoff Bounds. Information Processing Letters 33, pp. 305–308, 1989/90.

    Google Scholar 

  8. C. Kaklamanis, D. Krizanc, T. Tsantilas. Tigth Bounds for Oblivious Routing in the Hypercube. Mathematical Systems Theory 24, pp. 223–232, 1991.

    Google Scholar 

  9. F.T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann, San Mateo, CA, 1992.

    Google Scholar 

  10. F.T. Leighton, B.M. Maggs, A.G. Ranade, S.B. Rao. Randomized Routing and Sorting on Fixed-Connection Networks. Journal of Algorithms 17, pp. 157–205, 1994.

    Google Scholar 

  11. F.T. Leighton, B.M. Maggs, S.B. Rao. Universal Packet Routing Algorithms. In Proc. of the 29th Ann. Symp. on Foudations of Computer Science, pp. 256–271, 1988.

    Google Scholar 

  12. F.T. Leighton, B.M. Maggs, S.B. Rao. Packet Routing and Job-Shop Scheduling in O (Congestion + Dilation) Steps. Combinatorica 14, pp. 167–186, 1994.

    Google Scholar 

  13. T. Leighton, S. Rao. An Approximate Max-Flow Min-Cut Theorem for Uniform Multicommodity Flow Problems with Applications to Approximation Algorithms. In Proc. of the 29th Ann. IEEE Symp. on Foundations of Computer Science, pp. 422–431, 1988.

    Google Scholar 

  14. F. Meyer auf der Heide, C. Scheideler. Deterministic Routing with Bounded Buffers: Turning Offline into Online Protocols. To appear at Proc. of the 37th Ann. IEEE Symp. on Foundations of Computer Science, 1996.

    Google Scholar 

  15. F. Meyer auf der Heide, B. Vöcking. A Packet Routing Protocol for Arbitrary Networks. In 12th Symp. on Theoretical Aspects of Computer Science (STACS 95), pp. 291–302, 1995.

    Google Scholar 

  16. F. Meyer auf der Heide, B. Vöcking. Universal Store-and-Forward Routing. Technical Report, Paderborn University, 1996.

    Google Scholar 

  17. F. Meyer auf der Heide, R. Wanka. Kommunikation in parallelen Rechnernetzen (in German). In Highlights aus der Informatik, I. Wegener (editor), Springer Verlag, pp. 177–198, 1996.

    Google Scholar 

  18. I. Parberry. An Optimal Time Bound for Oblivious Routing. Algorithmica 5, pp. 243–250, 1990.

    Google Scholar 

  19. N. Pippenger. Parallel Communication with Limited Buffers. In Proc. of the 25th IEEE Symp. on Foundations of Computer Science, pp. 127–136, 1984.

    Google Scholar 

  20. Y. Rabani, É. Tardos. Distributed Packet Switching in Arbitrary Networks. In 28th Ann. ACM Symp. on Theory of Computing, pp. 366–375, 1996.

    Google Scholar 

  21. A.G. Ranade. How to Emulate Shared Memory. Journal of Computer and System Sciences 42, pp. 307–326, 1991.

    Google Scholar 

  22. O. Sýkora, I. Vrťo. Edge Seperators for Graphs of Bounded Genus with Applications. Theoretical Computer Science 112, pp. 419–429, 1993.

    Google Scholar 

  23. E. Upfal. Efficient Schemes for Parallel Communication. In Proc. of the ACM SIGACT-SIGOPS Symp. on Principles of Distributed Computing, pp. 241–250, 1982.

    Google Scholar 

  24. L.G. Valiant. A Scheme for Fast Parallel Communication. SIAM Journal of Computing 11(2), pp. 350–361, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Keith G. Jeffery Jaroslav Král Miroslav Bartošek

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meyer auf der Heide, F., Scheideler, C. (1996). Communication in parallel systems. In: Jeffery, K.G., Král, J., Bartošek, M. (eds) SOFSEM'96: Theory and Practice of Informatics. SOFSEM 1996. Lecture Notes in Computer Science, vol 1175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0037394

Download citation

  • DOI: https://doi.org/10.1007/BFb0037394

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61994-9

  • Online ISBN: 978-3-540-49588-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics