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Abstract

The search for cost-effective lattice rules is a time-consuming and
difficult process. After a brief overview of some of the lattice theory
relevant to these rules, a new approach to this search is suggested. This
approach is based on a classification of lattice rules using "the upper tri-
angular lattice form" of the reciprocal lattice generator matrix.

1 Background

A ]attice rule is a numerical quadrature rule for integrating over an s-dimensionN hyper-
cube. It is a generalization of the one-dimensional trapezoidal rule using a subset of the
nodes that would be used by the Cartesian product trapezoidal rule. Number theoretic
rules, associated with Korobov (1959), Hwalka (1962), and Nieclerreiter (1988) form a
major subset of the set of lattice rules.

Since their inception, several large-scale searches for good number theoretic rules
have been reported in the open Literature. Among the most successful are those of
Maisonneuve (1972), Kedem and Zaremba (1974), and Bourdeau and Pit:re (1985). The
number of potential candidates is vast and the construction and organization of these

searches has proved to be a chaIlenDng task. Using the most up to date computers avail- .,'/,i ,/L+_:I:_"_,_able, scientists have taken advantage of every available mathematical property to stream-i_/ 1 Lg!
line their program.
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In this paper we draw attention to a particular form of the generator matrix of the
reciprocal lattice. While this fon'n has proved to be useful in the general theory of lattice
rules, here we emphasize only its use as the basis for a search which includes all lattice
rules.

We begin by describing some of the underlying theory; in Section 1 we define lat-

tices, lattice rules, and the reciprocal lattice. In Section 2, we introduce the upper tri-
angular lattice form of its generator matrix and propose that this be used to classify lat-
tice rules. In Section 3, the relation between the discretization error in terms of Fourier

coefficients and the reciprocal lattice is briefly reviewed; and a standard criterion for

assessing the quality of a rule is described. In Section 4, searches for "good" rules are put
into perspective and some preliminary results, based on a pilot version of our search, are
presented.

Without loss of generality, we treat quadrature over the s-dimensional unit hyper-
cube [0, 1)s. In the sequel, all vectors are s-dimensional having rational elements. In par-
ticular, ej denotes the j-th unit vector (whose components coincide with those of the j-th
row of the s xs unit matrix/).

DEFINITION 1.1. The unit lattice Ao comprises all points _ = (X(1_,?,.(2),... ,X(s)) all of
whose components X(i) are integers.

This familiar array of points is the most fundamental lattice. A general definition fol-
lows.

DEFINITION 1.2. A set of points form a lattice A when

p,q e A => p+q, p-q e: A

and there exists _ such that

pCq=> Ip-ql >_e.

Given ci, i = 1,2,...,u, the set of points

p = Z)_(i)ei V integer ),(i) (1.3)

clearly form a lattice. Here, the vectors c i are known as generators. The same s-

dimensional lattice A may be generated in many ways, but does not require me"e than. s
generators. These may be assembled in an sxs matrix A. Then (1.3) takes dae form

p=ZA V _e A0. (1.4)

The matrix A is termed a generator matrix of A, and its rows ar are, of course, a set of

generators of A. When det A _:0, these are linearly independent and are collectively
known as a basis for A.

The lattice rule Q (A) is constructed using an integration lattice.

DEFINITION 1.5. An integration lattice A is one that contains Ao as a sublattice.



Given z i G .AO and integers rzi and t, it is clear that the poinls
I S

p = _,Jizi/ni + _bt(i)ei V integer Ji and bt e Ao (1.5)
i =1 i =1

form an integration lattice. Note that an integration lattice A satisfies

d- 1.Ao_zA _DAo (1.6)

for some integer d.

DEFINITION 1.7. 7"he lattice rule Q (A) deJi_zedwhen A is an integration lattice is orw
that assigns an equal weight N -1 to every point

pe A_[0,1) s.

When A is given by (1.5), this lattice rule may be written as

Q (.A)f = I ,5_7,Z' f ZJizi/ni (1.8)
nln2""ntj_=lj2=l"j 1 i=1

Here f(x) is a periodically continued version of f (x) that coincides with f ({x)) when
(x} e (0,1) s. For details, see Lyness (1989). Expression (1.8) is termed a t-cycle fom'_ of
the lattice rule. It is not unique, and may be repetitive (i.e. include each point k times).
One can always express a rule in this form with t _<s. The rank r of a rule is the smallest
value of t for which it may be v,"rittenin this form. Thus a rule of rank 1

Qf = f(d'z/N) (1.9)
=1

coincides with t,_.enumber theoretic rule of Korobov. The joint publications of Sloan and
Lyness in 1989 and 1990 are devoted to obtaining properties of lattice rules based almost
exclusively on this detlnition. Exploiting finite Abelian group theory, we have made
significant headway in classifying lattice rules. However, many problems remain
unresolved.

A fundamental concept in lattice theory is the reciprocal lattice or po!ar lattice
(denoted by A±) of a lattice A.

DEFINITION 1.10. The reciprocal lattice of A, denoted by A-L,comprises all r such that

p.r=integer V pEA.

It can be shown that when A is a generator matrix of A, then B = (A'r)-I is a generator
matrix of .AI. The reciprocal lattice AI occurs naturally in expansion (3.1) below for the
discretization error. However, it also provides a simple criterion for whether the lattice A
defined in terms of A is an inte_ation lattice, i.e., A __Ao.



THEOREM 1.1 1. A is an integration matrix if and only if a_zygenerator trultrix B of A-[ is
an integer matrix, i.e., all its elements are i_,tegers.

It can be shown that when A is an integration matrix, and B = (A 7')-1,

N = Idet A 1-1 = Idet B I (1.12)

is the number of lattice points in [0, 1)s, which is, of course, the number of distinct func-

tion values f(x) required by the rule Q (A). Moreover, it is the smallest value of d for
which (1.6) is valid and

NAo c Ai c_ Ao. (1.13)

2 The Upper Triangular Lattice Form (utlf) of B

A pervasive source of difficulty in all these results is the extreme lack of uniqueness. The
same lattice Amay be defined by using many different sets of generator,,; in (1.3), (1.4),
or (1.5) and the same rule may be defined by using different zi,n i in (1.8) or (1.9) even
when t coincides with the rank of Q (A). Much of the work based on (1.8) has been in
search of uniqueness. So far as generator matrices A or B are concerned, it is almost
self-evident that adding one row to another while altering the matrix has no effect on the

lattice A. The same lattice A is now described using a different set of generators. Such
an ir_teger row operation may be described in terms of pre-multiplication by a unimodular

matrix U. This is an integer matrix having IdetUI = 1. Thus, B and UB generate the
same lattice so long as U is unimodular. 3-'hismay be exploited to transform B into upper
triangular lattice form defined below; we find there is a (1-1) correspondence between
each distinct integer matrix of this form and each distinct integer lattice AI .

DEFINITION2.1. An sxs integer matrix B is of upper triangular lattice form (utlf) if and
onlyii

(a) All elements below the diagonal are zero, i.e.,

br,c = O r > c ;

(b) All diagonal elements are positive integers, i.e.,

bc,c >- i;

(c) Ali eleme_zts are nonnegative, and rtte unique maximum element in any column is the
diagonal element, i.e.,

0 <_br.c < bc,c r = 1,2,,...,s .

The principal theorem '?f this paper follows.

THEOREM 2.2. Every integer lattice A has one and only one generating matrix t3 of
upper triangular lattice form.



A version of this theorem is given in Cassells (1959), Section 1.2.2. As it applies to
integer matrices, this result is classical and the utlf is essentially the Hem-rite Normal
Form. An excellent description of this pmt of elementary lattice theory is given in Sec-
tion 4 of Schrijver (1986). A useful discussion and algorithm i:; given in G. Bradley
(1971).

This classification is dealt with in considerable detail in an ANL report, Lyness and

Newman (1989), which is a preliminary and extended version of the present article. In
particul_, a straightforward triangularization algorithm is described. Other relations

between the utlf of B and the lattice rule with which it is associated are given. And atten-
tion is drawn to a major drawback to classification using the generator matrix A of A
directly.

We haw._ found the utlf of B useful also in developing the general theory of lattice
rules. See, for example, Lyness and S@evik (1989) and Lyness, S_t'evik, and Keast
(1990), In this article we treat only the application to the search.

3 The Good Lattices

The error made by any quadrature rule may be expressed in terms of the s-dimensional
Fourier coefficients am of the integrand function using a generalization of the Poisson
Summation Formula. (This is the basis of much of the theory of number theoretic rules.
A discussion in the context of lattice rules appears in Lyness (1988).) For lattice rules
Q (A), it can be shown that the Poisson Summation Formula reduces to

Q(A)f-If= Z am.
m_a* (3.1)
m_q}

Here am is the multivariate Fourier coefficient and A1 is the reciprocal lattice of the lat-
tice A on which the rule is based. This suggests a criterion for choosing from the many
available N-rjoint lattice rules those that may be cost effective. Specifically, one chooses
A so that the larger Fourier coefficients on the right drop out. Before we are able to apply
this, we have to decide which are the more significant Fourier coefficients. This issue is

discussed in detail in Lyness (1.988). The conventional wisdom is to proceed as follows.
Let

S

p(m)=p(ml,m2,...,ms)= IImax(Imi 1,1) me Ao;
i=1

then define the Zaremba rho-index of an integer lattice by

9(A1) = rain p(m).
meA t
m_

The "good" lattice rules Q (A) are tt_ose for which p(Ai) is largest.



4 Some New Lattice Rules

The theory of this paper may kw used to construct a search program to find cost-effective

lattice rules. Previous searches for "good lattice rules" m-e described by Maisonneuve
(1972), Kedem and Zaremba (1974), and Bourdeau and Pitre (1985). Between thena,
these authors have considered number theoretic rules in dimensions s = 3, 4, and 5 with N

up to N = 6066, 3298, and 772, respectively, qqaey have demonstrated that a clear appre-
ciation of the problem and sophisticated coding technique can lead to significant econ-
omy and speedup. All these semches, of course, were confined to number theoretic rules

which are of form (1.9) at_x_veand were based on treating in turn different parameters z
for given values of s and N.

On the other hand, we have used Theorem 2.2 above as the basis for an exhaustive

search for cost effective lattice rules. For given values of s and N, such a program
employs an outer loop in v,,hich all sets of positive integers vi,v2 .... ,Vs for which
v lV2""v s = N are included. Then for a given set v 1,v2, .... vs, all combinations of off-
diagonal elements br,,: r = 1,2,...,s-I; c = 2,3,...,s are treated for which

0 < br,c < vc .

We expect that the organization of such a search, and the number of distinct lattice rules

rs(N), will foma the topics of other articles (Lyness and SCrevik (1989)).

In this search, as in the other searches, a critical feature concerns the possibility of
avoiding separate treatment of different lattices that are related by affine transformation.
In the various search procedures we have encountered, this is handled in a somewhat ad
hoc manner, which relies partly on theory and partly on inelegant and sometimes cumber-

some algorithms. The present search is no exception in this respect. It seems to be just
as bad or good as the previous searches. It is this sort of theoreticNly peripheral but prac-
tically vital circumstance on which ataultimate choice of methods is likely to depend.

At this point we have carried out only a primitive search, as a pilot scheme, with
s = 3 and N < 150. Even this limited search has uncovered new rules, mainly of
academic interest. The list in Table 1 gives the additional entries required to extend
Maisonneuve's list to include ali lattice rules, following the convention introduced by her
for listing these rules. That is, one includes a rule if there is no rule having a smaller
value of N and the same value of p; but one does not include rules that can be, obtained
from rules already on the list by art affine transformation of the cube into, itself.



Table 1. Some New Three-Dimensional Lattice Rules

l
N [) T_1 z 1 /z 2 z2 li 3 z3

16 4 4 (1,1,1) 2 (0,1,0) 2 k0,0,1)

42 6 42 (2,3,16)

-5----_---8----18- (1,2,10) --3-- (0,1,0) ....

5----7-_--i8 ..... (1,5,5) - 3 (0,1,2) -_'
.................... .._

96 I 12 48 (3,9,28) ' 2 (0,1,0)

1---44I 16 36 (1,11,5) 2 (0,l,0) 2 (0,0,1)

These rules are given in the canonical form of Sloan and Lyness (1989), specifically

1 ni n2 n,_ jlzl J2z2 J3z3
Qf- Z Z Z f ----+ +_ ,

nln2/t3 j,=lja=l j3=! til n2 113

where n i divides ni-1 and N = n 1n 2n 3. We note that rules of ranks 1, 2, and 3 appear.
]'hose of rank 3 _u'e23-copy versions of lattice rules having N/8 absci:;sas.

]'he 42-point rule is intere_sting because it is a rank 1 (number theoretic) rule, which

was not discovered by Maisonneuve. Her search omits a relatively small class of number
theoretic rules that can be expressed in number theoretic form (1.9) only with all com-
ponents of z_ greater than unity.
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