
Process Algebra with a Zero Object

J.C.M. Baeten
Department of Software Technology, Centre for Mathematics and Computer Science

P.O.Box 4079, 1009 AB Amsterdam, The Netherlands

J.A. Bergstra
Programming Research Group, University of Amsterdam
P. O.Box 41882, 1009 DB Amsterdam, The Netherlands

Department of Philosophy, State University of Utrecht
Heidelberglaan 2, 3584 CS Utrecht, The Netherlands

The object 0 acts as a zero for both sum and multiplication in process algebra.
The constant 8, representing deadlock or inaction, is only a left zero for
multiplication. We will call 0 predictable failure.

1980 Mathematics Subject Classification (1985 revision): 68Q45, 68Q55,
68Q65, 68Q50.
1987 CR Categories: F.4.3, D.2.10, D.3.1, D.3.3.
Key words & Phrases: process algebra, zero, deadlock, inaction, failure.
Note: Partial support received by ESPRIT basic research action 3006, CONCUR,
and by RACE contract 1046, SPECS. This document does not necessarily
reflect the views of the SPECS consortium.
Note: this article is a revision of BAETEN & BERGSTRA [90], but leaving out the
material in section 6.

1. INTRODUCTION
The object 0 acts as a 0 for both sum and multiplication in process algebra. The constant 8
representing deadlock or inaction is only a left zero for multiplication. The purpose of this
paper is to indtroduce a constant 0 in process algebra and discuss its properties.

We will call O predictable failure. A predictable failure differs from deadlock (inaction) in
the sense that a system will actively try to avoid it. The axioms for 0 incorporate the intention
of a system to avoid failure whenever possible. The axioms for 8 (in particular x ~ 0 =~ x +
8 = x) incorporate the intention of a process to make progress if it can.

In fact 0 stands for a truly empty process, its execution is simply inconceivable. The
process 0 also occurs in PONSE & DE VRIES [89] (but is called 8 there!).

A process specification involving 0 or renaming into 0 is not executable. It must be
implemented, which means that one has to provide an equivalent (or better) specification not
involving 0 or renaming into 0. Due to this observation 0 is a high level feature that plays a
role in system design and specification, rather than in implementation.

84

2. AXIOMATIZATION

2.1. BASIC PROCESS ALGEBRA WITH ZERO
We start out from the theory of Basic Process Algebra as described in BERGSTRA & KLOP
[84a, 85, 86]. For a recent survey article see BERGSTRA & KLOP [89].

We have a set of a tomic actions, A. Each atomic action is a constant of the sort P, the
sort of processes that the theory is about. Then, we have two binary operators on P: + is
a l t e rna t ive compos i t ion or sum, and • is sequent ia l compos i t ion or product. For this
signature, we have the first five axioms in table 1 below (A1-5), constituting BPA. In table 1,
x,y,z are arbitrary elements of P.

Then we add the zero constant, obeying the next three axioms (Z1-3). Usually, we also
have the constant 8 in the theory, called deadlock or inaction. The two axioms for inaction
need conditions, in order to avoid clashes with the zero axioms (A60, A70). The conditions
use a predicate on processes ~ 0, that determines whether or not a term can be proved equal
to the zero process. This predicate is axiomatized in the last four axioms of table 1. There, we

have a ~ A. We put A~ = A u {~}, A08 = A u {0,8}, BPA0 = BPA + Z1-3, BPA0~ = BPA0 +
A60, A70 + NZ1-4.

Of all operators, + will bind the weakest, and • the strongest. We often leave out the •
sign.

x + y = y + x A1
x + (y +z) = (x + y) + z
X + X = X A3
(x + y) ' z = x ' z + y ' z A4
(x 'y) 'z = x '(y 'z)

x 'O=O Z1
X + 0 = X
0 " X = 0

x ~ 0 ~ x + 8 = x A6 0

x ~ 0 ~ 5 . x = 8 A7 0

8 ~ 0 NZ1
a ~ 0 NZ2
x ~ 0 , y ~ 0 =~ x . y , 0 NZ3
x , 0 =~ x + y , 0 NZ4

TABLE 1. BPA08

The difference between 0 and 8 requires further comments:
i. 8 is an inactive process, if a system reduces to 8 it deadlocks. Of course the mere
occurrence of 8 in a process expression (like a + b(8 + e)) need not indicate a deadlock.

85

Compare this to the expression e = 2 + 0.(5 + 8); in no way the occurrence of 0 in e implies
that e vanishes.
ii. x + 8 = x is a progress rule: the system eventually discovers that 8 is no option and
proceeds with x (if possible).
iii. x '0 = 0 is a liveness rule: the system must, after completion of x, eventually execute 0,
i.e. assert false. This form of liveness is not required for 8.
iv. 0 + 8 --- 8 because 8 is 'better than' 0.
v. 0"x = 0 and 8-x = 8 are explained by the non-executability of 0, resp. 8. Note that we
have in particular 8"0 = 0. Unfortunately, the explanation of this in philosophical terms is
shallow.

2.2. PROJECTION
We can extend the signature given above with the projection operators Xn (for n>l). The
axioms are straightforward adaptations of the usual ones (see BERGSTRA & KLOP [84a]). In
table 2, a ~ A.

 n(O) = 0
Zn(8) = 8

~:n(a) = a
x ~ 0 = , ~1 (ax) = a

~n+l (ax) = a'xn(X)

TABLE 2. Projection

2.3 INFINITARY RULES
The axioms given above constitute a complete theory for finite processes, processes
represented by closed terms, i.e. equality on finite processes (in a graph model to be
presented further on) coincides with derivability from the axioms. When we are dealing with
infinite processes however, processes specified by means of recursive equations, we need
additional proof principles. In this paper, we will discuss 4 such principles.

First, we consider: the Approximation Induction Principle (AIP). AIP can be maintained
in the present setting as in BERGSTRA & KLOP [86]. Roughly, this proof rule states that two
processes should be identified if all their projections are equal. More explicitly:

for al l n /l:n(X) = xn(Y) =~ x = y.
This rule is valid for finitely branching processes only (a process is finitely branching if it has
a representation as a finitely branching graph or tree, see further on).

Next, we consider two principles that deal with solutions of recursive equations. The
Recursive Definition Principle (RDP) states that every recursive specification has at least one
solution, and the Recursive Specification Principle (RSP) states that every guarded recursive
specification has at most one solution. Here, guarded roughly means that every variable
occurring in the right-hand side of an equation must be preceded by an atomic action. For
more details and formal definitions, see BERGSTRA & KLOP [86].

86

Now let us consider these rules in the present setting. Notice that the guarded equation x
= a 'x has two solutions: 0 and a c° (the process that indefinitely performs a). It follows that
the principle RSP has to be relaxed: every guarded system of recursion equations not
containing an occurrence of 0 has at most one solution different from 0. Thus more formally,
RSP 0 states:

Let E be a guarded recursive specification with k process names such that none of the
equations of E involves either 0 or a renaming into 0 (see below). Such E is called 0-
f ree .
Let X = (Xl Xk) and Y = (Yl Yk) be process vectors of length k.
Then Xl ~=O& ... & Xk¢=O & y l ~=0 & ... & y k ~ O & X = E(X), Y = E(Y)
implies X = Y.

Besides RSP 0 there is also RDP 0 which states that:
every 0-free guarded system of recursion equations possesses at least one solution vector
consisting of processes different from 0.

The last infinitary proof rule that we will consider is the Limit Rule. We describe this rule in
4.4.

2.4 RENAMING INTO ZERO

08 is an operator that substitutes 0 for 8. We will call this operator deadlock prevention.
L e t a ~ A.

oa(o) = o
o a (a) : o
oa(a) : a
Oa(ax) = a'Oa(x)
oa(x + y) : Oa(x) + oa(y)
TABLE 3. Deadlock prevention

An example: 05(ab + e(do8 + aS)) = ab.
Note that the equation 0~(x'y) = 08(x)'08(y) leads to a problem as follows: Let x = a ~

(i.e. the unique solution different from 0 of the equation z -- a.z) and y -- 8, then x 'y --- x
because of A/P, hence x = 08(x) = 08(x'y) = 0~(x)'08(y) = 0~(x}-0 = 0, which contradicts the
assumptions on x.

Also note that it is incorrect to rename an atomic action a into 0 by an operator 0a, for
that leads to 0 = 0a(a) = 0a(a + 8) = 0a(a) + 0a(8) = 0 + 8 = 8.

3. SEMANTICS

3.1 TRANSITION RULES

We define a s t r u c t u r e d o p e r a t i o n a l s e m a n t i c s as in VAN GLABBEEK [87], on
congruence classes of process expressions, i.e. a ~ relation holds between two terms iff
they are provably equal to the format in the rules in table 4 below. Likewise, a term satisfies

87

x / iff it can be written in the form a + x. For closed terms, the rules now determine an
ac t ion g r a p h . On action graphs, we will then define a notion of b i s i m u l a t i o n as in
BERGSTRA & KLOP [86]. In this definition, we have to pay special attention to the separate
status of the process 0. Note that we have to define the rules on congruence classes of
process expressions, since we need the predicate # 0 in the definition. We cannot define
action rules on terms in the format of GROOTE & VAANDRAGER [89] or GROOTE [90].

a + x ~ q
x#O ~ a.x+y ~ x
TABLE 4. Action rules

We can also add rules in order to deal with recursive equations. In that case, however, the
transition system may become undecidable because x # 0 is in general not decidable. To see
this notice that for every recursively enumerable set We ~ N with recursive index e and every
n ~ I~ a guarded recursive specification over ACP can be uniformly computed with solution
p(o,n) such that:

n e We ¢=~ for some k p(e,n) = ik'~

n ~ We ¢=~ p(e,n) = F °.
This construction can be found in BERGSTRA & KLOP [84b]. It follows that:

n e We ¢=~ Oa(p(e,n)) = O,
hence it is undecidable whether X = 0 for recursively specified X in general.

3.2 GRAPH MODEL
We can also define a graph model directly. Let T be the set of all rooted labeled trees, where
all edges are labeled with elements of A, and all endpoints labeled with an element of {~/, 5,
0}. The interpretation of the constants and operators of B P A ~ is straightforward:
• [82 is the one-node graph labeled with 8, [0~ is the one-node graph labeled with 0;
• [aJ is the two-node graph with one edge labeled a, and the endpoint labeled a/;
• if g,h are in "/F, then g + h is obtained by identifying the roots of g and h. If one graph is
[0~, the result is just the other graph. If one graph is [~], the result is also the other graph,
unless that graph is E0] (in which case it is I5~);
• if g,h are in T, then g 'h is obtained by first making a copy of h for each xLendpoint of g.
Then we remove the Y-label, and identify the endpoint with the root of its copy.

c c

q q

FIGURE 1

88

We see some examples in fig. 1 above. We see the trees that represent the terms 0, (a + b)-c,
a .8 + a.0. Recursively specified processes will in general have infinite trees.

I f g is a tree in T, and s a node in g, then we call S a zero node of g if every maximal path
in g f rom S must end in a 0-labeled point. Now we can give the definition of bisimulation on
these trees.

3.2.1 DEFINITION
Let g ,h ~ T. We say g,h are b i s i m i l a r , g ,-, h, if there exists a relation R (called a
b i s imula t ion) on nodes of g and h, such that
1. the domain of R consists of all non-zero nodes of g;
2. the range of R consists o f all non-zero nodes of h;
3. either g,h are both the zero graph, or the roots o f g , h are related;
4. i f R(s,I) and s a~ s ' and s ' non-zero, then there is a non-zero t' such that t ~-~ t' and
R(s',t');
5. if R(s,t) and t ~-~ t' and t' non-zero, then there is a non-zero s ' such that s ~ s ' and
R(s',t');
6. if R(s,t) and s , t are endpoints, then they have the same label.

3.2.2 PROPOSITION
Bisimulation is a congruence on T.

In order to prove that q~/,-, is a good model for the theory BPA08, we first need a couple of
lemmas.

3.2.3 LEMMA
Let t be a closed term over BPA0~ such that BPA0~ ~ t # 0. Then BPA08 F- t = 0.

PROOF: By induction on the structure of t. I f t is a constant, this follows immediately f rom
the axioms in table 1. I f t is a sum, say t = tl + t2, and BPA08 b t I # 0, it follows f rom axiom
NZ4 that BPA08 ~ tl ~ 0 and BPA0~ ~ t2 # 0. By induction hypothesis, BPA08 t- tl = 0 and
BPA08 t- t2 = 0 and consequently BPA06 ~- I = 0. Finally, i f t is a product, say t = tl "te, and
BPA08 t~ I # 0, it follows f rom axiom NZ3 that either BPA08 t~ tl # 0 or BPA08 ~ 12 # 0.
By induction hypothesis, we obtain either BPA0~ F- tl = 0 or BPA0~ ~- t2 = 0 In the first
case, use Z3 and in the second case Z1 to obtain BPA08 F- t = 0.

3.2.4 LEMMA
Let t be a closed term over BPA08 such that BPA05 I- t # 0. Then t can be written without 0,
i.e. there is a closed term s over BPA08 that does not contain 0, such that BPA08 ~ t = s.

PROOF: By induction on the structure of I. I f t is a constant, this follows directly f rom the
axioms in table 1. I f t has the form of a product tl "t2, it follows by the previous l emma that tl

0 and t2 # 0. Then use induction hypothesis. Finally, i f I has the form of a sum tl + t2, it is
by the previous l emma enough to consider the following four cases.
Case 1: tl # 0, t2 # 0. Use induction hypothesis.

89

Case 2: tl = O, t2 = O. It follows that t = O, contradiction.
Case 3: tl -- O, t2 ~ O. It follows that t = t2, and we can use the induction hypothesis for t2.
Case 4: tl ~ O, t2 = O. Just like case 3.

3.2.3 THEOREM
BPA08 is a sound and complete axiomatization of the model'U,-, (for closed terms).

PROOF: First note that the graph model has a substructure consisting of the processes ~ 0.
That structure is a model of BPA~, the theory without zero, and with axioms A1-7 (no
conditions on A6 and A7). Thus there is only one process in which 0 features in an essential
way and that is 0 itself.

Now soundness can be proved by inspection of the model. To prove completeness,
consider two closed terms t,s over BPA05 and suppose T/,-, t- t=s. We use case distinction.
Case 1: t ~ 0, s ~ 0. By the previous lemma, t and s can be written as t*, s* without 0. By
soundness T/,-, I- t* =s*. By the completeness theorem for BPAs, BPA8 I- t* = S*.
Case 2: t = 0, s = 0. Immediate.
Case 3: t = 0, s ~ 0. Write s as s* without 0. The definition of ~ shows that t ,-* s* cannot
hold, contradiction.
Case 4; t ~ 0, S -- 0. Just like case 3.

4. EXTENSIONS

4.1 RENAMING
Now we will look at renamings of atomic actions into atomic actions or 8. (Renaming into
zero was discussed in 2.5.) Let I: A~5 ~ A8 be any function that keeps 8 fixed, i.e. f(5) = 8.
Then the renaming opera tor pf is defined by the axioms in table 5, where a ~ AS.

pf(O) = o
pf(a) = f(a)
pf(x + y) = pf(x) + I::ff(Y)
pf(x.y) = pf(x)-pf(y)
TABLE 5. Renaming

It is straightforward to define the renaming operators on the graph model of 3.2. A very
useful example of a renaming operator is the encapsulation opera tor 3H (for H ~ A) that
is based on the function g given by:

g(a)=~5 i f a E H a n d g (a) = a i f a ~ H.
The composition of an encapsulation operator with the deadlock prevention operator (08O~H)
will prevent any action of H from occurring. We will see applications of this in the sequel.

4.2 PARALLEL COMPOSITION
We can extend the theory BPA08 with parallel composition as in the theory ACP of
BERGSTRA & KLOP [84a]. In order to axiomatize the parallel operator II (merge), we need

90

two auxiliary operators IL (left-merge) and I (communicat ion merge). The theory is
parametrized by a communicat ion function I, a binary function on the set of constants
A0a that satisfies conditions C1-4 in table 8 below. Moreover, we have the encapsulation
operator of 4.1, that is used to block communications with the outside. The theory ACP0
consists of BPA08 plus the axioms in table 6 below. In table 6, a ,b ,c ~ A0a.

a l b = b l a C1
(al b) I c=a I (b I c) C2
a ~ 0 ~ 8 1 a = 8 C3
01 a = 0 C4

x l l y=xU y + y l L x + x l y CM1
alLx = a.x CM2
ax l l y = a.(x II y) CM3
(x+ y) lLz= xll z +yl l z CM4
ax I b=(a l b).x CM5
a l bx=(a I b)-x CM6
ax I by=(a I b)-(x II y) CM7
(x+y) l z = x l z + y l z CM8
x l (y+z)=x I y+x I z CM9

a l l (o) : o DO
all(a) = a if a ~ H D1
all(a) = i5 if a ~ H D2
aH(x + y) = aN(X) + aN(y) D3
aH(x.y) = aH(x)'aH(y) D4
TABLE 6. ACP0

On the graph model, we can define parallel composition as follows:
• the node set of graph ~ II h is the cartesian product of the node sets of g and h;
• there is an edge (s,t) =t (s',t) iff there is an edge s ~ s ' i n g ;

• • • a , • a ,

likewise, there Is an edge ~S,t) ~ (S,t) iff there is an edge t ~ t in h; e
and there is an edge (s,t) ~ (s',t') iff there are edges s :-t s' in g and t :# t' in h with b I c =
a;

• an endpoint (s,t) has a 0-1abel iff either s or t has a 0-1abel;
an endpoint (s,t) has a 8-1abel if one has a 8-1abel, and the other a $ or q-label;
an endpoint (s,t) has a Y-label if both s and t have a ~/-label (all labels in non-endpoints are
dropped).

It can be proved that with this definition, bisimulation is also a congruence for parallel
composition, and all axioms of ACP0 hold in the graph model.

4.3 DISCUSSION
Note that we can derive from ACP0 that for all finite closed terms x we have

91

O I I x = O I L x = x l l O = x l O = O I x = O .
Now let us consider this for recursively defined processes. Look at the process B that is the
non-zero solution of B -- b'B. We calculate: 0 II B --- 0 II B + B IL0 + 0 1 B = 0-B + bB II0 +
bB I 0 = 0 + b'(B I10) + (b I O)'B = b.(B I10) = b.b.(O lIB).
We also have B = b'b 'B, so by RSP ° we have either OII B --- B or 0 II B = O.

Both options are consistent. Our choice is to put 0 II B = 0 and in general 0 II x = 0. We
can motivate this if we use the Limit Rule of BAETEN & BERGS'ERA [88]. We describe this
rule next.

4.4 LIMIT RULE
Let FCPE0 be the class of finite closed process expressions over ACP0. Let p(xl Xn) =
q(xl Xn) be an equation over ACP0. The limit rule (LR) is as follows:

for a l l t l tn • FGPE0 p(tl tn) = q(tl tn)
p(xl Xn) = q(xl Xn) LR.

The identity 0 II x = 0 follows from LR, because, as remarked above, 0 II t = 0 holds for all t e
FCPE0.

4.5 PROJECTION AXIOMS
The limit rule has other applications of equal importance. Consider the projection operator nn.
The following hold for the projection operators: for x,y • FCPE0

~n(X II y) =/In(/~n(X) II ~n(Y))
/~n(x'y) = ~n(X)'~n(Y)
~n(aH(X)) = ~H(/In(X))
7tn(X [Ly) =/In(Tin(X) II 1In(y))
nn(X I y)= ~n(nn(X) 17In(y)).

We call this set of equations EP. It follows from the limit rule that these identities are valid for
all processes. Now consider once more the process B from 4.3. Then nn(0 II B) =
nn(nn(0) Ilnn(B)) -- nn(0 II b n) = 0. This holds for all n and so by AIP 0 II B = 0. More
generally, using AIP and EP we can prove that an identity p(xl Xn) = q(xl Xn) holds for
all recursively specified processes as soon as it holds for all finite processes. The proof
proceeds just like in BAETEN & VAN GLABBEEK [87].

Summarizing the discussion, we have that our model satisfied LR, AIP, EP. The logical
relationships are: LR F- EP, and AIP + EP ~- LR for recursively specified processes only.

4.6 STATE OPERATOR
We can add a s ta te o p e r a t o r X to the theory along the same lines as in BAETEN &
BERGSTRA [88]. The process 2~s(x) represents the process x in state s. The state operator is
parametrized by two functions action and effect. We write a(s) for aet ion(a,s) and s(a)
for offoct(a,s) (a an action, s a state). When an action a is to be executed, a(s) gives the
resulting action, and s(a) the resulting state. We will not allow that a(s) = 0, further one
must assume that s(0) = s and 0(S) = 0, and s(8) = S, 8(s) = & Then the state operator

92

works just as well as in the case of ACP. The axioms are displayed in table 7. We have a
A~. It is straightforward to define the state operator on the graph model of 3.2.

xs(o)=o
ks(a) = a (s)
ks (a 'x)=a(s) ' ks (a) (X)
k ~ (x + y) = k ~ (x) + X s (y)
TABLE 7. State operator

4.7. PRIORITIES
In examples in section 5 we will also make use of the pr ior i ty ope ra to r of BAETEN,
BERGSTRA & KLOP [87]. This operator gives some actions priority over others in a sum
context. An auxiliary operator <1 (unless) is needed to give a finite axiomatization. We
assume that a partial ordering < is given on A (so 0 and ~ are not ordered). Table 8 gives
axioms on top of the axioms of ACP0. We have a,b E A6.

a<lb = a i f not a<b

a<~b = 5 i f a<b
O<~x -- 0
x<lO = x
z # 0 ~ x<~yz = x,~y
x<l(y + z) = (x~y)<~z
xy<~z = (x<lz)y
(x + y),~z = x<~z + y,~z

e(o) = o
O(a) = a
e (xy)=o(x) -O(y)
e(x+y)=e(x)<y +e(y)<x
TABLE 8. Priority operator

The priority operator can be defined on the graph model of 3.2 similarly as in BAETEN,
BERGSTRA & KLOP [87]: we prune away every branch that splits off at a node where there is
a 'brother' edge with higher priority, that leads to a non-zero node.

4.8. WEAVING
In advance of an explanation of how to apply failure prediction in the design of (toy) control
systems we will introduce a parallel composition operator that differs from the ACP merge.
This operator is called weaving, because on trace sets it corresponds exactly to the weaving
operator of trace theory, see REM [87]. It is denoted with x II B Y and has in failure semantics
the same meaning as the corresponding operator of TCSP, see HOARE [85] from which the
notation is taken. Our axioms explain it in terms of bisimulation semantics and therefore in
terms of many other abstract semantic models. In table 9 we give an axiomatization on top of

93

BPAs, so n o t considering the extra constant 0. We have B ~ A, a ,b e AS. We can add 0 by
putting 0 1 I B X - - x l I B 0 = 0 I BX=X I B 0 = 0 .

x I I B y = x I 1By+y 11BX +X lBy
a l l B x = a ' x i f a ~ B
a l l B x = 5 i f ae B
(a.x) II By=a . (x IIBy) i f a~ B
(a.x) I1 B y = 8 i f ae B
(x+y) I LBz=x II B z + y IIBZ
a l B b = 8
a l B a = a
(a.x) 18 b = (a Ia b)'x
a IB (b.x) = (a IB b).x
(a.x) IB (b'y) = (a IB b).(x II B Y)
(x + y) IB z = (x IB z) + (y 113 z)
x 18 (y + z) = (x le z) + (y Ie z)
TABLE 9. Weaving

i f a ~ B o r a ~ b
i f ae B

Weaving is a parallel composition that uses action sharing: the actions named in the subscript
B must occur in a shared fashion for both x and y simultaneously. The above equations
describe weaving on the bisimulation model. It is possible to describe weaving in terms of the
merge of ACP. Then it is necessary to introduce copies of the atomic actions, so let for every
b e [3, bC be a new copy different from all other actions in x and y and let ¢ be a renaming
function that renames every b e B to b c and leaves all other atoms unchanged. As a
communication function we have b e I b e -- b, all other communications are trivial. Then the
following identity holds for all finite closed process expressions:

x II B Y = aBc(Pc(X) II Pc(Y)).
The reason to have weaving in addition to II of ACP is that in many cases the shared

action communication mechanism is quite pleasant and one would prefer not to be burdened
with its encoding in terms of the merge operator.

5. APPLICATIONS

5.1. SYSTEMS CONTROL

In order to apply failure prediction we start f rom a system S that may be operated with
actions from a set B, a set of but tons . For simplicity we assume that S is perpetual (does not
terminate). Every now and then an error e may occur (e ~ B). A controller allows the use of
S. The functionality of this controller is as follows:

C = b~l~nstr(b)'H(b).C,

94

where H(b) is a handler for the instruction b (instr(b) is an atomic action, H(b) need not be).
H(b) may or may not perform the action b, meant as an instruction for S. We will choose the
following equation for the handler:

H(b) = b.done(b) + not(b)
The action not(b) denotes a signal from the controller that b may not be performed, the action
done(b) is a controller signal indicating that b has successfully been performed. Both these
actions are supposed not to occur in any other system component. Thus the external alphabet
of the controller is instr(B) u done(B) u not(B) and none of these actions is supposed to
occur in S.

The handler uses a simulation program SIM that simulates the action b as an instruction
for S. If this simulation reveals a problem (a predictable failure) then b is not enforced on S,
otherwise it will be. We have:

SIM = 08o~{e}(S).
Let < be the partial ordering of atomic actions that imposes not(b) < b for all b • B and no
other relations. Then the controller together with the simulated system work as follows:

C-SIM = 0<(C liB SIM)
The system C-SIM allows not(b) i f it wi l l not allow b. C-SIM allows b i f after b, S can
proceed with at least one infinite trace of actions not involving e. Of course, C-SIM must be
implemented in a way that does not use the constant 0 or the 'real' system S.

Now, finally, the controller together with the system S is given by:
C-S = C-SIM I113 S.

Due to the nature of the weaving operator, the occurring ternary communication can be
described in a very compact way.

5.2. SPECIFYING A PATH THROUGH A COMBINATORIAL EXPLOSION
It is well-known that any NP-complete problem can be solved non-deterministically in
polynomial time. Essentially, this is done by non-deterministically guessing a value at each
step. We formalize this as follows. Let P be a computable predicate on sequences of length k
of natural numbers in the range {1 n}. The set of states is S = {(j,a) : l<j<k, a a sequence
of length j from {1 n}}. We have atomic actions guess(i) (for l<i<n). The action and
effect functions are as follows:
• guess(i)((j,c)) = skip i f j < k • (j,a)(guess(i)) = (3+1, ~*i) i f j < k
• guess(i)((k,a)) = exit i fP (a) • (k,a>(guess(i)) = (k, a>
• guess(i)((k,a)) = ~ i f -~P(a)
• all other actions a are inert, i.e. a(s) = a and s(a) = s for all states s.
Now define the process Q,R by:

Q = 7qO,e>~(i~guess(i))k*l), R = 08(Q).

R will equal 0 iff no sequence ~ with P(~) exists; otherwise, a sequence of length k will be
accepted by R such that P holds.

95

5.3. TRAFFIC LIGHT
Let P be a point that travels on a one dimensional two way infinite discrete grid (i.e. the
integers). At each moment in time the coordinates of the point are an integer pair (p, v) where
p is the position on the grid and v is an integer denoting the velocity of P: if v = -3 this
means that in one unit of time (say a second) P moves from p to p - 3. There are three
actions for P and one of these is performed each second:

st remain in the same state (keep the same speed in the same direction).
la accelerate left: v ~ v - 1,
ra accelerate right: v ---) v + 1.

Thus P = (st + la + ra) • t ick . P where tick marks the progress of a clock.

At the same time, there is a traffic light at position 10 on the grid. Every 3 seconds this light
changes its colour, from green to rod and back again:

TL = g reen • t ick. t ick. t ick. red • t ick. t ick. tick .TL.
Here tick marks the progress of the same dock as for the moving object P.

We require the communication tick I tick = t. The composition of object and traffic light
is 8{tiek}(P II TL). The next step is that we have a state operator with triples consisting of an
integer pair and a colour as states. The functions action and effect work as follows (p,v
integers, c a colour):

effect
(p, v, c)(st) --- (p, v, c)
(p, v, c)(la) = (p, v - l , c)
(p, v, c)(ra) -- (p, v + l , c)
(p, v, c)(red) -- (p, v , red)
(p, v, c)(green) = (p, v , green)
(p, v, c)(t) = (p + v, v, c)

action
st(p, v, c) = st
la(p, v, c) = la
ra(p, v, c) = ra
red(p, v, c) = red
green(p, v, c) = green
t(p, v, c) = 8 i f c = red & v>0 & p _< 10 < p+v
t(p, v, c) = t otherwise.

Thus, for instance the second line of this table says that if action la is performed in state
(p,v,C), then we see the action la occurring, and the resulting state is (p,v-] ,c).
The process PTL = ~(0, 0, green)(0{tick}(P I1 TL)) describes P starting in the position (0, 0)
with the constraint that a deadlock occurs if P crosses the traffic light from left to right if it is
green.

Next the process PTLG = 08(PTL) describes P under the constraint that it will never
cross the traffic light in red state from left to right. (C denotes correct functioning of the PTL
combination).

Using the operator 08 it becomes possible to view all possible ways of correct behaviour
as a process itself. Notice that if we view st, la, ra as control options for an agent that
controls P then controlling P in the context PTL leaves the controlling agent all freedom of
action (choice from st, la, ra at any moment). In contrast to this, the freedom of control in the
context PTLO is limited.

We give examples of applying 08 in various states of P ' I 'L For instance:

08(Z(2, 5, green)(0(tick}(P II red" t ick . t ick- tick "TL))) = 0, but forno v we have

96

05(~.(11, v, rod)(O~{tick}(P II TL))) = 0.

Of course this is just a toy example but one may imagine a more complex control system for
which disastrous events have to be avoided. Then the freedom of a controlling agent has to be
limited in order to avoid problems. Using the operation 06 it becomes possible to specify a
control system that disallows actions that must inevitably lead to a problematic stage (i.e. 0).
Of course the implementation of such a control system is quite a different matter. Already in
the simple case with moving point and traffic light above, a specification of PTLC without
the use of 0 is not so straightforward.

Using 0, one may cut down a process graph to correct (failure free) process executions
only.

In terms of a control system as described in 5.1 we get the following:
B -- {la, ra, st}
S = P
S lM = P T L C
C-S IM = 0<(C II B SIM)
C-S = C II B P.

6. CONCLUDING REMARKS

6.1. RELATION BETWEEN ACP0 AND ACP
ACP0 is a generalization of ACP. The mechanism of generalization can be compared to the
case in which one takes the positive rational numbers which combine a multiplicative group
structure and an additive semi-group and adds 0 to it. One adds a single object and several
laws become invalid. (Let us assume that one has defined p / 0 as 1 in order to avoid partial
functions.)

6.2 EFFECTIVE COMPUTABILITY

The reason not to have 0 as a member of the core system ACP is that it is not effectively
computable. That is to say that if we have a finite guarded recursive specification of a process
X over ACP0, it may be impossible to compute its finite projections Xn in a uniform way. The
central axiom systems BPA, PA, ACP and its extensions in concrete process algebra all have
the property that finite projections of finitely recursively specified processes can be
determined in a uniform mechanical way. This simply means that ACP and its extensions in
concrete process algebra can be viewed as an executable programming language. This is why
we propose not to consider 0 a part of concrete process algebra (just as the empty step e and
the silent step x are not part of concrete process algebra).

6.3 IMPLEMENTATION

Implementation of a recursive ACP0 specification first of all involves an elimination of 0.
Now it must be noticed that interesting use of 0 happens just in those cases where elimination
of 0 is possible but at a very high cost. In the examples 5.1, 5.2 and 5.3 this elimination is

97

possible if the state operator is allowed. Elimination of 0 is also possible if in addition to ACP
abstraction (xI) may be used.

In all of these examples it is not known to us whether an equivalent specification in ACP
can be given (i.e. whether the state operator or abstraction operator are necessary
strengthenings for an elimination of 0 and 08).

6.4 RELATED WORK
In MILNER [89], a process 0 is introduced that replaces the constant NIL of CCS of MILNER
[80]. This is just a notational matter and does not introduce semantic modifications as such.
Nevertheless the notation differs from ours considerably in the sense that Milner's 0
definitely corresponds to our constant 8 and not to our constant 0. Similarly the constant
STOP of TCSP of OLDEROG & HOARE [86] corresponds to 8 and not to (our) 0. We use 8
because that makes the notation consistent with other papers about ACP (e.g. BERGSTRA &
KLOP [89]). Because 0 is more truly a zero in process algebra than ~ we preferred not to
adapt our notation to the notation of Milner.

Of course Milner's restriction must be compared to our encapsulation operator and not to
a substitution of (our) 0 for some actions. Thus x / {a, b} in the notation of MILNER [80]
corresponds to O{a, b}(X) in the case of ACP.

ACKNOWLEDGEMENTS
Hans Mulder and Sjouke Mauw have contributed to this paper through several critical
remarks including the view that an undisputable zero in ACP must satisfy the law x'0 = 0 and
not just a '0 = 0 for atomic actions a. In addition, the second author acknowledges extended
discussions with C.A.R. Hoare about various aspects of this paper. We thank the referees for
their careful review and many helpful comments.

REFERENCES

J.C.M. BAETEN & J.A. BERGSTRA [88],Global renaming operators in concrete process
algebra, I&C 78, 1988, pp. 205-245.

J.C.M. BAETEN & J.A. BERGSTRA [90], Process algebra with zero object and non-
determinacy, report P9002, Programming Research Group, University of Amsterdam 1990.

J.C.M. BAETEN & R.J. VAN GLABBEEK [87], Merge and termination in process algebra, in:
Proc. 7th FST&TCS, Pune (K.V. Nori, ed.), Springer LNCS 287, 1987, pp. 153-172.

J.C.M. BAETEN, J.A. BERGSTRA & J.W. KLOP [86], Syntax and defining equations for an
interrupt mechanism in process algebra, Fund. Inf. IX, 1986, pp. 127-168.

J.A. BERGSTRA & J.W. KLOP [84a], Process algebra for synchronous communication, I&C
60, 1984, pp. 109-137.

J.A. BERGSTRA & J.W. KLOP [84b], The algebra of recursively defined processes and the
algebra of regular processes, in: Proc. 1 lth ICALP, Antwerpen (J. Paredaens, ed.), Springer
LNCS 172, 1984, pp. 82-95.

98

J.A. BERGSTRA & J.W. KLOP [85], Algebra of communicating processes with abstraction,
TCS 37, 1985, pp. 77-121.

J.A. BERGSTRA & J.W. KLOP [86], Process algebra: specification and verification in
bisimulation semantics, in: Math. & Comp. Sci. II (M. Hazewinkel, J.K. Lenstra &
L.G.L.T. Meertens, eds.), CWI Monograph 4, North-Holland, Amsterdam, 1986, pp. 61-
94.

J.A. BERGSTRA & J.W. KLOP [89], Process theory based on bisimulation semantics, in:
Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency (J.W.
de Bakker, W.-P. de Roever & G. Rozenberg, eds.), Springer LNCS 354, 1989, pp. 50-
122.

R.J. VAN GLABBEEK [87], Bounded nondeterminism and the approximation induction
principle inprocess algebra, in: Proc. STACS 87 (F.J. Brandenburg, G. Vidal-Naquet & M.
Wirsing, eds.), Springer LNCS 247, 1987, pp. 336-347.

J.F. GROOTE & F.W. VAANDRAGER [89], Structured operational semantics and
bisimulation as a congruence, extended abstract in: Proc. ICALP 89, Stresa (G. Ausiello, M.
Dezani-Ciancaglini & S. Ronchi Della Rocca, eds.), Springer LNCS 372, 1989, pp. 423-
438. Full version to appear in I&C.

J.F. GROOTE [90], Transition system specifications with negative premises, report CS-
R8950, Centre for Math. & Comp. Sci. 1990. To appear in Proc. CONCUR'90, Springer
LNCS.

C.A.R. HOARE [85], Communicating sequential processes, Prentice Hall International,
1985.

R. MILNER [80], A calculus for communicating systems, Springer LNCS 92, 1980.

R. MILNER [89], Communication and concurrency, Prentice Hall International, 1989.

E.-R. OLDER(X3 & C.A.R. HOARE [86], Specification-oriented semantics for communicating
processes, Acta Informatica 23, 1986, pp. 9-66.

A. PONSE & F.-J. DE VRIES [89], Strong completeness for Hoare logics of recursive
processes: an infinitary approach, report CS-R8957, Centre for Math. & Comp. Sci.,
Amsterdam 1989.

M. REM [87], Trace theory and systolic computations, in: Proc. PARLE Vol. I (J.W. de
Bakker, A.J. Nijman & P.C. Treleaven, eds.), Springer LNCS 258, 1987, pp. 14-33.

