Skip to main content

Microtubule networks as a medium for adaptive information processing

  • Conference paper
  • First Online:
Book cover Evolutionary Programming VII (EP 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1447))

Included in the following conference series:

  • 173 Accesses

Abstract

Microtubules are protein structures that develop cell specific organizations and are known to play a major role in cell morphology, protein transport, and organelle structure. Microtubules have also been suggested as a medium for long range intracellular signaling. We report on a coupled oscillator model of adaptive signal processing motivated by microtubule organization and growth dynamics. The working hypothesis is that microtubules and associated proteins serve as a fast signal integration system within neurons and that the input-output transform effected by this lattice is molded through adaptive self-stabilization (essentially error feedback acting on the microtubule organization).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. D.Molecular Biology of the Cell, 3 ed. Garland Publishing, Inc., New York, 1994.

    Google Scholar 

  2. Bayley, P., Sharma, K., and Martin, S. Microtubule dynamics in vitro. In Microtubules, J. Hyams and C. Lloyd, Eds. Wiley-Liss, Inc., New York, 1994, pp. 111–137.

    Google Scholar 

  3. Boole, G.Calculus of Finite Differences, 4 ed. Chelsea Publishing Company, New York, 1958.

    Google Scholar 

  4. Burgoyne, R. D. High molecular weight microtubule-associated proteins of the brain. In The Neuronal Cytoskeleton. Wiley-Liss, Inc., New York, 1991, pp. 75–91.

    Google Scholar 

  5. Chen, J., and Conrad, M. Learning synergy in a multilevel neuronal architecture. BioSystems 32 (1994), 111–142.

    Google Scholar 

  6. Chopard, B. Strings: A cellular automata model of moving objects. In Cellular Automata and Modeling of Complex Physical Systems (1990), P. Manneville, N. Boccara, G. Vichniac, and R. Bidaux, Eds., vol. 46 of Springer Proceedings in Physics, Springer-Verlag, Berlin, pp. 246–256.

    Google Scholar 

  7. Conrad, M. Electronic instabilities in biological information processing. In Molecular Electronics, P. Lazarev, Ed. Kluwer Academic Publishers, Dordrecht, 1991, pp. 41–50.

    Google Scholar 

  8. Conrad, M. Emergent computation through self-assembly. Nanobiology 2 (1993) 5–30.

    Google Scholar 

  9. Conrad, M., Kampfner, R., Kirby, K., Rizki, E., Schleis, G., Smalz, R., and Trenary, R. Towards an artificial brain. BioSystems 23 (1989), 175–218.

    Google Scholar 

  10. Eriksson, K., Estep, D., Hansbo, P., and Johnson, C.Computational Differential Equations. Cambridge University Press, Sweden, 1996.

    Google Scholar 

  11. Hameroff, S.Ultimate Computing. Elsevier Science Publishers B.V., Amsterdam 1987.

    Google Scholar 

  12. Kirkatrick, F. New models of cellular control: membrane cytoskeletons, membrane curvature potential, and possible interactions. BioSystems 11 (1979), 85–92.

    Google Scholar 

  13. Lange, G., Mandelkow, E.-M., Jagla, A., and Mandelkow, E. Tubulin oligomers and microtububule oscillations: Antagonistic role of microtuble stabilizers and destabilizers. European Journal of Biochemistry 178 (1988), 61–69.

    Google Scholar 

  14. Liberman, E., Minina, S., Shklovsky-Kordy, N., and Conrad, M. Change of mechanical parameters as a possible means for information processing by the neuron. Biofizika 27 (1982), 863–870. (in Russian).

    Google Scholar 

  15. Marion, J., and Thornton, S.Classical Dynamics of Particles and Systems, 4 ed. Harcourt Brace & Company, Fort Worth, 1995.

    Google Scholar 

  16. Matsumoto, G., and Sakai, H. Microtubules inside the plasma membrane of squid giant axons and their possible physiological function. Journal of Membrane Biology 50 (1979), 1–14.

    Google Scholar 

  17. Matus, A., Huber, G., and Bernhardt, R. Neuronal microdifferentiation. Cold Spring Harbor Symposium on Quantitative Biology 48 (1982), 775–782.

    Google Scholar 

  18. Reece, G.Microcomputer Modelling by Finite Differences. Macmillan Education Ltd., London, 1986.

    Google Scholar 

  19. Timasheff, S. N. The role of double rings in the tubulin-microtubule cycle: Linkage with nucleotide binding. In AIP Conference Proceedings 226: The Living Cell In Four Dimensions (1991), G. Paillotin, Ed., vol. 48, pp. 170–179.

    Google Scholar 

  20. Ugur, A., and Conrad, M. Structuring pattern generalization through evolutionary techniques. In Evolutionary Programming VI (Lecture Notes in Computer Science) (1997), P. Angeline, R. Reynolds, J. McDonnell, and R. Eberhart, Eds., vol. 1213, Springer, Heidelberg, pp. 311–321.

    Google Scholar 

  21. Wordeman, L., and Mitchison, T. J. Dynamics of microtubule assembly in vivo. In Microtubules, J. Hyams and C. Lloyd, Eds. Wiley-Liss, Inc., New York, 1994, pp. 287–301.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

V. W. Porto N. Saravanan D. Waagen A. E. Eiben

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pfaffmann, J.O., Conrad, M. (1998). Microtubule networks as a medium for adaptive information processing. In: Porto, V.W., Saravanan, N., Waagen, D., Eiben, A.E. (eds) Evolutionary Programming VII. EP 1998. Lecture Notes in Computer Science, vol 1447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0040798

Download citation

  • DOI: https://doi.org/10.1007/BFb0040798

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64891-8

  • Online ISBN: 978-3-540-68515-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics