Skip to main content

Edge and node searching problems on trees

  • Session 9: Algorithms
  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1276))

Included in the following conference series:

Abstract

In this paper, we show that there is a natural correspondence between a tree's edge-search strategy and its node-search strategy. By doing so, we simplify the previous linear time algorithm for determining the edge-search number of a tree, and improve the running time of a previous algorithm for constructing an edge-search strategy (or plan) for a tree containing n vertices from O(n log n) to O(n) time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Arnborg, D.C. Corneil, and A. Proskurowski, Complexity of finding embeddings in a k-tree, SIAM J. Alg. Disc. Meth., 8 (1987), 277–284.

    Google Scholar 

  2. H.L. Bodlaender and T. Kloks, Efficient and constructive algorithms for the path-width and treewidth of graphs, J. Algorithms, 21 (1996), 358–402.

    Google Scholar 

  3. H.L. Bodlaender, T. Kloks, and D. Kratsch, Treewidth and pathwidth of permutation graphs, ICALP'93, Lecture Notes in Computer Science, 700, 114–125, 1993.

    Google Scholar 

  4. H. L. Bodlaender, T. Kloks, D. Kratsch, and H. Muller, Treewidth and minimum fill-in on d-trapezoid graphs, Technical Report UU-CS-1995-34, Department of Computer Science, Utrecht University, Utrecht, the Netherlands, 1995.

    Google Scholar 

  5. H.L. Bodlaender and R.H. Möhring, The pathwidth and treewidth of cographs, SIAM J. Disc. Math., 6 (1993), 181–188.

    Google Scholar 

  6. D. Bienstock and P. Seymour, Monotonicity in graph searching, J. Algorithms, 12 (1991), 239–245.

    Google Scholar 

  7. M.-J. Chung, F. Makedon, I.H. Sudborough, and J. Turner, Polynomial time algorithms for the min cut problem on degree restricted trees, SIAM J. Comput., 14 (1985), 158–177.

    Google Scholar 

  8. J.A. Ellis, I.H. Sudborough, and J.S. Turner, The vertex separation and search number of a graph, Information and Computation, 113 (1994), 50–79.

    Google Scholar 

  9. J. Gustedt, On the pathwidth of chordal graphs, Disc. Appl. Math., 45 (1993), 233–248.

    Google Scholar 

  10. T. Kloks, H. Bodlaender, H. Muller, and D. Kratsch, Computing treewidth and minimum fill-in: all you need are the minimal separators, ESA'93, Lecture Notes in Computer Sciense, 726, 260–271, 1993. Erratum: ESA'94, Lecture Notes in Computer Sciense, 855, pp. 508, 1994.

    Google Scholar 

  11. L.M. Kirousis and C.H. Papadimitriou, Interval graph and searching, Disc. Math., 55 (1985), 181–184.

    Google Scholar 

  12. L.M. Kirousis and C.H. Papadimitriou, Searching and pebbling, Theoretical Comput. Scie., 47 (1986), 205–218.

    Google Scholar 

  13. A. Kornai and Z. Tuza, Narrowness, pathwidth, and their application in natural language processing, Disc. Appl. Math., 36 (1992), 87–92.

    Google Scholar 

  14. N.G. Kinnersley, The vertex separation number of a graph equals its path-width, Inform. Process. Lett., 42 (1992), 345–350.

    Google Scholar 

  15. T. Kloks, Treewidth, Ph.D. Thesis, Utrecht University, The Netherlands, 1993.

    Google Scholar 

  16. A.S. LaPaugh, Recontamination does not help to search a graph, J. Assoc. Comput. Mach., 40 (1993), 224–245.

    Google Scholar 

  17. N. Megiddo, S.L. Hakimi, M.R. Garey, D.S. Johnson, and C.H. Papadimitriou, The complexity of searching a graph, J. Assoc. Comput. Mach., 35 (1988), 18–44.

    Google Scholar 

  18. F. Makedon and I.H. Sudborough, On minimizing width in linear layouts, Disc. Appl. Math., 23 (1989), 243–265.

    Google Scholar 

  19. R.H. Möhring, Graph problems related to gate matrix layout and PLA folding, in: G. Tinnhofer et al., eds., Computational Graph Theory (Springer, Wien, 1990), 17–32.

    Google Scholar 

  20. B. Monien and I.H. Sudborough, Min cut is NP-complete for edge weighted trees, Theoretical Comput. Scie., 58 (1988), 209–229.

    Google Scholar 

  21. T.D. Parsons, Pursuit-evasion in a graph, in Y. Alavi and D.R. Lick, eds., Theory and applications of graphs, Springer-Verlag, New York, 1976, 426–441.

    Google Scholar 

  22. S.L. Peng, M.T. Ko, C.W. Ho, T.-s. Hsu, and C.Y. Tang, Graph searching on chordal graphs, ISAAC'96, Lecture Notes in Computer Science, 1178, 156–165, 1996.

    Google Scholar 

  23. N. Robertson and P.D. Seymour, Graph minors I. Excluding a forest, J. Comb. Theory Ser. B, 35 (1983), 39–61.

    Google Scholar 

  24. P. Scheffler, A linear algorithm for the pathwidth of trees, in: R. Bodendiek and R. Henn, eds., Topics in Combinatorics and Graph Theory (Physica-Verlag, Heidelberg, 1990), 613–620.

    Google Scholar 

  25. M. Yannakakis, A polynomial algorithm for the min cut linear arrangement of trees, J. Assoc. Comput. Mach., 32 (1988), 950–959.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tao Jiang D. T. Lee

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Peng, SL., Ho, CW., Hsu, Ts., Ko, MT., Tang, CY. (1997). Edge and node searching problems on trees. In: Jiang, T., Lee, D.T. (eds) Computing and Combinatorics. COCOON 1997. Lecture Notes in Computer Science, vol 1276. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0045095

Download citation

  • DOI: https://doi.org/10.1007/BFb0045095

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63357-0

  • Online ISBN: 978-3-540-69522-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics