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Abstract 

The efficient management of geometric data, such as points, curves, or polyhe- 

dra in arbitrary dimensions, is of great importance in many complex database appli- 

cations like computer-aided design and manufacaning, robotics, or computer vision. 

To provide optimal support for geometric operators, it is crucial to choose efficient 

data representation schemes. In this monograph, we first give a taxonomy of opera- 

tors and representation schemes for geometric data and conduct a critical survey of 

common representation schemes for two- and three-dimensional objects. Then we 

present several new schemes for the efficient support of set operators (union, inter- 

section, difference) and search operators (point location, range search). 

Polyhedral point sets are represented efficiently as convex polyhedral chains, 
i.e. algebraic sums of convex polyhedra (ceils). Each cell in turn is represented as 

an intersection of halfspaces and encoded in a vector. The notion of vertices is aban- 

doned completely. Then the computation of set operators can be decomposed into 

(a) a collection of vector operations, and (b) a garbage collection where vectors that 

represent empty cells are eliminated. All results of the garbage collection are cached 

in the vectors, which speeds up future computations. No special treatment of singu- 

lar intersection cases is needed. This approach to set operations is significantly dif- 

ferent from algorithms that have been proposed in the past. 

To detect intersections of hyperplanes and convex polyhedra in arbitrary 

dimensions, we propose a dual representation scheme for polyhedra. In d dimen- 

sions, the time complexities of the dual algorithms are O(2alogn) and 
O((2d)a-lloga-ln) for the hyperplane-polyhedron and the polyhedron-polyhedron 

intersection detection problems, respectively. In two dimensions, these time bounds 

are achieved with linear space and preprocessing. In three dimensions, the 

hyperplane-polyhedron intersection problem is also solved with linear space and 

preprocessing, which is an improvement over previously known results. Quadratic 

space and preprocessing, however, is required for the polyhedron-polyhedron inter- 

section problem. For general d, the dual algorithms require O(n 2a) space and 

preprocessing. These results are the first of their kind for dimensions greater than 

three. All of these results readily extend to unbounded polyhedra. 
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To support search operations, we introduce the cell tree, an index structure for 

geometric databases that is related to R-trees and BSP-trees. The data objects in the 

database are represented as convex polyhedral chains. The cell tree is a balanced tree 

structure whose leaves contain the cells and whose interior nodes correspond to a 

hierarchy of nested convex polyhedra. This index structure aUows quick access to 

the cells (and thereby to the data objects), depending on their location in space. 

Furthermore, the cell tree is designed for paged secondary memory: each node 

corresponds to a disk page. This minimizes the number of page faults occuring dur- 

ing a search operation. Point locations and range searches can therefore be carded 

out very efficiently using the cell tree. The cell tree is a dynamic structure; insertions 

and deletions of cells cause only incremental changes. These update operations can 

be interleaved with searches and no periodic reorganization is required. 

For the representation of arbitrary curved shapes, we introduce a hierarchical 

data structure termed arc tree. The are tree is a balanced binary tree that represents 

a curve of length l such that any subtree whose root is on the k-th tree level is 

representing a subcurve of length l /2  k. Each tree level is associated with an approxi- 

mation of the curve; lower levels correspond to approximations of higher resolution. 

Based on this hierarchy of  detail, queries such as point inclusion or intersection 

detection and computation can be solved in a hierarchical manner. We present the 

results of a practical performance analysis for various kinds of set and search opera- 

tors. Several related schemes are also discussed. Finally, we discuss various options 

to embed arc trees as complex objects in an extensible database management system 

like POSTGRES. 
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