Skip to main content

Estimating the distribution of neural connections in the saccadic system using a biologically plausible learning rule — Preliminary results

  • Conference paper
  • First Online:
Evolutionary Programming VII (EP 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1447))

Included in the following conference series:

  • 173 Accesses

Abstract

Saccades are rapid movements that reposition the eye in space. Several neural structures involved in saccadic control have been characterized, providing a unique opportunity for systems-level investigations of the premotor neural circuitry. This study focuses on the role of the superior colliculus (SC) in the planning and control of saccadic eye movements in monkeys. Saccade-related neural activity in the SC is highly distributed, with saccade displacement commands coded in a topologically-organized motor map. Downstream from the SC, this spatiotemporal code is transformed into the temporal code necessary to drive the oculomotor neurons. Researchers have postulated that this transformation is implemented in the projection weights between the SC and the brainstem saccadic burst generator. Here, an empirical neural network study is used to predict the topological variation of these projection weights. Estimates of the spatiotemporal neural activity in the SC were used as the open-loop inputs to the model. The projection weights from the SC to excitatory burst neurons (EBNs) in the brainstem were trained using a biologically plausible evolutionary learning rule (the chemotaxis algorithm), while well-known features of the downstream neural structures were fixed. The objective function was defined as the squared error between the model output and actual eye position trajectories for several magnitudes of horizontal saccades (integrated over time). Simulation results predict the excitatory connections from the SC to EBNs increase in strength or density with collicular location (from rostral to caudal).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • Aizawa, H & RH Wurtz (1994). Control of trajectory of saccadic eye movements by monkey superior colliculus. Soc. Neurosci. Abst, 20:144.

    Google Scholar 

  • Anderson, RW & V Vemuri (1992). Neural networks can be used for open-loop, dynamic control, Int'l. J. Neural Networks, 3(3):71–84.

    Google Scholar 

  • Anderson, RW (1998). Random-walk learning: A neurobiological correlate to trial-and-error, Neural Networks and Pattern Recognition, Eds.: O.M. Omidvar & J. Dayhoff, Academic Press: Boston. Chapter 7.

    Google Scholar 

  • Anderson, RW, E.L. Keller, N.J. Gandhi, & S. Das (1998a). Two-dimensional saccade-related population activity in superior colliculus in monkey. J. Neurophysiology (in press).

    Google Scholar 

  • Anderson, RW, S. Das, & EL Keller (1998b). Estimation of spatio-temporal neural activity using radial basis function networks. J. Comp. Neurosci. (in press).

    Google Scholar 

  • Berthoz, A, A Grantyn, & J Droulez (1986). Some collicular efferent neurons code saccadic eye velocity. Neurosci. Lett. 72:289–294.

    Google Scholar 

  • Bremermann, HJ & RW Anderson (1991). How the brain adjusts synapses — maybe, In: Automated Reasoning: Essays in Honor of Woody Bledsoe, Ed. R.S. Boyer, Chapter 6, pp. 119–147, Kluwer Academic Publishers, New York.

    Google Scholar 

  • Cannon, S, & DA Robinson (1985). An improved neural-network model for the neural integrator of the oculomotor system: more realistic neuron behavior. Biol Cybern 53:1–16.

    Google Scholar 

  • Das, S, NJ Gandhi, & EL Keller (1995). Open-loop simulations of the primate saccadic system using burst cell discharge from the superior colliculus. Biol. Cybern. 73:509–518.

    Google Scholar 

  • Gandhi, NJ & EL Keller (1997). Spatial distribution and discharge characteristics of superior colliculus neurons antidromically activated from the omnipause region in monkey, J. Neurophysiol. (In press).

    Google Scholar 

  • Grossman, GE & DA Robinson (1988). Ambivalence in modeling oblique saccades. Biol. Cybern 58:13–18.

    Google Scholar 

  • Hepp, K., V Henn, T Vilis, & B Cohen, (1989). Brainstem regions related to saccade generation. In: The neurobiology of saccadic eye movements, edited by Wurtz, R.H. & Goldberg, M.E.Amsterdam:Elsevier,p. 105–212.

    Google Scholar 

  • Istvan, PJ, MC Doris, & DP Munoz (1994). Functional identification of neurons in the monkey superior colliculus that project to the paramedian pontine reticular formation. Soc. Neurosci. Abs., 20:141.

    Google Scholar 

  • Keller, EL (1974). Participation of the medial pontine reticular formation in eye movement generation in monkey. J. Neurophysiol., 37: 316–332.

    Google Scholar 

  • Keller, EL (1977). Control of saccadic eye movements by midline brainstem neurons. In: Control of Gaze by Brain Stem Neurons, ed. Baker, R & Berthoz, A. Amsterdam:Elsevier, pp. 327–336.

    Google Scholar 

  • Keller, EL (1991) The brainstem. In: Eye movements, Ed.: Carpenter, R.H.S.London:Macmillan Press, p. 200–223.

    Google Scholar 

  • Keller, EL, & JA Edelman (1994). Use of interrupted saccade paradigm to study spatial and temporal dynamics of saccadic burst cells in superior colliculus in monkey. J. Neurophysiol. 72:2754–2770.

    Google Scholar 

  • Keller, EL, NJ Gandhi, & JM Shieh (1996). Endpoint accuracy in saccades interrupted by stimulation in the omnipause region in monkey. Vis Neurosci 13(6): 1059–1067.

    Google Scholar 

  • Kustov, AA & DL Robinson (1996). Shared neural control of attentional shifts and eye movements. Nature, 384:74–77.

    Google Scholar 

  • Lee, C, WH Rohrer, & DL Sparks (1988). Population coding of saccadic eye movements by neurons in the superior colliculus. Nature 332:357–360, 1988.

    Google Scholar 

  • Massone, LE (1994). A neural-network system for control of eye movements: Basic mechanisms. Biol. Cybern. 71:293–305.

    Google Scholar 

  • Miyashita, N & O Hikosaka (1996). Minimal synaptic delay in the saccadic output pathway of the superior colliculus studied in awake monkey. Exp. Brain Res., 112:187–196.

    Google Scholar 

  • Munoz, DP, D Pélisson, & D Guitton (1991). Movement of neural activity on the superior colliculus motor map during gaze shifts. Science, 251:1358–1360.

    Google Scholar 

  • Munoz, DP & RH Wurtz (1993) Fixation cells in monkey superior colliculus. II. Reversible activation and deactivation. J. Neurophysiol. 70:576–589.

    Google Scholar 

  • Munoz, DP & RH Wurtz (1995a). Saccade-related activity in monkey superior colliculus. I. Characteristics of burst and buildup cells. J. Neurophysiol. 73:2313–2333.

    Google Scholar 

  • Munoz, DP & RH Wurtz (1995b). Saccade-related activity in monkey superior colliculus. II. Spread of activity during saccades. J. Neurophysiol. 73:2334–2348.

    Google Scholar 

  • Optican, LM (1995). A field theory of saccade generation: temporal-to-spatial transform in the superior colliculus. Vision Res. 35:3313–3320.

    Google Scholar 

  • Ottes, FP, JAM Van Gisbergen, & JJ Eggermont (1986) Visuomotor fields of the superior colliculus: a quantitative model. Vision Res. 26:857–873.

    Google Scholar 

  • Raybourn, MS, & EL Keller (1977). Colliculoreticular organization in primate oculomotor system. J.Neurophysiol. 40:861–878.

    Google Scholar 

  • Richmond, B & LM Optican (1987). Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex II. Quantification of response waveform. J. Neurophysiol., 57:147–161.

    Google Scholar 

  • Robinson, DA & EL Keller (1972). The behavior of eye movement motoneurons in the alert monkey. In Cerebral.Control.of.Eye Movements.and.Motion.Perception. J Dichgans, E Bizzi, Eds.Basel: S Karger, 7-16-16X.

    Google Scholar 

  • Robinson, DA (1972). Eye movements evoked by collicular stimulation in the alert monkey. Vision Res. 12:1795–1808.

    Google Scholar 

  • Robinson, DA (1975). Oculomotor control signals. Basic Mechanisms of Ocular Motility and Their Clinical Implications, G Lennerstrand & P Bach-Y-Rita, eds. Oxford: Pergamon Press, 337–374.

    Google Scholar 

  • Sparks, DL & LE Mays (1990). Signal transformations required for the generation of saccadic eye movements. Ann. Rev. Neurosci., 13:309–336.

    Google Scholar 

  • Van Gisbergen, JAM, DA Robinson & S Gielen (1981). A Quantitative analysis of generation of saccadic eye movements by burst neurons. J. Neurophysiology, 45:417–442.

    Google Scholar 

  • Van Gisbergen, JAM, AJ Van Opstal & JJM Schoenmakers (1985). Experimental test of two models for the generation of oblique saccades. Exp. Brain Res., 57:321–336.

    Google Scholar 

  • Van Gisbergen, JAM, AJ Van Opstal & AA Tax (1987). Collicular ensemble coding of saccades based on vector summation. Neuroscience 21:541–555.

    Google Scholar 

  • Van Opstal, AJ, & H Kappen (1993). A two-dimensional ensemble coding model for spatialtemporal transformation of saccades in monkey superior colliculus. Network, 4:19–38.

    Google Scholar 

  • Waitzman, DM, TP Ma, LM Optican & RH Wurtz (1991). Superior colliculus neurons mediate the dynamic characteristics of saccades. J. Neurophysiol., 66:1716–1737.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

V. W. Porto N. Saravanan D. Waagen A. E. Eiben

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Anderson, R.W., Badler, J.B., Keller, E.L. (1998). Estimating the distribution of neural connections in the saccadic system using a biologically plausible learning rule — Preliminary results. In: Porto, V.W., Saravanan, N., Waagen, D., Eiben, A.E. (eds) Evolutionary Programming VII. EP 1998. Lecture Notes in Computer Science, vol 1447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0040802

Download citation

  • DOI: https://doi.org/10.1007/BFb0040802

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64891-8

  • Online ISBN: 978-3-540-68515-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics