
Process Algebra with a Zero Object 

J.C.M. Baeten 
Department of Software Technology, Centre for Mathematics and Computer Science 

P.O.Box 4079, 1009 AB Amsterdam, The Netherlands 

J.A. Bergstra 
Programming Research Group, University of Amsterdam 
P. O.Box 41882, 1009 DB Amsterdam, The Netherlands 

Department of Philosophy, State University of Utrecht 
Heidelberglaan 2, 3584 CS Utrecht, The Netherlands 

The object 0 acts as a zero for both sum and multiplication in process algebra. 
The constant 8, representing deadlock or inaction, is only a left zero for 
multiplication. We will call 0 predictable failure. 

1980 Mathematics Subject Classification (1985 revision): 68Q45, 68Q55, 
68Q65, 68Q50. 
1987 CR Categories: F.4.3, D.2.10, D.3.1, D.3.3. 
Key words & Phrases: process algebra, zero, deadlock, inaction, failure. 
Note: Partial support received by ESPRIT basic research action 3006, CONCUR, 
and by RACE contract 1046, SPECS. This document does not necessarily 
reflect the views of the SPECS consortium. 
Note: this article is a revision of BAETEN & BERGSTRA [90], but leaving out the 
material in section 6. 

1. INTRODUCTION 
The object 0 acts as a 0 for both sum and multiplication in process algebra. The constant 8 
representing deadlock or inaction is only a left zero for multiplication. The purpose of this 
paper is to indtroduce a constant 0 in process algebra and discuss its properties. 

We will call O predictable failure. A predictable failure differs from deadlock (inaction) in 
the sense that a system will actively try to avoid it. The axioms for 0 incorporate the intention 
of a system to avoid failure whenever possible. The axioms for 8 (in particular x ~ 0 =~ x + 
8 = x) incorporate the intention of a process to make progress if it can. 

In fact 0 stands for a truly empty process, its execution is simply inconceivable. The 
process 0 also occurs in PONSE & DE VRIES [89] (but is called 8 there!). 

A process specification involving 0 or renaming into 0 is not executable. It must be 
implemented, which means that one has to provide an equivalent (or better) specification not 
involving 0 or renaming into 0. Due to this observation 0 is a high level feature that plays a 
role in system design and specification, rather than in implementation. 
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2. AXIOMATIZATION 

2.1. BASIC PROCESS ALGEBRA WITH ZERO 
We start out from the theory of Basic Process Algebra as described in BERGSTRA & KLOP 
[84a, 85, 86]. For a recent survey article see BERGSTRA & KLOP [89]. 

We have a set of a tomic actions, A. Each atomic action is a constant of  the sort P, the 
sort of processes that the theory is about. Then, we have two binary operators on P: + is 
a l t e rna t ive  compos i t ion  or sum, and • is sequent ia l  compos i t ion  or product. For this 
signature, we have the first five axioms in table 1 below (A1-5), constituting BPA. In table 1, 
x,y,z are arbitrary elements of P. 

Then we add the zero constant, obeying the next three axioms (Z1-3). Usually, we also 
have the constant 8 in the theory, called deadlock or inaction. The two axioms for inaction 
need conditions, in order to avoid clashes with the zero axioms (A60, A70). The conditions 
use a predicate on processes ~ 0, that determines whether or not a term can be proved equal 
to the zero process. This predicate is axiomatized in the last four axioms of table 1. There, we 

have a ~ A. We put A~ = A u {~}, A08 = A u {0,8}, BPA0 = BPA + Z1-3, BPA0~ = BPA0 + 
A60, A70 + NZ1-4. 

Of  all operators, + will bind the weakest, and • the strongest. We often leave out the • 
sign. 

x + y = y + x  A1 
x + (y +z )  = (x + y) + z 
X + X = X  A3 
( x + y ) ' z = x ' z + y ' z  A4 
(x 'y) 'z = x '(y 'z) 

x 'O=O Z1 
X + 0 = X  
0 " X = 0  

x ~ 0  ~ x + 8 = x  A6 0 

x ~ 0  ~ 5 . x = 8  A7 0 

8 ~ 0 NZ1 
a ~ 0 NZ2 
x ~ 0 ,  y ~ 0  =~ x . y , 0  NZ3 
x , 0  =~ x + y , 0  NZ4 

TABLE 1. BPA08 

The difference between 0 and 8 requires further comments: 
i. 8 is an inactive process, if a system reduces to 8 it deadlocks. Of  course the mere 
occurrence of  8 in a process expression (like a + b(8 + e)) need not indicate a deadlock. 
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Compare this to the expression e = 2 + 0.(5 + 8); in no way the occurrence of 0 in e implies 
that e vanishes. 
ii. x + 8 = x is a progress rule: the system eventually discovers that 8 is no option and 
proceeds with x (if possible). 
iii. x '0 = 0 is a liveness rule: the system must, after completion of x, eventually execute 0, 
i.e. assert false. This form of  liveness is not required for 8. 
iv. 0 + 8 --- 8 because 8 is 'better than' 0. 
v. 0"x = 0 and 8-x = 8 are explained by the non-executability of 0, resp. 8. Note that we 
have in particular 8"0 = 0. Unfortunately, the explanation of this in philosophical terms is 
shallow. 

2.2. PROJECTION 
We can extend the signature given above with the projection operators  Xn (for n>l ). The 
axioms are straightforward adaptations of the usual ones (see BERGSTRA & KLOP [84a]). In 
table 2, a ~ A. 

 n(O) = 0 
Zn(8) = 8 

~:n(a) = a 
x ~ 0 = ,  ~1 (ax)  = a 

~n+l (ax) = a'xn(X) 

TABLE 2. Projection 

2.3 INFINITARY RULES 
The axioms given above constitute a complete theory for finite processes, processes 
represented by closed terms, i.e. equality on finite processes (in a graph model to be 
presented further on) coincides with derivability from the axioms. When we are dealing with 
infinite processes however, processes specified by means of recursive equations, we need 
additional proof principles. In this paper, we will discuss 4 such principles. 

First, we consider: the Approximation Induction Principle (AIP). AIP can be maintained 
in the present setting as in BERGSTRA & KLOP [86]. Roughly, this proof rule states that two 
processes should be identified if all their projections are equal. More explicitly: 

for al l  n /l:n(X) = xn(Y) =~ x = y. 
This rule is valid for finitely branching processes only (a process is finitely branching if it has 
a representation as a finitely branching graph or tree, see further on). 

Next, we consider two principles that deal with solutions of recursive equations. The 
Recursive Definition Principle (RDP) states that every recursive specification has at least one 
solution, and the Recursive Specification Principle (RSP) states that every guarded recursive 
specification has at most one solution. Here, guarded roughly means that every variable 
occurring in the right-hand side of an equation must be preceded by an atomic action. For 
more details and formal definitions, see BERGSTRA & KLOP [86]. 
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Now let us consider these rules in the present setting. Notice that the guarded equation x 
= a 'x  has two solutions: 0 and a c° (the process that indefinitely performs a). It follows that 
the principle RSP has to be relaxed: every guarded system of  recursion equations not 
containing an occurrence of 0 has at most one solution different from 0. Thus more formally, 
RSP 0 states: 

Let E be a guarded recursive specification with k process names such that none of the 
equations of E involves either 0 or a renaming into 0 (see below). Such E is called 0- 
f ree .  
Let X = (Xl ... . .  Xk) and Y = (Yl ... . .  Yk) be process vectors of  length k. 
Then Xl ~=O& ... & Xk¢=O & y l  ~=0 & ... & y k ~ O  & X = E(X), Y = E(Y) 
implies X = Y. 

Besides RSP 0 there is also RDP 0 which states that: 
every 0-free guarded system of recursion equations possesses at least one solution vector 
consisting of processes different from 0. 

The last infinitary proof rule that we will consider is the Limit Rule. We describe this rule in 
4.4. 

2.4 RENAMING INTO ZERO 

08 is an operator that substitutes 0 for 8. We will call this operator deadlock prevention.  
L e t a ~  A. 

oa(o) = o 
o a ( a ) :  o 
oa(a) : a 
Oa(ax) = a'Oa(x) 
oa(x + y) : Oa(x) + oa(y) 
TABLE 3. Deadlock prevention 

An example: 05(ab + e(do8 + aS)) = ab. 
Note that the equation 0~(x'y) = 08(x)'08(y) leads to a problem as follows: Let x = a ~ 

(i.e. the unique solution different from 0 of the equation z -- a.z) and y -- 8, then x 'y --- x 
because of A/P, hence x = 08(x) = 08(x'y) = 0~(x)'08(y) = 0~(x}-0 = 0, which contradicts the 
assumptions on x. 

Also note that it is incorrect to rename an atomic action a into 0 by an operator 0a, for 
that leads to 0 = 0a(a) = 0a(a + 8) = 0a(a) + 0a(8) = 0 + 8 = 8. 

3. SEMANTICS 

3.1 TRANSITION RULES 

We define a s t r u c t u r e d  o p e r a t i o n a l  s e m a n t i c s  as in VAN GLABBEEK [87], on 
congruence classes of  process expressions, i.e. a ~ relation holds between two terms iff 
they are provably equal to the format in the rules in table 4 below. Likewise, a term satisfies 
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x / iff it can be written in the form a + x. For closed terms, the rules now determine an 
ac t ion  g r a p h .  On action graphs, we will then define a notion of  b i s i m u l a t i o n  as in 
BERGSTRA & KLOP [86]. In this definition, we have to pay special attention to the separate 
status of  the process 0. Note that we have to define the rules on congruence classes of  
process expressions, since we need the predicate # 0 in the definition. We cannot define 
action rules on terms in the format of  GROOTE & VAANDRAGER [89] or GROOTE [90]. 

a + x ~ q  
x#O ~ a.x+y ~ x  
TABLE 4. Action rules 

We can also add rules in order to deal with recursive equations. In that case, however, the 
transition system may become undecidable because x # 0 is in general not decidable. To see 
this notice that for every recursively enumerable set We ~ N with recursive index e and every 
n ~ I~ a guarded recursive specification over ACP can be uniformly computed with solution 
p(o,n) such that: 

n e We ¢=~ for some k p(e,n)  = ik'~ 

n ~ We ¢=~ p(e,n)  = F °. 
This construction can be found in BERGSTRA & KLOP [84b]. It follows that: 

n e We ¢=~ Oa(p(e,n)) = O, 
hence it is undecidable whether X = 0 for recursively specified X in general. 

3.2 GRAPH MODEL 
We can also define a graph model directly. Let T be the set of all rooted labeled trees, where 
all edges are labeled with elements of A, and all endpoints labeled with an element of {~/, 5, 
0}. The interpretation of the constants and operators of  B P A ~  is straightforward: 
• [82 is the one-node graph labeled with 8, [0~ is the one-node graph labeled with 0; 
• [aJ is the two-node graph with one edge labeled a, and the endpoint labeled a/; 
• if g,h are in "/F, then g + h is obtained by identifying the roots of  g and h. If one graph is 
[0~, the result is just the other graph. If  one graph is [~], the result is also the other graph, 
unless that graph is E0] (in which case it is I5~); 
• if  g,h are in T, then g 'h  is obtained by first making a copy of  h for each xLendpoint of  g. 
Then we remove the Y-label, and identify the endpoint with the root of its copy. 

c c 

q q 

FIGURE 1 
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We see some examples in fig. 1 above. We see the trees that represent the terms 0, (a + b)-c, 
a .8  + a.0.  Recursively specified processes will in general have infinite trees. 

I f  g is a tree in T, and s a node in g, then we call S a zero  node  of  g if  every maximal  path 
in g f rom S must end in a 0-labeled point. Now we can give the definition of  bisimulation on 
these trees. 

3.2.1 DEFINITION 
Let  g ,h  ~ T. We  say g,h are b i s i m i l a r ,  g ,-, h, if there exists a relation R (called a 
b i s imula t ion)  on nodes of  g and h, such that 
1. the domain of  R consists of  all non-zero nodes of  g; 
2. the range of  R consists o f  all non-zero nodes of  h; 
3. either g,h are both the zero graph, or the roots o f g , h  are related; 
4. i f  R(s,I) and s a~  s '  and s '  non-zero,  then there is a non-zero t' such that t ~-~ t' and 
R(s',t'); 
5. if  R(s,t) and t ~-~ t' and t' non-zero,  then there is a non-zero s '  such that s ~ s '  and 
R(s',t'); 
6. if  R(s,t) and s , t  are endpoints, then they have the same label. 

3.2.2 PROPOSITION 
Bisimulation is a congruence on T. 

In order to prove that q~/,-, is a good model  for the theory BPA08, we first need a couple of  
lemmas. 

3.2.3 LEMMA 
Let  t be a closed term over  BPA0~ such that BPA0~ ~ t # 0. Then BPA08 F- t = 0. 

PROOF: By induction on the structure of  t. I f  t is a constant, this follows immediately f rom 
the axioms in table 1. I f t  is a sum, say t = tl  + t2, and BPA08 b t I # 0, it follows f rom axiom 
NZ4 that BPA08 ~ tl ~ 0 and BPA0~ ~ t2 # 0. By induction hypothesis, BPA08 t- tl = 0 and 
BPA08 t- t2 = 0 and consequently BPA06 ~- I = 0. Finally, i f t  is a product, say t = tl "te, and 
BPA08 t~ I # 0, it follows f rom axiom NZ3 that either BPA08 t~ tl # 0 or BPA08 ~ 12 # 0. 
By  induction hypothesis,  we obtain either BPA0~ F- tl = 0 or  BPA0~ ~- t2 = 0 In the first 
case, use Z3 and in the second case Z1 to obtain BPA08 F- t = 0. 

3.2.4 LEMMA 
Let  t be a closed term over  BPA08 such that BPA05 I- t # 0. Then t can be written without 0, 
i.e. there is a closed term s over  BPA08 that does not contain 0, such that BPA08 ~ t = s.  

PROOF: By induction on the structure of  I. I f  t is a constant, this follows directly f rom the 
axioms in table 1. I f t  has the form of  a product tl "t2, it follows by the previous l emma that tl 

# 0 and t2 # 0. Then use induction hypothesis. Finally, i f I  has the form of  a sum tl + t2, it is 
by the previous l emma enough to consider the following four cases. 
Case 1: tl # 0, t2 # 0. Use induction hypothesis. 
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Case 2: tl  = O, t2 = O. It follows that t = O, contradiction. 
Case 3: tl -- O, t2 ~ O. It follows that t = t2, and we can use the induction hypothesis for t2. 
Case 4: tl  ~ O, t2 = O. Just like case 3. 

3.2.3 THEOREM 
BPA08 is a sound and complete axiomatization of the model'U,-, (for closed terms). 

PROOF: First note that the graph model has a substructure consisting of  the processes ~ 0. 
That structure is a model of BPA~, the theory without zero, and with axioms A1-7 (no 
conditions on A6 and A7). Thus there is only one process in which 0 features in an essential 
way and that is 0 itself. 

Now soundness can be proved by inspection of the model. To prove completeness, 
consider two closed terms t,s over BPA05 and suppose T/,-, t- t=s. We use case distinction. 
Case 1: t ~ 0, s ~ 0. By the previous lemma, t and s can be written as t*, s* without 0. By 
soundness T/,-, I- t* =s*. By the completeness theorem for BPAs, BPA8 I- t* = S*. 
Case 2: t = 0, s = 0. Immediate. 
Case 3: t = 0, s ~ 0. Write s as s* without 0. The definition of ~ shows that t ,-* s* cannot 
hold, contradiction. 
Case 4; t ~ 0, S -- 0. Just like case 3. 

4. EXTENSIONS 

4.1 RENAMING 
Now we will look at renamings of atomic actions into atomic actions or 8. (Renaming into 
zero was discussed in 2.5.) Let I: A~5 ~ A8 be any function that keeps 8 fixed, i.e. f(5) = 8. 
Then the renaming opera tor  pf is defined by the axioms in table 5, where a ~ AS. 

pf(O) = o 
pf(a) = f(a) 
pf(x + y) = pf(x) + I::ff(Y) 
pf(x.y) = pf(x)-pf(y) 
TABLE 5. Renaming 

It is straightforward to define the renaming operators on the graph model of 3.2. A very 
useful example of  a renaming operator is the encapsulation opera tor  3H (for H ~ A) that 
is based on the function g given by: 

g(a)=~5 i f a E H  a n d g ( a ) = a  i f a ~  H. 
The composition of an encapsulation operator with the deadlock prevention operator (08O~H) 
will prevent any action of H from occurring. We will see applications of this in the sequel. 

4.2 PARALLEL COMPOSITION 
We can extend the theory BPA08 with parallel composition as in the theory ACP of 
BERGSTRA & KLOP [84a]. In order to axiomatize the parallel operator II (merge), we need 



90 

two auxiliary operators IL ( left-merge) and I (communicat ion merge).  The theory is 
parametrized by a communicat ion function I, a binary function on the set of constants 
A0a that satisfies conditions C1-4 in table 8 below. Moreover, we have the encapsulation 
operator of  4.1, that is used to block communications with the outside. The theory ACP0 
consists of BPA08 plus the axioms in table 6 below. In table 6, a ,b ,c  ~ A0a. 

a l b = b l a  C1 
(al  b) I c=a  I (b I c) C2 
a ~ 0  ~ 8 1 a = 8  C3 
01 a = 0  C4 

x l l y=xU y + y l L x + x l y  CM1 
alLx = a.x CM2 
ax l l y  = a.(x II y) CM3 
(x+ y ) lLz= xll z +yl l  z CM4 
ax I b=(a l  b).x CM5 
a l bx=(a I b)-x CM6 
ax I by=(a I b)-(x II y) CM7 
(x+y)  l z = x l z + y l z  CM8 
x l ( y+z )=x  I y+x  I z CM9 

a l l (o ) :  o DO 
all(a) = a if a ~ H D1 
all(a) = i5 if a ~ H D2 
aH(x + y) = aN(X) + aN(y) D3 
aH(x.y) = aH(x)'aH(y) D4 
TABLE 6. ACP0 

On the graph model, we can define parallel composition as follows: 
• the node set of graph ~ II h is the cartesian product of the node sets of g and h; 
• there is an edge (s,t) =t (s',t) iff there is an edge s ~ s ' i n g ;  

• • • a , • a , 

likewise, there Is an edge ~S,t) ~ (S,t) iff there is an edge t ~ t in h; e 
and there is an edge (s,t) ~ (s',t') iff there are edges s :-t s' in g and t :# t' in h with b I c = 
a; 

• an endpoint (s,t) has a 0-1abel iff either s or t has a 0-1abel; 
an endpoint (s,t) has a 8-1abel if one has a 8-1abel, and the other a $ or q-label; 
an endpoint (s,t) has a Y-label if both s and t have a ~/-label (all labels in non-endpoints are 
dropped). 

It can be proved that with this definition, bisimulation is also a congruence for parallel 
composition, and all axioms of ACP0 hold in the graph model. 

4.3 DISCUSSION 
Note that we can derive from ACP0 that for all finite closed terms x we have 
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O I I x = O I L x = x l l O = x l O = O I x = O .  
Now let us consider this for recursively defined processes. Look at the process B that is the 
non-zero solution of B -- b'B. We calculate: 0 II B --- 0 II B + B IL0 + 0 1 B = 0-B + bB II0 + 
bB I 0 = 0 + b'(B I10) + (b I O)'B = b.(B I10) = b.b.(O lIB). 
We also have B = b'b 'B, so by RSP ° we have either OII B --- B or 0 II B = O. 

Both options are consistent. Our choice is to put 0 II B = 0 and in general 0 II x = 0. We 
can motivate this if  we use the Limit Rule of  BAETEN & BERGS'ERA [88]. We describe this 
rule next. 

4.4 LIMIT RULE 
Let  FCPE0 be the class of finite closed process expressions over ACP0. Let p(xl ..... Xn) = 
q(xl ..... Xn) be an equation over ACP0. The limit rule (LR) is as follows: 

for a l l t l  ..... tn • FGPE0 p(tl ..... tn) = q(tl ..... tn) 
p(xl  ..... Xn) = q(xl  ..... Xn) LR. 

The identity 0 II x = 0 follows from LR, because, as remarked above, 0 II t = 0 holds for all t e 
FCPE0. 

4.5 PROJECTION AXIOMS 
The limit rule has other applications of  equal importance. Consider the projection operator nn. 
The following hold for the projection operators: for x,y • FCPE0 

~n(X II y) =/In(/~n(X) II ~n(Y)) 
/~n(x'y) = ~n(X)'~n(Y) 
~n(aH(X)) = ~H(/In(X)) 
7tn(X [Ly) =/In(Tin(X) II 1In(y)) 
nn(X I y )=  ~n(nn(X) 17In(y)). 

We call this set of  equations EP. It follows from the limit rule that these identities are valid for 
all processes.  Now consider once more the process B from 4.3. Then nn(0 II B) = 
nn(nn(0) Ilnn(B)) -- nn(0 II b n) = 0. This holds for all n and so by AIP 0 II B = 0. More 
generally, using AIP and EP we can prove that an identity p(xl ..... Xn) = q(xl ..... Xn) holds for 
all recursively specified processes as soon as it holds for all finite processes. The proof  
proceeds just like in BAETEN & VAN GLABBEEK [87]. 

Summarizing the discussion, we have that our model satisfied LR, AIP, EP. The logical 
relationships are: LR F- EP, and AIP + EP ~- LR for recursively specified processes only. 

4.6 STATE OPERATOR 
We can add a s ta te  o p e r a t o r  X to the theory along the same lines as in BAETEN & 
BERGSTRA [88]. The process 2~s(x) represents the process x in state s. The state operator is 
parametrized by two functions action and effect. We write a(s)  for aet ion(a,s)  and s(a) 
for offoct(a,s)  (a an action, s a state). When an action a is to be executed, a(s) gives the 
resulting action, and s(a) the resulting state. We will not allow that a(s)  = 0, further one 
must assume that s(0) = s and 0(S) = 0, and s(8) = S, 8(s) = & Then the state operator 
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works just as well as in the case of  ACP. The axioms are displayed in table 7. We have a 
A~. It is straightforward to define the state operator on the graph model of 3.2. 

xs(o)=o 
ks(a) = a ( s )  
ks (a 'x )=a(s ) ' ks (a ) (X)  
k ~ ( x + y ) = k ~ ( x ) + X s ( y )  
TABLE 7. State operator 

4.7. PRIORITIES 
In examples in section 5 we will also make use of the pr ior i ty  ope ra to r  of BAETEN, 
BERGSTRA & KLOP [87]. This operator gives some actions priority over others in a sum 
context. An auxiliary operator <1 (unless) is needed to give a finite axiomatization. We 
assume that a partial ordering < is given on A (so 0 and ~ are not ordered). Table 8 gives 
axioms on top of the axioms of ACP0. We have a,b E A6. 

a<lb = a i f  not a<b 

a<~b = 5 i f  a<b 
O<~x -- 0 
x<lO = x 
z # 0 ~ x<~yz = x,~y 
x<l(y + z) = (x~y)<~z 
xy<~z = (x<lz)y 
(x + y),~z = x<~z + y,~z 

e(o) = o 
O(a) = a 
e (xy )=o(x ) -O(y )  
e(x+y)=e(x)<y +e(y)<x 
TABLE 8. Priority operator 

The priority operator can be defined on the graph model of  3.2 similarly as in BAETEN, 
BERGSTRA & KLOP [87]: we prune away every branch that splits off at a node where there is 
a 'brother' edge with higher priority, that leads to a non-zero node. 

4.8. WEAVING 
In advance of an explanation of how to apply failure prediction in the design of (toy) control 
systems we will introduce a parallel composition operator that differs from the ACP merge. 
This operator is called weaving, because on trace sets it corresponds exactly to the weaving 
operator of trace theory, see REM [87]. It is denoted with x II B Y and has in failure semantics 
the same meaning as the corresponding operator of TCSP, see HOARE [85] from which the 
notation is taken. Our axioms explain it in terms of bisimulation semantics and therefore in 
terms of many other abstract semantic models. In table 9 we give an axiomatization on top of 
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BPAs, so n o t  considering the extra constant 0. We have B ~ A, a ,b  e AS. We can add 0 by 
putting 0 1 I B X - - x l I B 0 = 0  I BX=X I B 0 = 0 .  

x I I B y = x  I 1By+y  11BX +X lBy  
a l l B x = a ' x  i f a ~ B  
a l l B x = 5  i f ae  B 
(a.x) II By=a . ( x  IIBy) i f a~  B 
(a.x) I1 B y = 8  i f ae  B 
(x+y)  I LBz=x  II B z + y  IIBZ 
a l B b = 8  
a l B a = a  
(a.x) 18 b = (a Ia b)'x 
a IB (b.x) = (a IB b).x 
(a.x) IB (b'y) = (a IB b).(x II B Y) 
(x + y) IB z = (x IB z) + (y 113 z) 
x 18 (y + z) = (x le z) + (y Ie z) 
TABLE 9. Weaving 

i f a ~  B o r a ~ b  
i f ae  B 

Weaving is a parallel composition that uses action sharing: the actions named in the subscript 
B must occur in a shared fashion for both x and y simultaneously. The above equations 
describe weaving on the bisimulation model. It is possible to describe weaving in terms of the 
merge of ACP. Then it is necessary to introduce copies of the atomic actions, so let for every 
b e [3, bC be a new copy different from all other actions in x and y and let ¢ be a renaming 
function that renames every b e B to b c and leaves all other atoms unchanged. As a 
communication function we have b e I b e -- b, all other communications are trivial. Then the 
following identity holds for all finite closed process expressions: 

x II B Y = aBc(Pc(X) II Pc(Y)). 
The reason to have weaving in addition to II of  ACP is that in many cases the shared 

action communication mechanism is quite pleasant and one would prefer not to be burdened 
with its encoding in terms of the merge operator. 

5. APPLICATIONS 

5.1. SYSTEMS CONTROL 

In order to apply failure prediction we start f rom a system S that may be operated with 
actions from a set B, a set of  but tons .  For simplicity we assume that S is perpetual (does not 
terminate). Every now and then an error e may occur (e ~ B). A controller allows the use of 
S. The functionality of  this controller is as follows: 

C = b~l~nstr(b)'H(b).C, 
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where H(b) is a handler for the instruction b (instr(b) is an atomic action, H(b) need not be). 
H(b) may or may not perform the action b, meant as an instruction for S. We will choose the 
following equation for the handler: 

H(b) = b.done(b) + not(b) 
The action not(b) denotes a signal from the controller that b may not be performed, the action 
done(b)  is a controller signal indicating that b has successfully been performed. Both these 
actions are supposed not to occur in any other system component. Thus the external alphabet 
of the controller is instr(B) u done(B) u not(B) and none of  these actions is supposed to 
occur in S. 

The handler uses a simulation program SIM that simulates the action b as an instruction 
for S. If this simulation reveals a problem (a predictable failure) then b is not enforced on S, 
otherwise it will be. We have: 

SIM = 08o~{e}(S). 
Let < be the partial ordering of  atomic actions that imposes not(b) < b for all b • B and no 
other relations. Then the controller together with the simulated system work as follows: 

C-SIM = 0<(C liB SIM) 
The system C-SIM allows not(b) i f  it wi l l  not allow b. C-SIM allows b i f  after b, S can 
proceed with at least one infinite trace of actions not involving e. Of course, C-SIM must be 
implemented in a way that does not use the constant 0 or the 'real' system S. 

Now, finally, the controller together with the system S is given by: 
C-S = C-SIM I113 S. 

Due to the nature of the weaving operator, the occurring ternary communication can be 
described in a very compact way. 

5.2. SPECIFYING A PATH THROUGH A COMBINATORIAL EXPLOSION 
It is well-known that any NP-complete problem can be solved non-deterministically in 
polynomial time. Essentially, this is done by non-deterministically guessing a value at each 
step. We formalize this as follows. Let P be a computable predicate on sequences of length k 
of natural numbers in the range {1 ..... n}. The set of states is S = {(j,a) : l<j<k, a a sequence 
of length j from {1 ..... n}}. We have atomic actions guess(i)  (for l<i<n). The action and 
effect functions are as follows: 
• guess(i)((j,c)) = skip i f  j < k • (j,a)(guess(i)) = (3+1, ~*i) i f  j < k 
• guess(i)((k,a)) = exit i fP (a )  • (k,a>(guess(i)) = (k, a> 
• guess(i)((k,a)) = ~ i f -~P(a) 
• all other actions a are inert, i.e. a(s) = a and s(a) = s for all states s. 
Now define the process Q,R by: 

Q =  7qO,e>~(i~guess(i))k*l ), R = 08(Q). 

R will equal 0 iff no sequence ~ with P(~) exists; otherwise, a sequence of length k will be 
accepted by R such that P holds. 
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5.3. TRAFFIC LIGHT 
Let P be a point that travels on a one dimensional two way infinite discrete grid (i.e. the 
integers). At each moment in time the coordinates of  the point are an integer pair (p, v) where 
p is the position on the grid and v is an integer denoting the velocity of  P: if v = -3 this 
means that in one unit of time (say a second) P moves from p to p - 3. There are three 
actions for P and one of these is performed each second: 

st  remain in the same state (keep the same speed in the same direction). 
la accelerate left: v ~ v - 1, 
ra accelerate right: v ---) v + 1. 

Thus P = (st + la + ra) • t ick .  P where tick marks the progress of a clock. 

At the same time, there is a traffic light at position 10 on the grid. Every 3 seconds this light 
changes its colour, from green to rod and back again: 

TL = g reen  • t ick.  t ick.  t ick.  red • t ick.  t ick.  tick .TL. 
Here tick marks the progress of the same dock  as for the moving object P. 

We require the communication tick I tick = t. The composition of object and traffic light 
is 8{tiek}(P II TL). The next step is that we have a state operator with triples consisting of an 
integer pair and a colour as states. The functions action and effect work as follows (p,v 
integers, c a colour): 

effect 
(p, v, c)(st) --- (p, v, c) 
(p, v, c)(la) = (p, v - l ,  c) 
(p, v, c)(ra) -- (p, v + l ,  c) 
(p, v, c)(red) -- (p, v ,  red) 
(p, v, c)(green) = (p, v ,  green) 
(p, v, c)(t) = (p + v, v, c) 

action 
st(p, v, c) = st 
la(p, v, c) = la 
ra(p, v, c) = ra 
red(p, v, c) = red 
green(p, v, c) = green 
t(p, v, c) = 8 i f  c = red & v>0 & p _< 10 < p+v 
t(p, v, c) = t otherwise. 

Thus, for instance the second line of  this table says that if action la is performed in state 
(p,v,C), then we see the action la occurring, and the resulting state is (p,v-] ,c). 
The process PTL = ~(0, 0, green)(0{tick}(P I1 TL)) describes P starting in the position (0, 0) 
with the constraint that a deadlock occurs if P crosses the traffic light from left to right if it is 
green. 

Next  the process PTLG = 08(PTL) describes P under the constraint that it will never 
cross the traffic light in red state from left to right. (C denotes correct functioning of the PTL 
combination). 

Using the operator 08 it becomes possible to view all possible ways of correct behaviour 
as a process itself. Notice that if we view st, la, ra as control options for an agent that 
controls P then controlling P in the context PTL leaves the controlling agent all freedom of  
action (choice from st, la, ra at any moment). In contrast to this, the freedom of control in the 
context PTLO is limited. 

We give examples of  applying 08 in various states of P ' I 'L  For instance: 

08(Z(2, 5, green)(0(tick}(P II red" t ick .  t ick-  tick "TL))) = 0, but forno v we have 
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05(~.(11, v, rod)(O~{tick}(P II TL)))  = 0. 

Of course this is just a toy example but one may imagine a more complex control system for 
which disastrous events have to be avoided. Then the freedom of a controlling agent has to be 
limited in order to avoid problems. Using the operation 06 it becomes possible to specify a 
control system that disallows actions that must inevitably lead to a problematic stage (i.e. 0). 
Of  course the implementation of such a control system is quite a different matter. Already in 
the simple case with moving point and traffic light above, a specification of PTLC without 
the use of 0 is not so straightforward. 

Using 0, one may cut down a process graph to correct (failure free) process executions 
only. 

In terms of a control system as described in 5.1 we get the following: 
B -- {la,  ra, st} 
S = P  
S lM = P T L C  
C-S IM = 0<(C II B SIM)  
C-S  = C II B P. 

6. CONCLUDING REMARKS 

6.1. RELATION BETWEEN ACP0 AND ACP 
ACP0 is a generalization of ACP. The mechanism of generalization can be compared to the 
case in which one takes the positive rational numbers which combine a multiplicative group 
structure and an additive semi-group and adds 0 to it. One adds a single object and several 
laws become invalid. (Let us assume that one has defined p / 0 as 1 in order to avoid partial 
functions.) 

6.2 EFFECTIVE COMPUTABILITY 

The reason not to have 0 as a member of  the core system ACP is that it is not effectively 
computable. That is to say that if we have a finite guarded recursive specification of a process 
X over ACP0, it may be impossible to compute its finite projections Xn in a uniform way. The 
central axiom systems BPA, PA, ACP and its extensions in concrete process algebra all have 
the property that finite projections of  finitely recursively specified processes can be 
determined in a uniform mechanical way. This simply means that ACP and its extensions in 
concrete process algebra can be viewed as an executable programming language. This is why 
we propose not to consider 0 a part of  concrete process algebra (just as the empty step e and 
the silent step x are not part of concrete process algebra). 

6.3 IMPLEMENTATION 

Implementation of a recursive ACP0 specification first of  all involves an elimination of 0. 
Now it must be noticed that interesting use of  0 happens just in those cases where elimination 
of 0 is possible but at a very high cost. In the examples 5.1, 5.2 and 5.3 this elimination is 
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possible if the state operator is allowed. Elimination of 0 is also possible if in addition to ACP 
abstraction (xI) may be used. 

In all of  these examples it is not known to us whether an equivalent specification in ACP 
can be given (i.e. whether the state operator or abstraction operator are necessary 
strengthenings for an elimination of 0 and 08). 

6.4 RELATED WORK 
In MILNER [89], a process 0 is introduced that replaces the constant NIL of CCS of MILNER 
[80]. This is just a notational matter and does not introduce semantic modifications as such. 
Nevertheless the notation differs from ours considerably in the sense that Milner's 0 
definitely corresponds to our constant 8 and not to our constant 0. Similarly the constant 
STOP of TCSP of  OLDEROG & HOARE [86] corresponds to 8 and not to (our) 0. We use 8 
because that makes the notation consistent with other papers about ACP (e.g. BERGSTRA & 
KLOP [89]). Because 0 is more truly a zero in process algebra than ~ we preferred not to 
adapt our notation to the notation of Milner. 

Of course Milner's restriction must be compared to our encapsulation operator and not to 
a substitution of (our) 0 for some actions. Thus x / {a, b} in the notation of MILNER [80] 
corresponds to O{a, b}(X) in the case of  ACP. 

ACKNOWLEDGEMENTS 
Hans Mulder and Sjouke Mauw have contributed to this paper through several critical 
remarks including the view that an undisputable zero in ACP must satisfy the law x'0 = 0 and 
not just a '0  = 0 for atomic actions a. In addition, the second author acknowledges extended 
discussions with C.A.R. Hoare about various aspects of this paper. We thank the referees for 
their careful review and many helpful comments. 

REFERENCES 

J.C.M. BAETEN & J.A. BERGSTRA [88],Global renaming operators in concrete process 
algebra, I&C 78, 1988, pp. 205-245. 

J.C.M. BAETEN & J.A. BERGSTRA [90], Process algebra with zero object and non- 
determinacy, report P9002, Programming Research Group, University of Amsterdam 1990. 

J.C.M. BAETEN & R.J. VAN GLABBEEK [87], Merge and termination in process algebra, in: 
Proc. 7th FST&TCS, Pune (K.V. Nori, ed.), Springer LNCS 287, 1987, pp. 153-172. 

J.C.M. BAETEN, J.A. BERGSTRA & J.W. KLOP [86], Syntax and defining equations for an 
interrupt mechanism in process algebra, Fund. Inf. IX, 1986, pp. 127-168. 

J.A. BERGSTRA & J.W. KLOP [84a], Process algebra for synchronous communication, I&C 
60, 1984, pp. 109-137. 

J.A. BERGSTRA & J.W. KLOP [84b], The algebra of recursively defined processes and the 
algebra of regular processes, in: Proc. 1 lth ICALP, Antwerpen (J. Paredaens, ed.), Springer 
LNCS 172, 1984, pp. 82-95. 



98 

J.A. BERGSTRA & J.W. KLOP [85], Algebra of communicating processes with abstraction, 
TCS 37, 1985, pp. 77-121. 

J.A. BERGSTRA & J.W. KLOP [86], Process algebra: specification and verification in 
bisimulation semantics, in: Math. & Comp. Sci. II (M. Hazewinkel, J.K. Lenstra & 
L.G.L.T. Meertens, eds.), CWI Monograph 4, North-Holland, Amsterdam, 1986, pp. 61- 
94. 

J.A. BERGSTRA & J.W. KLOP [89], Process theory based on bisimulation semantics, in: 
Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency (J.W. 
de Bakker, W.-P. de Roever & G. Rozenberg, eds.), Springer LNCS 354, 1989, pp. 50- 
122. 

R.J. VAN GLABBEEK [87], Bounded nondeterminism and the approximation induction 
principle inprocess algebra, in: Proc. STACS 87 (F.J. Brandenburg, G. Vidal-Naquet & M. 
Wirsing, eds.), Springer LNCS 247, 1987, pp. 336-347. 

J.F. GROOTE & F.W. VAANDRAGER [89], Structured operational semantics and 
bisimulation as a congruence, extended abstract in: Proc. ICALP 89, Stresa (G. Ausiello, M. 
Dezani-Ciancaglini & S. Ronchi Della Rocca, eds.), Springer LNCS 372, 1989, pp. 423- 
438. Full version to appear in I&C. 

J.F. GROOTE [90], Transition system specifications with negative premises, report CS- 
R8950, Centre for Math. & Comp. Sci. 1990. To appear in Proc. CONCUR'90, Springer 
LNCS. 

C.A.R. HOARE [85], Communicating sequential processes, Prentice Hall International, 
1985. 

R. MILNER [80], A calculus for communicating systems, Springer LNCS 92, 1980. 

R. MILNER [89], Communication and concurrency, Prentice Hall International, 1989. 

E.-R. OLDER(X3 & C.A.R. HOARE [86], Specification-oriented semantics for communicating 
processes, Acta Informatica 23, 1986, pp. 9-66. 

A. PONSE & F.-J. DE VRIES [89], Strong completeness for Hoare logics of recursive 
processes: an infinitary approach, report CS-R8957, Centre for Math. & Comp. Sci., 
Amsterdam 1989. 

M. REM [87], Trace theory and systolic computations, in: Proc. PARLE Vol. I (J.W. de 
Bakker, A.J. Nijman & P.C. Treleaven, eds.), Springer LNCS 258, 1987, pp. 14-33. 


