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Abstract

The category of L-domains was discovered by Achim Jung [5] while
solving the problem of finding maximal cartesian closed categories of
algebraic CPO’s and continuous functions. In this note we analyse the
properties of the lossless powerdomain construction, that is closed on
the algebraic-L-Domains. The powerdomain is shown to be isomor-
phic to a collection of subsets of the domain on which the construction
was done. The proof motivates a certain finiteness condition on the
inconsistency relations of elements. It is shown that all algebraic
CPO’s D whose basis B(D) has property M satisfy the condition. In
particular, the coherent L- domains [3] satisfy the condition.



1 Introduction

Recent work by A. Jung and C. Gunter shows that the L-domains discov-
ered independently by A. Jung[5] and T. Coquand[1] forms an interesting
ccc. P. Buneman proposed the lossless powerdomain construction that is
closed on L-domains. Buneman’s construction was based on intuitions from
databases. We were studying the construction as a possible candidate for
modelling oracleisable indeterminacy. The present paper investigates some
purely mathematical questions that arose from the study. Another paper,
under preparation, will report on the semantic investigations of indetermi-
nacy, using the new powerdomain.

A representation theorem is proved for the lossless powerdomain in Sec-
tion 3. The proof suggests the imposition of some natural conditions on
L-domains. The proof uses the notion of finite separability, i.e the ability to
separate elements of the sets that constitute the powerdomain by disjoint
basic Scott open sets. (This is made precise in Section 3). This suggests
that a natural condition to consider is that the inconsistency relation have
finite witnesses. Section 4 discusses this notion of finite inconsistency. Dis-
cussions with C. Gunter and E. Gunter revealed the relationship of this
property to the coherent L-domains[3].

2 Preliminaries

This section outlines the basic definitions and facts that are used in the
note.

A subset X of a partially ordered set is directed iff it is non-empty and
if every pair of elements in X has an upper bound in X. A partial order D
is said to be (directed) complete if every directed subset X of D has a least
upper bound in D. We shall only consider CPO’s with a least element,
which will be denoted L. An element d of D is said to be compact if for
every directed set D such that d C||D, there is an element z € D such
that d Cxz. The set of all elements of D greater than a compact element d
is denoted by d T. The set of all elements of D less than an element z is
denoted by z |. A CPO D is said to be algebraic if every element is the
lub of a directed set of compact elements. The set of compact elements of

an algebraic CPO D is denoted by B(D). Step functions of the form d N\ e



where d and e are compact elements of D and E respectively are compact
elements of the function space D — E. The set of minimal upper bounds of
a subset A of D below elements of a subset B of D is denoted by mub 4 (B).

An algebraic CPO D is said to be an algebraic-L-domain when any of
the following equivalent conditions hold [5].

1. For each z € D, the set | B(D) is an V-semilattice with smallest
element.

2. For each upper bound z of a finite subset A of B(D), there is a unique
minimal upper bound of A below z.

3. For any finite subset A of B(D), muby (D) = mUb(mubA (D)) (D)

3 The Lossless Powerdomain

The usual power-domain constructions are not closed on L-Domains. Pe-
ter Buneman discovered the Lossless Powerdomain construction [2] that is
closed on L-domains.

Definition 1 Let D be an L-domain. Define the preorder Pr(D)as follows:

|PL(D)| = {(e1-.-€n) |(V1 <i<n)[es€ B(D)] A (V1<1,7<n)[i+#
j=mub, o (D) = ¢l}

and the elements of |PL(D)| are ordered by the Egli-Milner ordering, Cgas.

Actually Pr(D) is a partial order. The Lossless Powerdomain Pr(D) is
constructed by ideal-completion of Pr(D).

Lemma 1 Py(D)is an L-domain if D is.

Proof: It suffices to prove that P(D) is an upper semi-lattice under
the partial order Cgps . Let

a=(er1...€,), b=(dy...dw), c=(f1... fp), a,bCpnmc

Then, | {a, b} under c is given by,



U{a, b} = U{mUb(e,.,dj) (1 <i<n,1<5<m, e; TNd; TNec# ¢}

The verification that the above definition is correct is quite easy. 1

It is shown that the ideals in the lossless powerdomain are representa-
tives of their fringe sets. Fringe sets are the sets generated by following
the partial order arrows among the elements of the ideal. The following
definition captures the idea of “following arrows”.

Definition 2 A GENERATOR d over an ideal I € Pr(D) is a function
d: I — D such that :

eicl=d(1)€e:
o (i€INj€eI NiLlgyj) = d(1)Cd (j)
The following lemma is an easy consequence of the definition.

Lemma 2 Ifd is a GENERATOR over I, d (I) is a directed set in D.

Definition 3 Let I € Pr(D). The set generated by I is
St ={Ud (I)| dis a Generator on I}

Since the lossless powerdomain embodies finite branching only, one ex-
pects the sets generated to be Scott-compact. The proof requires the fol-
lowing lemma, that is proved using the axiom of choice. (Proof given in
appendix)

Lemma 3 Let I € Pr(D). Let I be cofinal in I. Let P be a predicate defined
on D such that

1. (Vie I)(3e € i) [P(e)]
2. (deiel Aneejel NiCguj AdCe A P(e)) = P(d)
Then there is a generator d over I such that (Vi € I) [P (d (1))] .

Lemma 4 IfI € P(D), S; is non-empty and Scott-compact.

Proof:



1. Define a predicate P on D by
Ple)<= (Fiel)[e€q]

From lemma 3 , we get a generator on D. Hence Sy is non-empty.

2. Let {zo} be a net in S;. Define a predicate P on D as follows:
Ple)<= (Fiel)[e€: A e TN{za} is co-final ]

From lemma 3 , we get a generator d. Consider | |d (/). Any neigh-
bourhood e T of | |d (I) has non-empty intersection with d (I), and
consequently is cofinal in {z,}. Hence |Jd (I) is an accumulation
point of {z,} 1

However, not all non-empty Scott-compact sets are generated by some
ideal in the lossless powerdomain. Consider the L-domain in Fig 1. The
set {z,y} cannot be generated by any ideal in P;(D), even though the set
{z,y} is finite and hence compact in the Scott Topology. This observation

motivates the following definition.

Definition 4 S C D is FINITELY SEPARABLE if

(VStin={z1...2n}, Ssin € S)(F(e1...em) € PL(D))[n <m A (V1<
i <n)(e&Cx) A (e1...em) CemS]

The following lemma is an easy consequence of the above definition.

Lemma 5 IfI € P.(D), Sy is FINITELY SEPARABLE



Fig. 1

It turns out that one can generate all FINITELY SEPARABLE and
Scott-compact sets.

Definition 5 Let L be an L-domain. Then Vp s the set of all Scott-compact
finitely-separable subsets of D ordered by Cgar

Note that ¥p is a partial order. Now, we define maps between Pr(D)and
¥ p in a natural manner, and show that the definitions do indeed constitute
an order isomorphism between the partial orders, giving us the required
representation theorem.

Lemma 6 Define ®: P (D) — ¥p by
o () =5



Then, ® is monotone.

Proof: Let I, € Pr(D), I, € Po(D),1; C I,. Let ® (I,) = Si,,® (I,) =
S,

o Let z € 5y,
= (3d) [Ud (I1) = z], where d is generator on I;. Define

L={ilieL A(3j € ) [jCeumi]
Note that I, is cofinal in I,. Define predicate P by
Ple) <= (3, j)[i€ch Ae€iAjelL Ad(j)Ce AéEE€i Ai € T

The generator d on I, given by lemma 4 satisfies zC| |d
= (Vz € §1,) (3y € Sp,) [«Cy]

o Let z € S5y,
= (3d) [Ud (I,) = z], where d is a generator on I,. Restriction of d
to I; gives a generator d on I, such that d (I;) C d (I2). Hence, we
have | |d (I;)CLId (I;). Hence, we have

(Vy € 51,) (3z € Sp) [«Cy] W
Lemma 7 Let S € ¥p, (e1...€,) CemS, (di...dwm) EpmS. Then
<:< <3< .8 fint
(Vi<i<n,1<j5<m) [mUb(C,',dj) (S) s finite |

Proof: Let 1 <i<n,1<j<m. Consider the basic open cover of S
consisting of

o ¢, éemUb(e;,dj) (S)

ee;T,1#4,1<1<n

This open cover has finite subcover. Since all members of (ey,...e,) and

(d1,...dm) are pairwise inconsistent, we deduce that mub(e d;) (S) is fi-
iy Uy

nite. N



Lemma 8 Define & : ¥p — m by
®(S) ={(e1...em) (e1..-€m) CEEMS A(e1...em) € Pr(D)}
Then, & is monotone.
Proof:

o We have to first show that & is well defined. Let S € ¥p. Then we
have

— {L} € & (S). So, & (S) is non-empty.

- (61 . ..e,,) ';EMS, (dl . ..dm) [;EMS
= [Uf{mub(e, ¢y ()1 <i<n, 1<j<m, eiTNd; TNS #
¢} ] CemS. Hence, & (S) is directed.

— & (S) is obviously downward closed.
Hence, & (S) is an element of P.(D).
o S; CemSe =% (51) C & (S;). Hence, ® is monotone. B
Lemma 9 $0® = Id

Proof: Note that it suffices to prove that
The ’if’ part is obvious. For the reverse direction, consider

(e1...em) € PL(D) A (e1...em) EgmSIt
= (3z1...2m € S1) (V1 <k < m) [exCax]

Let d, ...d,, be the generators on I corresponding to z; ... z,,. Since di (I)
is a directed set for all 1 < k < m, we have

(Vl <k< m) (36~k,ik) [€k e €l Ndy (Zk) =€ NeLer ]

Since I is directed, (37 € I) [i1 ... %n Cgmi]. Note that (V1 <7 <m) (3€; €
i) [e;C¢€;]. Define

I={jlj€INiCpmj}

8



Note that I is cofinal in I.
e We have
(Vi € I) (V1 < k <m) (3éx € 7) [exTéx]

e We need to prove that (3j € I) (Vé € j) (31 < k < m) [exC¢] Suppose
not. Define predicate P by:

Ple) < (Fje[e€j AerlZe...enlLe]

P satisfies the conditions of lemma 3. The generator yielded by
lemma 3 gives an element in S; that i1s not greater than any of
€1...em. This is a contradiction since (e; ... e,) CparSy

Hence, we have an element of I above (e; ...e€;,). Result follows by down-
ward closure of I.

Lemma 10 & 0 = Id

Proof: Let I = & (S), where S € ¥p.

1. Let d be a generator over I. We shall prove by contradiction that
(3z € S) [Ud (I)Ez]. Suppose not. We have the cover

{efl(Fieleci A efd()}}
Since S is Scott-compact, there is a finite sub-cover
{ex 7| (Fik€)[ex €t AN e#d (i) AN 1<k <n]}
Since I is directed,

(Feel)[ir... 0 Crmi
= {eTle€ (i —{d(7)})} is a cover of S

This is a contradiction, since : CgpsS means that there is an element
in S greater than d (2)



2. Let z € S. From definition of ¢ (S),
(Vi € $(5)) (e: € 9) [eiCa]

Also, the e;’s are unique and form a directed set. Hence, a generator
d, can be defined in the obvious way such that | |d, (I) Cz.

3. Let z,y € S Az # y. Then, from finite separability of S d, # d, ,
where d;, d, are the generators on I defined as above.

4. Now, we shall show that | |d, (I) = z. Let eCxz. Consider the cover

{(b1lbeiel, b#d. (i)} U{eT}

Note that the above is a cover because of finite separability. Since S
is Scott-compact, we have a finite sub-cover

{bx Tl bx€tix €1, b #dy (1), 1 <k <n} UfeT}
Since I is directed, (3¢ € I) [¢1...%, Cgme]. Hence, we note that
{61/ b€, b#d: ()} UleT}
is a cover. Hence, we have
(Vy € §) [d ())Ey = eLy]

Hence, we deduce that we have the open cover consisting of

e é whereé€i— {d(7)}
e 7, where m € mub(d (i), €) (S)

The above open cover has a finite sub-cover,. Hence we deduce that

mub(d (i), €) (S) is finite. Hence 7 defined as
1 =mubgg (5),¢) (SHUGE—{d ()}

10



satisifies :{CgmS A1 € Pr(D). Hence, eC||d, (I)

The above shows that the generators on I generate precisely the cle-
ments of S. Hence,

dod=1Id &

Theorem 1 Pr(D)is isomorphic to ¥p

4 Finitely Detectable Inconsistency

Consider the elements z, y in Figure 1. Every pair of finite elements e,, e,
below z, y respectively have upper-bounds. However z, y do not have
an upper bound. One might demand that the inconsistency relation have
finite witnesses, to make it continuous. The above discussion motivates the
following definition.

Definition 6 An algebraic CPO D 1is said to have property FI (for finitely
detectable inconsistency) if
(Vz, y € D) [mub(m,y) (D) = ¢= (Jes, e, compact) [e,Cz Ae,ly A

mub(e_ ¢y (D) = ;]

It is easy to check that all Scott-Domains have the above property. C.
Gunter observed that all coherent L-domains [3] have property FI. The
following lemma due to Achim Jung [4] enables us to prove a stronger
result.

Lemma 11 An algebraic CPO D is Lawson-compact if and only if B (D)
has property M.

Lemma 12 Let D be an algebraic CPO such that every finite subset of B (D)
has a complete finite set of minimal upper bounds. (i.e B (D) has Property
M). Then, D has property FI.

Proof: Let z, y € D. Let {d;| j € I.} and {e;| ¢ € I,} be the compact

elements approximating z,y respectively, where I, and I, are index sets.
Furthermore, let us assume that

11



(Vdjei) lj € I A i€ Iy == mubgy. ) (D) # ¢]

Let C = {{e; 1}7€ I, } U{{d; T} j € I.}. Then C is a collection of
closed sets in the Lawson Topology on D satisfying the finite intersection
condition. Result follows from the compactness of the Lawson Topology on
D. n

In particular all SFP objects D have property FI.

Future Work

The lossless powerdomain construction promises to provide the mathemati-
cal foundations for a fully-abstract semantics for languages with finite non-
determinism in which infinite objects are observable in the operational se-
mantics.(e.g) the language of streams and finite-nondeterminism as in[6].
As part of the mathematical justification, we are working on developing a
universal characterisation of the construction. A related question about L-
domains that we are examining, is the existence of a first-order, information
system like representation for algebraic L-domains.
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Appendix

Lemma 13 Let 3 be a limit ordinal. Let S, be a sequence of finite sets over
a € B, such that oy < ay=— S"I C SO,Q. Then

N
[(Vo€pB)Sa# ¢l= a<fBSas# ¢

Proof: Induction on the size of S"O' [ |

Lemma 14 Let I € P(D). Let Sia be a collection of non-empty finite sets
indezed by ¢ € I, such that

1. Sza C:
2. e € Sz-a, tCppmy — (363‘ € S?) (eii;e]-)
3. (e.— € Sz-a, ] EEMZ) g (Hej € 551) (ejge,')

Then, either

o Viel)|S¥|=1, or

e There is a collection of non-empty sets Sz-a 1 guch that
- (Viel[s¢Tlcs)
— The new collection of sets SZQ 1 hgs properties 1...3.
- @Gien)[sgT#sp)

Proof: Choose i € I such that | S& |# 1. Let e € Sf*. Define

o S2T1 50 (e}

e For j € I such that i Cpnj, ST 1 _ S% - {2 eCe)

e For other k € I,

e+l = 5% (e (%)li Comj = 52 F1NET = 9]},
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The details that the constructed sets satisfy properties is extensive
case analysis and is omitted. |

Lemma 15 Let I be an ideal in Pr(D) . Let I be cofinal in I. Let P be a
predicate defined on D such that

1. (Vie I)(3e€ i)[P(e)]
2. (deiiel Neej Ajel AiCgpj AdCe A P(e)) = P(d)
Then, (Vi € I) (Je; € i) [P(ei)A (VY € I) (s Cpmi= (Je; € j) (e;:CejA

P(e;)))]-

Proof: ( By contradiction)
Let i = (e1...€k, €x41...6m) N 1 € I. Let

o (Vs) (1 <s<k)P(ey)
o (Vs)((k+1) <s <m)-P(e,)

From assumption

(Vs =1...k) (34,) ((Cemis N (YEE J,) [(esE8)= ~P(é)]

Since I is directed and I is cofinal in I , (35 € I) (j1...7xCrar 7)). From
assumption on P (Je € j) P(e).

Letej, €j1Ce,...;e5, €ECoe

== eIZejl, ce ,ethSjk

= e1...elLe

= (Jes €1) (s > kA e,Ce)

= P(e,) (Contradiction) =&

Lemma 16 Let I € Py(D). Let I be co-final in I. Let d be a function
d: I — D such that :

eici=d(i)ei
o (i€IAnjeT NiCpuj)= d(i)Ed(j)
Then, d can be uniquely extended to a generator on I.

Lemma 17 Let I € PL(D). Let I be cofinal in I. Let P be a predicate as in
lemma 15 . Then there is a generator d over I such that (Vi € I) [P (d (1))]

15



Proof: Define SzQ = {e | e €1i, P(e)}, where i € I. Note that the
collection S? satisfies the condtions of the lemma 15 . Let II be the set of

all collections 5;-7 such that
e The collection { SZ } satisfies the conditions of the lemma 14.
° S?gS?foralliEf

Let Cy, C; € II, where Cy = { §) } and C; = { S¢ }.

Define Cy < G, if (Vi€ I) 57 C 5%

Note that every chain in II has an upper bound by lemma 13. Using Zorn’s
lemma, we deduce that II has a maximal element. However, from lemma
14, the maximal element C = { S } satisfies the condition that (Vi € I)
[| S& | = 1]. From the conditions on the elements of Il and from lemma 16
, we observe that d defined by

d (i) = e, where e is the unique element in S

can be uniquely extended to a generatoron I i

16
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