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A b s t r a c t  

Kecent advances in vision sensors technology and image processing authorize to 
hope that the use of vision data directly into the control loop of a robot is no more 
an utopic way. Commonly, the general approach in robot vision is the following: 
processing vision data into the frame linked to the sensor, converting data into the 
frame linked to the scene by mean of inverse calibration matrix, computing, with 
respect to the robot task, the control vector of the robot into the frame linked 
to the scene, controlling the robot by using the inverse kinematic model. This 
scheme works in open loop with respect to vision data and cannot take into account 
inaccuracies and uncertainties occurlng during the processing. Such am approach 
needs to perfectly overcome the constraints of the problem: geometry of the sensor 
(for example, in a stereovision method), the model of the environment and the 
model of the robot. In some cases, this approach is the only one possible but, in 
many cases, an alternative way consists to specify the robot task in terms of control 
directly into the sensor frame. This approach is often referred as visual servoing [8] 
, [3] or sensor based control [2]; in this case, a closed loop can be really performed 
from the vision data and allows to compensate for the perturbations by a robust 
control scheme. The work described in this paper deals with such an approachusing 
a mobile vision sensor mounted on the end effector of a robot manipulator. It is 
characterized by two main points:the use of vision sensor as local sensor providing 
relatively poor instantaneous information but at a rate consistent with the bandwith 
of the robot controller and the exploitation of the vision data into a robust control 
scheme based on a task function approach [7]. 

1 T h e  F r a m e w o r k  of  S e n s o r - b a s e d  C o n t r o l  

1 .1  Background 

We are interested in this paper  in the design of control systems which work in closed 
loop with regard to the environment ,  with the point of  view of  au tomat ic  control.This 
means that  sensors exclusively devoted to supplying of symbolic  information will not  be 
considered, and that  only high da ta  rate sensors are used. This excludes, for example, 
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high-level visual functions while this includes force, proximity, local range, and local visual 
sensing. In all cases, we shall therefore consider a sensor as a device rigidly linked to a 
mobile body which provides continuously with a p-dimensional vector of data denoted s. 
These sensor data are assumed to be only dependent of the interactions of the sensor and 
the environment. 

Before designing the related control loops, modelling and analysis of these interac- 
tions are necessary steps, which will be done in the following subsection. The next one 
will briefly show how to realize a sensor-based task and will exhibit the needed related 
properties. All extended developments concerning the described approach may be found 
in [7]. 

1 .2  M o d e l l i n g  t h e  I n t e r a c t i o n s  S e n s o r /  E n v i r o n m e n t  

Basic N o t a t i o n s .  A sensor (S) is linked to a rigid body (B), with related frame Fs. 
(S) interacts with an environment (objects) to which is associated a frame F t .  A fixed 
reference frame F0 is also given. Fs and FT are mobile with respect to Fo. The position 
(location and attitude) of (B) is an element ~ of the Lie group of the displacements, 
called SEa, which is a 6-dimensional differential manifold. Its tangent space is called sea 
and its dual ae~. A screw, H, is an element of sea, which is also defined by its vector and 
the value of its field in some point O. Shortly, H = ( H ( O ) ,  u ). When expressed in a 
given frame, H will be represented by a vector in R e. 

The velocity screw of a frame Fk with respect to a frame Ft is denoted Tkl. 

The  C o n c e p t  of  E l e m e n t a r y  Signal.  Let us consider a one-dimensional component 
sj of s. Our basic assumption is that s / i s  in a mathematical sense a mapping from SEa 
to R; more precisely, we assume that, given (S) and an observed environment (T), sj is 
a function of the relative position of (S) with respect to (T) only. Therefore: 

= sAFo, Fr) e r t  (1) 

This function will be assumed to be twice differentiable. Equation (1) defines a so- 
called elementary signal. This is for example the output of an ultrasonic sensor, an optical 
reflectance sensor, a strain gauge, or in the present case any 'relevant' parameter computed 
from an image. 

Now, if (S') belongs to a mechanical system with several degrees of freedom (rigid 
manipulator, mobile robot), it may occur that the joint coordinates q constitutes a local 
chart of SE3. In another way, the sensed object (T) may move independently with respect 
to Fo; its motion is then parametrizablc by the timc variable t. From these two arguments, 
(1) may also be written: 

sj = sj(q,  t) (2) 

Note that when q is not a chart of SEa (case of a plane mobile robot for example), 
the system evolves inside a submanifold with dimension smaller than 6. Nevertheless, the 
presented approach may often be applied in this smaller configuration space. 
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The C onc e p t  of  I n t e r a c t i o n  Screw. Owing to its definition s~ admits a derivative 
represented by an element of sea. The differential of sj is a mapping from se~ to R which 
may shortly be written: 

Osi o d~ 
s~=  Og d - i = H ~ ° T s r  (3) 

where * denotes the screw product. Note that H and Tsr are both functions of q 
and t. Let us now suppose that (S) belongs to the last body, (B~), of a six-jointed robot. 
Equation (3) may then be expressed, for example in F0, giving: 

~j=[u~flr(Os)](q,t)J6(q)il+[u~Hr(T)](q,t) ( VT(t) ) ~ ( t )  (4) 

where J~ is the Jacobi~n matrix associated with the frame Fs linked to (B6), with 
origin 06, and T a fixed point of (T), all elements being expressed in F0. 

From now, we assume without loss of generality that (T) is motionless in F0; we then 
finally define the interaction screw between the elementary sensor with output sj and the 
environment as the screw H i such that: 

~i = Hi • Tso (5) 

Hj may be understood as a kind of Jacobian of the elementary sensor relative to 
its displacements with regard to the environment. It should be emphasized that all the 
information about the interactions between a sensor and its environment is contained 
in H i. Unfortunately, the knowledge of H i is generally partial, because of the existing 
uncertainties on environment and sensors. Consequently, only models of Hj may be used 
in practice; such models will be denoted f / i  in the following. 

T h e  C onc e p t  of  Vi r tua l  Linkage.  Let us now search for a velocity screw T* such 
that hj = 0, i.e. the elementary sensor output is invariant with respect to the motion 
defined by T*. T" is a solution of: 

Hi • T" -- 0 (6) 

i.e. is a screw reciprocal to H i. Considering now the full sensor (S) with vector output 
s shows that the motions T" leaving s unchanged belong to a subspace reciprocal to the 
subspace S spanned by the set //1, ..Hi, ..H v. 

The set (S) ; H~, ..g~, ..gp constitutes a vi~t~at linkage. 
This concept is an extension of the classical one used in the description of mechanical 

contacts between rigid bodies. Its class, N (number of "allowed motions"), is the dimension 
of S. When a frame and a basis are chosen, the virtual linkage is fully defined by the 
properties of the 6 × p matrix 

L =  H~(P) HAP) (7) 
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with rank 6 - N, evaluated at some point P.  Recall that Hi(P)  = Hj(P')  + Ape,u~, 
where App, is the antisymmetric matrix associated with the cross product P 'P '× .  

The concept of virtual linkage is an easy way to the user to specify the task he wishes 
to realize through the sensors. It allows to determine the motions which may be sensor- 
controlled and the ones which remain free. In the case of physical contact, and with some 
assumptions on the used force sensors, this virtual linkage reduces to an actual linkage. 
An important fact to be emphasized is that a virtual stiffness may also be associated with 
the linkage, through the performed control. All these points are discussed in [7]. 

1.3 Sensor-based T a s k  Functions 

General Background. Let us consider a rigid robot, the dynamic equation of which is 

r = M(q)q + N(q, ~, t) ; dim(q) = n (8) 

where M is the kinetic energy matrix and N gathers Coriolis, centrifugal, gravity and 
friction terms. From the point of view of automatic control, (8) is the state equation of the 
system (with natural state vector (q, ~))), which fully describes its dynamics and involves 
only its intrinsic properties. The user's requirements, i.e. the task to be performed, have 
only to be specified as an output function associated with equation (8). The problem will 
be considered as well-posed if the 'passage' from the output space to the space where the 
control is actually performed is regular in some sense. 

Further considerations ([2], [6]) allows finally to state that, in robotics applications, 
most of the user's objectives may be defined through a C 2 n-dimensional function de- 
pending both of q and t, e(q,t), to be servoed to zero, associated with an initial condition 
q0 and a time horizon [0, T]. Provided that a solution exist, some other conditions among 
them the regularity of the task-Jacobian 0~ in a certain domain, are also required. 

A M a j o r  P r o p e r t y  Needed  for Stabi l i ty .  Given equation (8), and a task function 
e(q, t) to be servoed, a control scheme has to be designed. A genera ! form is the approxi- 
mated decoupling/linearization scheme performed on a transformation of model (8) in the 
task space ([6]). "Approximated" means that models Jf/l, N,  8~ o, a-7, a'-/, are used instead of 
the true expressions often practically unavailable. In [6] and [7],C. Samson has exhibited 
some sufficient conditions ensuring the closed-loop system to be stable. One of the most 
important is certainly: 

0e .0~)_, 
N( N >o (91 

in the sense that a n x n matrix A is positive if x r A x  > 0 for any nonzero x E R n. 
Clearly, this condition involves the task itself. More precisely, it states the minimal 

knowledge which is needed about the task for ensuring a good behaviour of the system. 
This property will be largely used in the following. 



416 

Case o f  Sen so r -b a sed  Tasks .  A common example of task function is the tracking 

( z (q ) -  z'(t) ) where z is the of a trajectory in a given space, for instance e(q,t) = d(r(q),vd(t)) 

location of O~, zr the related trajectory to be tracked, and d(.) a 3-dimensional vector 
representing the error between a desired rotation rd(t) and the actual one r(q). The use 
of sensors is also a way of constituting a task function, when the needed assumptions are 
satisfied. However, due to the fact that the virtual linkage which is desired to be realized 
is often of class N greater than 0, the related sensor based task may have an intrinsic 
dimension less that the required n. It is therefore necessary to complete it, provided 
that the 'added' objective is independent and compatible with the sensor-based task. It 
may be shown ([7],[2]) that an efficient way for doing this is the following: starting from 
s, a first step is to build a vector function el(s), generally linear (el = Ds - e*) with 
the right dimension, i.e. the one of S, and characterizing in a simple manner the desired 
virtual linkage (the example of visual-based tasks will be presented later). The second step 
consists in defining a secondary objective, to be realized under the constraint of achieving 
el = 0 . This secondary goal is expressed as the minimization of a coast function h,. It 
may then be shown that the resulting (global) task function takes the general form: 

e = w + w e l  + - ( lo)  
O X  

where x is an element of any working space such that ~ is nonsingular, a is a positive 
scalar function and W a matrix function such that, for ~ecoupling requirements, range 
(W T) = range ( 8¢_.~'~T 

k O z /  " 

A particularly interesting case, used in all the following, is z = e, with the frame of 
the sensor system used as working frame. Then, ~ is directly related to the matrix L 
of the interaction screws; furthermore, it is sometimes possible to choose W such that 
W+W is diagonal, with entries 0 or 1, then called a selection matrix. In that case, and if 

has the meaning of a trajectory tracking in SE3, the realized task is called an hybrid 8f'  

task, by analogy with the wellknown hybrid control. 
A last thing is that the important positivity condition (9), when applied to equation 

(10), may be sometimes easily satisfied by a simple choice of the model at. ~ .  it is shown 

in [7] that,  when W may be chosen such that a ' w T  5 ; ' "  > 0, and if a is not too large, then 
a~ 

is itself positive. Condition (9) is therefore satisfied with the simple choice as _ -- ,  
Oq Oq 

i.e. the basic Jacobian matrix of the robot. This is the reason why some hybrid control 
schemes may work even with a bad knowledge of the true interactions. 

In the case of visual sensors, it is very difficult to know precisely the interaction 
screws, because they will be shown later to depend on an unknown parameter, the depth. 
In opposition to force or range measurements, it is thus not possible to find a priori what 
are the right models to be used, and, more, what is the allowed "amount of uncertainty". 
From an other point of view, given certain simple choices of models, it is not easy to 
determine their domain of validity. This is why, in the case of visual servoing, often only 
an experimental analysis may allow to validate the choices done in the control schemes. 
This way of applying the previous theory is the topic of the following developments. 
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2 Appl icat ion  to a visual  servoing approach 

2 . 1  P r o b l e m  s t a t e m e n t  

Let us consider a vision sensor moving across a three dimensional environment (3D-scene). 
We assume that the motion of the sensor is fully controlable and can be characterized by 
its velocity screw. In practice, this vision sensor can be mounted on the end effector of a 
manipulator or carried by a mobile robot. We use the classical "pinhole" approximation 
for modelling the perspective geometry of the sensor, and we assume the focal length 
equal to unity (figure 1). Using the same definition as above for the diverse frames, we 
can state that,  due to the motion of sensor and objects, a point Pi = (x iYiz i )  T linked to an 
objec t ,  moves with a relative velocity with regard to Fs. This velocity can be expressed 
by the velocity screw Tsr by means of: 

P; = Vr + ~Fr x SPl (11) 

At each instant~ the point ~ projects onto the image plane as a point pl with coordi- 
nates (XiYd r 

X l  = xl Yl - ;  = - ( 1 2 )  
zi zi 

. o Y .  

Figure 1: Perspective model 

A velocity field projected onto the image plane corresponds to the motions of the sensor 
and/or objects in the 3D-scene ; this velocity field is often called as the Optical Flow field. 
By differentiating (12) and using (11) ,  we can derive the wellknown equation relating 
optical flow measurement to 3D structure and motion in the scene. When expressed in 
the Fs frame, we obtain: 

This equation shows the basic structure of the interaction between the vision sensor 
and its environment. As we underlined in the first part, the two interaction screws appear- 
ing as the lines of the matrix given in (13) depend on the inverse of the depth zi expressed 
in the Fs frame. Generally, without some a priori knowledge about the environement, 
it is not possible to know the true value of the interaction screws and only some rough 
approximation will be available for the control purpose. As we shall show later, we will 
be able to compensate for this lack of accuracy by a robust control scheme. 
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Now, let us consider more complex geometrical primitives than points. In a gen- 
eral way, we assume thai a 3D geometrical primitive can be represented as a vectorial 
function h(z(t), v(t), z(t), Q(t)) = 0 which projects onto the image prane under the form 
g(X(t) ,Y( t ) ,R(t))  = 0 where Q(t) = Qi(t);i = I , m  and R(t) = B~(t);i = 1,n are the 
parameters of the primitives respectively in the 3D scene and in the image plane. 

From these assumptions, an important part of the visual servoing problem will be 
devoted to find, for a given 3D primitive, a wellsuited parametrization of h and g (i.e. 
without singularity of representation) and to establish the interaction screw Hi(R, Q) such 
that: 

& = Hi(R, Q) ,, Tsr (14) 
According .to virtual linkage defined in section 2.2, we can search for a velocity screw 

T* such that R{ = 0 leaving R unchanged which can be formulated by: 

(VT* e ,5* C S) i f  T* e Ker(Hi) ¢==v/~" = 0 (15) 

The following section is devoted to the definition a set of elementary visual signals 
and their associated virtual linkage from a set of low level geometrical primitives. 

2.2 Model l ing e lementa ry  visual signals 

Assuming that  g is a C 2 function on a t ime interval [0, T], let us derive a general solution 
for computing Hi(R, Q): 

g(X(t) ,Y( t ) ,R(t))  = 0; Vt e [0,T] => ~(X(t) ,Y(t) ,R(t))  = 0; V t e  [0,T] (16) 

after developments, we obtain: 

f i  Og . Og . Og • V(X, Y) such that g(X, Y, R) 0 (17) ,=, - ~  Ri = - ~ - ~ X  - -d-~Y ; = 

Eq.(16) allows us to relate the variation of the parameters Ri characterizing the 2D 
primitive in the image plane to the optic flow components and thus, to the velocity screw 
of the camera by means of eq.(13). An elementary visual signal will bc defined as a 
function ai = f (R~, . . .  ,Rk), i , . . . ,  k E n characterizing usual geometrical properties in 
the image like distance between two points, orientation between two lines, surface, mass 
centroid and so on. 

Case  o f  po in t s  

Us ing  one  po in t .  The equation of h and g are triviM, and we find again the classic 
optical flow equation: 

x - x l - - O  { X - X ,  = 0 
h : y - y l = O  ~ g : Y - Y 1  = 0 

Z - - Z l = O  
(18) 



From the eq.(17), we have: 

Finally, we can define two elementary visual signal sl = XI and s z  = ;the set 
(S = [sls2lT) ; H;, Hz constitutes a virtual linkage the class of which is 4 = dim(S) ( S 
is the subspace spanned by HI, 6). A basis of S can be easily found, for example: 

Each velocity screw TiT which belongs to S leaves unchanged the projection of the 
3D point in the image plane. 

Using several points. The case of two different points in the image frame leads to 
thc following equation: 

the class of the linkage is 2,ie the dimension of the subspace corresponding to the 
allowed motions without changing the nature of the image. 

The case of three points is more interesting. As it is wellknown, the inverse perspective 
problem (recovering location and orientation of 3D objects from one 2D image) has not 
an unique solution. By this fact, several relative attitudes between the camera and the 
object can lead to the same image. These attitudes correspond to the solving of a 8- 
degrees analytic equation . In the most cases, a continuous motion does not exist from 
one solution to another one which leaves unchanged the image . In consequence, for a 
particular attitude between object and camera, tlle dimension of the subspace S is 0 (ie 
rank(H) = 6). However, for some particular cases, like, for example, when the three 
points are colinear in the 3D space , singularities may be occured (LC. rank(H) < 6). 
For a number of points greater than three (four or more), we are in a case of redundancy: 
the rank of H is always equal to 6 and the dimension of TZT equal to 0. We will see later 
how we can use these properties to perform a task of target tracking. 

O t h e r  elementary visual signal based on  points In the previous paragraph, 
we only presented the case where the application sj = f (I&,. . , , Rk), i, - -., k E n is the 
identity. In many cases, it can be fruitful to consider more relevant signals with regard 
to the task. For instance, let us consider the problem of positioning an end effector with 
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regard to an object which is characterized by three points. A natural way for specifying 
this task is to control, on the first hnnd, the location of ~ particular point of the object, 
by example the mass centroid of the three points andon  the other ha~d some geometrical 
characteristics like the distance between the three points. For doing that, we choose the 
following signals vector: 

with 

L12 
L13 
L~  
Xc 
Ya 

(22) 

si = Lik = ( X j -  Xk) 2+  ( Y j -  Y,)2 ; i = 1 . . .3 ;  j = 1 . . . 3 ,  k = j + 1 . . . 3  (23) 

and 

S4 ~-- X G  = T ; )'~'i3=1 X i  85 = yG _ ~//=13 Y/ (24) 
Then it is possible to compute the interaction screw H( X1, X~, )(3, ]I1, Y2, Ya, zl, z2, za) 

and the associated virtual linkage. Let us remark that this choice of s lets a rotation 
around the mass centroid to be free (ie rankH = 5); The full control of this rotation from 
the image needs another component characterizing the orientation in the image plane like, 
for instance, the orientation of the main inertial axis with regard to the image frame has 
to be add to s. 

Case of  lines. For mnny reasons ( accuracy, robustness with regard to the noise...) it is 
often interesting to use in image analysis more structured primitives than simple points. 
In the case of visual servoing, using lines as primitives seems to be natural. A 3D line 
will be represented by two planes which intersect: 

{ alx + bly + clz + dl = 0  with dl,d2 0 (25) 
h ( x , y , z , q )  : a 2 z + b Z + e 2 z + d 2  0 ' # 

A 3D line in the scene projects onto the image plane as a 2D line (except on some 
degenerate cases). Some attention has to be taken concerning the parametrization of the 
2D line. As we underline in the first part, an elementary visual signal has to be twice 
differentiable. Let us consider the classical representation of a 2D line: Y = aX  + b. This 
parametrization needs two charts for representing 2D lines into the cartesian space (i.e. 
the lines: X = 1 and Y = 1 belongs to two different charts). If we use the parameters a 
and b as elementary visual signals, the condition of differentiability is not preserved during 
the passage from one chart to the other. For this reason, we choose a representation p, 0 
and we obtain: 

:D : g ( X , Y , R )  = XcosO + Y s i n O -  p = 0 , 0  E l - 2 '  2 ] (26) 
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deriving this equation, 

= 0 =. b + (g~inO - Yco~O)O = cosOYC + si,=O;', V(X, Y) e 9 

finally, using eqs.(13), (25), (26), we obtain: 

d~ al . . 

and 

(27) 

(28) 

c1 al bl 
[~ = (-27. q- p-~-cosO + p-~. $inO ) ( cosO sinO - p ) . (Vr) + ((1+ p2)sinO - (1 + pZ)cosO 0). (tiFf) 

(29) 
Eqs.(28)(29) define the associated interaction screws. Typically, the vector s = (p, O) T 

will be used to characterize a 2D line, but if necessary, we will be able to control some 
other characteristics like, for instance, orientation between two lines (8 = ]01 - 02]) or all 
other measurement built from 0 and p. 

Case o f  circles.  In a similar manner, let us consider a circle in the 3D scene. It projects 
onto the image plane as an ellipse: 

{ ( ~  - ~o) :  + (~ - yo)2 + (~ - ~o)~ - ,~  = o 
h ( ~ ,  y,  ~, ¢ )  : (~ zo)  - ~ ( =  - =o) - ~ ( ~  - yo) = o 

(30) 

=.  g ( x , r , R )  : 
( x  - x c  + e ( r  - Yc)) 2 + ( r  - Yc + e ( x  - x c ) )  2 _ I = o (31) 

a2(l q- e 2) b2(1 + e 2) 

After some tedious developments, we can relate the variation of the parameters of the 
ellipse to the motion into the 3D scene by means of the interaction screws such that: 

b 

= H s TST (32) 

2 . 3  V i s u a l  s e n s i n g  a n d  t a s k  f u n c t i o n  

At this step, we have defined a set of elementary vision signals; in this section, we will 
investigate some ways of using these signals in a robust control scheme based on a task 
function approach, as defined in section 3.1. The problem can be stated as follows: is 
it possible to specify a robotic task in term of reaching a particular configuration of a 
set of features in tile image frame? If so, from a running observation of these features 
in the image, are we able to perform this task? This means that we have to design a 
control scheme which allows us to reach this particular configuration (target image). Let 
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us consider an example: a task for a mobile robot consists in going in front of a door 
at a given distance. This task may be translated in the image frame by the following 
characteristics: 

• matching in the image a set of polygonal lines which can be associated with the 
model of the door. 

• controlling the motion of the robot for bringing these lines to form a rectangle 
centred on the image frame with two parallel and vertical lines and the surface of 
which is equal to a given value. 

With regard to the general form of sensor based task functions presented in the first 
part, we define a task vector e(q(t), l), associated to a visual task function, where q is a 
local chart of SEa, ( obviously, in the case of a camera mounted on an end effector of a 
manipulator q is a chart of the configuration space) and such that : 

sl(q,t)-- s;(t) ) 
c(q(t),t) = : (33) 

sp(q, t) -- ,;(t) 
where s*(t) can be considered as a reference trajectory to be tracked in the image 

frame. If the robotic task just consists in controlling a given att i tude of the sensor with 
respect to a motionless target, (i.e. positioning problem) then s" will be time independant. 

Considering the control problem as art output regulation problem, we can assume that 
the concerned task is perfectly achieved during [0, T] if e(q(t), t) = 0 for all t E [0, T]. For 
simplifying the derivation of the control, we shall consider that  the motions of the camera 
and the robot are slow enough to allow the use of a full dynamic model (8) to be avoided. 
With intend to simplify our purpose, we only consider the case where the matrix H(R, Q) 
is regular but this approach can be extended to any cases without loss of generality. We 
therefore focus on the robustness with respect to uncertainties on the interactions by using 
a gradient-based approach as a particular case of the general approach evoked in section 
2.3. In this approach, we assume that a linearly decreasing function Ta = f(e(q(t), t)) 
relates the desired control vector to the task function with a limit condition lirn~-.0 f = 0. 
Under these assumptions, we may choose: 

Td = t) (34) 

where/ t  > 0 and C is a constant positive matrix. From eqs.(3) and (34), we obtain: 

= ~ = H • Td ¢ e = -~H. Ce (35) 

An exponential convergency will be ensured under the following sufficient condition: 

H e  > o (36) 

A good and simple way to try to ensure this matrix positivity is to enforce H(R*, Q*). 
C = I (where I represents the identity matrix) for the equilibrium position s = s*. In 
this case, the control matrix C takes the following form: 
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C = H(R*, Q')-'  (37) 

Let us note that the computation of C depends of the parameters R referring to the 
image which are known or easily measured and of the parameters Q referring to the 3D 
scene. Without an a priori knowledge on the 3D scene, these last paxameters cannot be 
inferred from the image and, by this fact, the matrix C cannot be exactly computed. 
Fortunately, in many cases, the interaction screw H can be factorized in a product of two 
matrices such that: 

H(R*, Q') = B(R*). D(R*, Q')  (38) 

where D(R*, Q*) is a positive diagonal matrix. For instance, when the target is con- 
stituted by three 3D points and when the equilibrium position is such that the target is 
parallel to the image plane,  the matrix D has the following form: (, 0) 

D(R',  Q') . . . .  with z" > 0 (39) 
0 I h 

In this cases, we can choose a control matrix such that C = B(R*) -1 since the con- 
vergency condition lIB. D .  B -111 > 0 is always verified. 

Obviously, the results presented above ensure the positivity only at the equilibrium 
position where s = 2*. Far from this position, the convergency property is not always 
insured and the positivity of HH(R(t), Q(t)). G(R*, Q*)II should be checked for all t E 
]0, T]. Fortunately, as we will see in the next section, outside the task singularities, the 
satisfaction of this condition is shown to be preserved in practice. 

3 R e s u l t s :  

The approach developped in this paper has been validated both in simulation [4] and 
in an experimental cell constituted by a CCD camera mounted on the effector of a 6dof 
manipulator [1]. 

3 .1  S i m u l a t i o n  r e s u l t s  

We focused our investigations on the problem of positioning the sensor with respect to 
a static or a moving target. We investigated the use of different types of primitives as 
elementary signals (points, lines, circles). For each case, we performed a first serie of 
experiments corresponding to the following configurations: 

* static target, noise-free synthetic image, noise-free control vector. 

• static target, the image noise had a Normal distribution with zero mean and a 
standard deviation of two pixels, the control vector noise had a Normal distribution 
with zero mean and a standard deviation of 1 centimeter in translation and two 
degrees in rotation. 
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In all cases, the chosen control was of form given by eqs. (34), (37). Some results are 
given in the figure 2 (noise-free) and 3 (with noise) in a positionning task of the camera 
with respect to a target constituted by four points. The coordinates of every point, Xi 
and ~ are taken as elementary signals in the image frame. In these figures, the two top 
windows presents the relative attitude of the camera (symbolized by a pyramid) and the 
target viewed by an outside observator, The two bottom windows presents the target 
as seen by the camera. The windows on the left correspond to the initial position and 
the windows on the center to the final desired one. The two windows on the right show 
the behaviour of the error and of the control vector during the visual servoing. The top 
window corresponds to the mean quadratic error on the set e(L) = ~v=a(%(t)v=8 _ 8v ), 2 and 
the bottom window the behaviour of each component of the control vector (velocity screw 
of the camera) during the positionning task. 
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Figure 2: static target, nolse-free synthetic image 

As shown on the figures, the convergency to the desired configuration of the target in 
the image is always performed in spite of the distant initial position. Same experiments 
are successfully performed when the target is moving through the scene with any motion 
consistent with the sampling of the servocontrol loop. Analog results are obtained with 
lines and circles primitives. 

3 . 2  E x p e r i m e n t a l  r e s u l t s :  

The approach has been also validated in real environments by using a CCD camera 
mounted on the end effcctor of a 6dof manipulator (figure 4). The behaviour of the 
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Figure 3: static target, noisy synthetic image 

real system is extremly close to the one expected by the simulations. This a posteriori 
justifies in the studied cases the choice of a control law of the form given by eqs. (34), 
(37). The choice of H(Q', R') (i.e. the value of H at the desired equilibrium position) as 
a control matrix has therefore been experimentally shown to be robust, even for rather 
large initial position errors. 

The four points experiment described in simulation, has been successfully imple- 
mented. The figure 5 presents on the first hand, the sequence of images during the 
positionning task from the initial position to the final one, on the second hand, the be- 
haviour of the mean quadratic error as in the simulation case, and the behaviour of each 
elementary signal error involved in the control loop. 

4 C o n c l u s i o n  

This paper discusses the problem of using vision data directly as an input of the robot, 
control loop. This approach, often referred as visual servoing, is characterized by the use 
of vision sensor as local sensor providing relatively poor instantaneous information but at 
a rate consistent with the bandwith of the robot controller, and by the exploitation of the 
vision data into a robust control scheme based on a task function approach. Concerning 
the first point, vision data are modelled as a set of elementary signals. Each elementary 
signal is associated at a 2D geometric primitive into the image frame (point, line, circle...) 
corresponding to the projection of a 3D primitive in the scene frame. We show that if 
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Figure 4: experimental cell 

the signal is only dependant of tim relative geometry between the sensor and the scene, 
then the interaction between the sensor and the scene can be described by a screw which 
relates observed motion in the image frame (optic flow) to relative motion between the 
camera and the objects in the 3D environment frame. 

Concerning the second point, we propose a robust control scheme based on a task 
function approach. We show that the problem of control can be stated as a problem of 
regulation directly into the image frame. From the desired image target and the currently 
image observed by the camera, it is possible to define an error function and to express the 
problem of regulation as a problem of minimization of this error function. In this case, 
a class of control bemed on gradient techniques allows to perform correctly the task with 
good convergence properties ( assuming only Lhe definite posiLivity of a certain matrix). 

This approach has been successfully validated both in simulation and in real experi- 
ments. In a next future, we should hope to address the problem of programming complex 
robotics tasks in terms of a succession of elementary subtasks which can be described by 
constraints betwcen the frame linked to the effector and the frame linked to the scene (ie 
colincarity between axis, following of surface at a constant range...). 
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